Copyright Cirrus Logic, Inc. 2012
(All Rights Reserved)
http://www.cirrus.com
8-Pin, 24-Bit, 96 kHz Stereo D/A Converter
Features
Complete Stereo DAC System: Interpolation,
D/A, Output Analog Filtering
24-Bit Conversion
96 dB Dynamic Range
-88 dB THD+N
Low Clock-Jitter Sensitivity
Single +5 V Power Supply
Filtered Line-Level Outputs
On-Chip Digital De-emphasis
Popguard® Technology
Functionally Compatible with CS4330/31/33
Description
The CS4334 family members are complete, stereo dig-
ital-to-analog output systems including interpolation,
1-bit D/A conversion and output analog filtering in an
8-pin package. The CS4334/5/8/9 support all major au-
dio data interface formats, and the individual devices
differ only in the supported interface format.
The CS4334 family is based on Delta-Sigma modula-
tion, where the modulator output controls the reference
voltage input to an ultra-linear analog low-pass filter.
This architecture allows for infinite adjustment of sam-
ple rate between 2 kHz and 100 kHz simply by
changing the master clock frequency.
The CS4334 family contains on-chip digital de-empha-
sis, operates from a single +5V power supply, and
requires minimal support circuitry. These features are
ideal for set-top boxes, DVD players, SVCD players,
and A/V receivers.
ORDERING INFORMATION
See “Ordering Information” on page 24
LRCK 3
SDATA 1
DEM/SCLK
2
MCLK
4
VA
AOUTL
8
AOUTR
5
Serial Input
Interface
Interpolator
Interpolator
De-emphasis
Modulator

Modulator
DAC
DAC
Voltage Reference
Analog
Low-Pass
Filter
Analog
Low-Pass
Filter
7
AGND
6

JANUARY '12
DS248F6
Confidential Draft
1/18/12 CS4334/5/8/9
2
CS4334/5/8/9
TABLE OF CONTENTS
1. TYPICAL CONNECTION DIAGRAM ........................ .... ... ... ................ ... .... ... ... ... .... ... ... ... ... .... .............. 4
2. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 5
SPECIFIED OPERATING CONDITIONS.............................................................................................. 5
ABSOLUTE MAXIMUM RATINGS........................................................................................................5
ANALOG CHARACTERISTICS............................................................................................................. 6
POWER AND THERMAL CHARACTERISTICS ................................................................................... 8
DIGITAL INPUT CHAR ACTERISTICS...................... ................. ... ... ... ... .... ... ... ... ................ .... ... ... ... .... . 9
SWITCHING CHARACTERI S TI CS..... ... ... ... ................. ... ... ... .... ... ... ... ... .... ................ ... ... ... .... ... ... ... ... 10
3. GENERAL DESCRIPTION ................................................................................................................. 12
3.1 Digital Interpolation Filter .............................................................................................................. 12
3.2 Delta-Sigma Modulator ................................................................................................................. 12
3.3 Switched-Capacitor DAC .............................................................................................................. 12
3.4 Analog Low-Pass Filter ................................................................................................................. 12
4. SYSTEM DESIGN ............................................................................................................................... 13
4.1 Master Clock ................................................................................................................................. 13
4.2 Serial Clock .................................................................................................................................. 13
4.2.1 External Serial Clock Mode ................................................................................................. 13
4.2.2 Internal Serial Clock Mode ............... ................................................................................... 13
4.3 De-Emphasis ................................................................................................................................ 14
4.4 Initialization and Power-Down ...................................................................................................... 14
4.5 Output Transient Control .............................................................................................................. 14
4.6 Grounding and Power Supply Decoupling .................................................................................... 15
4.7 Analog Output and Filtering .......................................................................................................... 15
4.8 Overall Base-Rate Frequency Response ..................................................................................... 18
4.9 Overall High-Rate Frequency Response ...................................................................................... 19
4.10 Base Rate Mode Performance Plots ....................... ... ... .... ... ... ... ... .... ... ... ... .... ................ ... ... ... ...20
4.11 High Rate Mode Performance Plots ..................... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ......... 21
5. PARAMETER DEFINITIONS ............................................................................................................... 22
6. REFERENCES ..................................................................................................................................... 22
7. PACKAGE DIMENSIONS ................................................................................................................... 23
8. ORDERING INFORMATION ............... ... ... ... .... ... ... ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... .... ............ 24
9. FUNCTIONAL COMPATIBILITY ............... ... .... ... ... ... ................. ... ... ... ... .... ... ... ... .... ... ... ... ................... 24
10. REVISION HISTORY ......................................................................................................................... 25
LIST OF FIGURES
Figure 1. Recommended Connection Diagram.........................................................................................4
Figure 2. Output Test Load. ................. ... ... ... ... .... ... ... ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... .................. 8
Figure 3. Maximum Loading .... ... ... ... .... ................................ ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .................. 9
Figure 4. Power vs. Sample Rate ............................................................................................................. 9
Figure 5. External Serial Mode Input Timing.... ....................................................................................... 11
Figure 6. Internal Serial Mode Input Timing............................................................................................ 11
Figure 7. Internal Serial Clock Generation............................................................................................. 11
Figure 8. System Block Diagram............. ... ................................................ .... ... ... ... .... ... ... ... ... .... ............ 12
Figure 9. De-Emphasis Curve (Fs = 44.1kHz)........................................................................................ 14
Figure 10. CS4334 Data Format (I²S)....... ... ... ... .... ... ... ... .... ... ................................................................... 15
Figure 11. CS4335 Data Format..... ... .... ... ... ... ... ................................................. ... ... .... ... ... ... ... ................ 15
Figure 12. CS4338 Data Format..... ... .... ... ... ... ... ................................................. ... ... .... ... ... ... ... ................ 16
Figure 13. CS4339 Data Format..... ... .... ... ... ... ... ................................................. ... ... .... ... ... ... ... ................ 16
Figure 14. CS4334/5/8/9 Initialization and Power-Down Sequence ............ .... ... ... ... .... ... ... ... ... .... ... ... ... ... 17
Figure 15. Stopband Rejection..... ... ................ ... .... ... ... ... .... ... ... ... .... ... ... ................ ... .... ... ... ... ... ................ 18
Figure 16. Transition Band. ... .... ... ................................ ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...................... 18
Figure 17. Transition Band. ... .... ... ................................ ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...................... 18
3
CS4334/5/8/9
Figure 18. Passband Ripple................... ................ ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ................... 18
Figure 19. Stopband Rejection..... ... ................ ... .... ... ... ... .... ... ... ... .... ... ... ................ ... .... ... ... ... ... ................ 19
Figure 20. Transition Band. ... .... ... ................................ ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...................... 19
Figure 21. Transition Band. ... .... ... ................................ ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ...................... 19
Figure 22. Passband Ripple................... ................ ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ................... 19
Figure 23. 0 dBFS FFT (BRM).................................................................................................................. 20
Figure 24. -60 dBFS FFT (BRM).... ... .... ... ... ... ... ....................................................................................... 20
Figure 25. Idle Channel Noise FFT (BRM)............. ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ......... 20
Figure 26. Twin Tone IMD FFT (BRM)...................................................................................................... 20
Figure 27. THD+N vs. Amplitude (BRM)................ ... ... ... .... ... ... ... .... ... ... ................................................... 20
Figure 28. THD+N vs. Frequency (BRM)........... .... ... ... ... ................. ... ... ... ... .... ... ... ... .... ... ... ... ................... 20
Figure 29. 0 dBFS FFT (HRM).................................................................................................................. 21
Figure 30. -60 dBFS FFT (HRM) . ... ... .... ... ...... .......................................................................................... 21
Figure 31. Idle Channel Noise FFT (HRM) ............... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ......... 21
Figure 32. Twin Tone IMD FFT (HRM) ..................................................................................................... 21
Figure 33. THD+N vs. Amplitude (HRM)...................... ... .... ... ... ... .... ... ... ... ................ .... ... ... ... ... .... ... ......... 21
Figure 34. THD+N vs. Frequency (HRM).. ... ... ... .... ... ... ... .... ... ... ... .... ... ... ................................ ... .... ... ......... 21
LIST OF TABLES
Table 1. Common Clock Frequencies ...................................................................................................... 13
PIN DESCRIPTIONS
No. Pin Name I/O Pin Function and Description
1SDATAI
Serial Audio Data Input - Two’s complement MSB-first serial data is input on this pin. The data is
clocked into the CS4334/5/8/9 via interna l or external SCLK, and the channel is determined by
LRCK.
2DEM/SCLKI
De-Emphasis/External Serial Clock Input - Used for de-emphasis filter control or external serial
clock input.
3 LRCK I Left/Right Clock - Determines which channel is currently be ing input on the Audio Serial Data
Input pin, SDATA.
4MCLKI
Master Clock - Frequency must be 256x, 384 x, or 512x the input sample rate in BRM and either
128x or 192x the input sample rate in HRM.
5AOUTROAnalog Right Channel Output - Typically 3.5 Vp-p for a full-scale input signal.
6AGNDIAnalog Grou nd - Analog ground reference is 0V.
7VAIAnalog Power - Analog power supply is nominally +5 V.
8AOUTLOAnalog Left Channel Output - Typically 3.5 Vp-p for a full-scale input signal.
SERIAL DATA INPUT SDATA AOUTL ANALOG LEFT CHANNEL OUTPUT
DE-EMPHASIS / SCLK DEM/SCLK VA ANALOG POWER
LEFT / RIGHT CLOCK LRCK AGND ANALOG GROUND
MASTER CLOCK MCLK AOUTR ANALOG RIGHT CHANNEL OUTPUT
72 63 54
81
4
CS4334/5/8/9
1. TYPICAL CONNECTION DIAGRAM
DEM/SCLK
6
Audio
Data
Processor
External Clock MCLK
AGND
AOUTR
CS4334
CS4335
CS4338
CS4339
SDATA
LRCK
VA
AOUTL
3
1
2
4
70.1 µF +F
8Left Audio
Output
5Right Audio
Output
+5V
3.3 µF
10 kC
560
+
R+560
C= 4Fs(R 560)
RL
3.3 µF
10 kC
560
+
267k RL
L
L
267k
Figure 1. Recommended Connection Diagram
5
CS4334/5/8/9
2. CHARACTERISTICS AND SPECIFICATIONS
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical
performance characteristics and specificat ions ar e de riv e d from measurements taken at nominal supply voltages
and TA = 25C.)
SPECIFIED OPERATING CONDITIONS
(AGND = 0V; all voltages with respect to ground.)
ABSOLUTE MAXIMUM RATINGS
(AGND = 0V; all voltages with respect to ground.)
WARNING:Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Parameters Symbol Min Nom Max Units
DC Power Supply VA 4.75 5.0 5.5 V
Ambient Operating Temperature (Power Applied) -KSZ, -KSZR
-DSZ, -DSZR TA-10
-40 -
-+70
+85 C
C
Parameters Symbol Min Max Units
DC Power Supply VA -0.3 6.0 V
Input Current, Any Pin Except Supplies Iin 10mA
Digital Input Voltage VIND -0.3 VA+0.4 V
Ambient Operating Temperature (power app lied) TA-55 125 °C
Storage Temperature Tstg -65 150 °C
6
CS4334/5/8/9
ANALOG CHARACTERISTICS
(Full-Scale Output Sine Wave, 997 Hz; Test load R L = 10 k, CL = 10 pF (see Figure 2). Fs for Base-Rate Mode =
48 kHz, Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified; Fs for High-Rate Mode = 96 kHz,
Measurement Bandwidth 10 Hz to 40 kHz, unless otherwise specified.)
Notes: 1. One LSB of triangular PDF dither added to data.
Parameter
Base-Rate Mode High-Rate Mode
Symbol Min Typ Max Min Typ Max Unit
Dynamic Performance for CS4334/5/8/9-KSZ, -KZSR
Dynamic Range (Note 1)
18 to 24-Bit
unweighted
A-Weighted
16-Bit unweighted
A-Weighted
88
91
86
89
93
96
91
94
-
-
-
-
-
91
-
89
90
96
88
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise (Note 1)
18 to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
THD+N -
-
-
-
-
-
-88
-73
-33
-86
-71
-31
-83
-68
-28
-81
-66
-26
-
-
-
-
-
-
-88
-70
-30
-86
-68
-28
-83
-65
-25
-81
-63
-23
dB
dB
dB
dB
dB
dB
Interchannel Isolation (1 kHz) - 94 - - 95 - dB
Dynamic Performance for CS4334/5/8/9-DSZ, -DSZR
Dynamic Range (Note 1)
18 to 24-Bit
unweighted
A-Weighted
16-Bit unweighted
A-Weighted
85
88
83
86
93
96
91
94
-
-
-
-
-
88
-
86
90
96
88
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise (Note 1)
18 to 24-Bit 0 dB
-20 dB
-60 dB
16-Bit 0 dB
-20 dB
-60 dB
THD+N -
-
-
-
-
-
-88
-73
-33
-86
-71
-31
-82
-65
-25
-70
-63
-23
-
-
-
-
-
-
-88
-70
-30
-86
-68
-28
-82
-62
-22
-80
-60
-20
dB
dB
dB
dB
dB
dB
Interchannel Isolation (1 kHz) - 94 - - 95 - dB
7
CS4334/5/8/9
ANALOG CHARACTERISTICS (Continued)
Notes: 2. Filter response is not tested but is guaranteed by design.
3. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 15-22) have
been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
4. For Base-Rate Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs.
For High-Rate Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs.
5. De -emphasis is not available in High-Rate Mode.
6. Refer to Figure 3.
Parameter
Base-Rate Mode High-Rate Mode
Symbol Min Typ Max Min Typ Max Unit
Combined Dig ita l an d On -c hi p An al o g Fi lt er R esp on s e (Note 2)
Passband (Note 3)
to -0.05 dB corner
to -0.1 dB corner
to -3 dB corner
0
-
0
-
-
-
.4780
-
.4996
-
0
0
-
-
-
-
.4650
.4982
Fs
Fs
Fs
Frequency Response 10 Hz to 20 kHz -.01 - +.08 -.05 - +.2 dB
Passband Ripple - - ±.08 - - ±.2 dB
StopBand .5465 - - .5770 - - Fs
StopBand Attenuation (Note 4) 50 - - 55 - - dB
Group Delay tgd - 9/Fs - - 4/Fs - s
Passband Group Delay Deviation 0 - 40 kHz
0 - 20 kHz - ±0.36/Fs - -
-±1.39/Fs
±0.23/Fs -
-s
s
De-emphasis Error Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
+1.5/+0
+.05/-.25
-.2/-.4 (Note 5) dB
dB
dB
Parameters Symbol Min Typ Max Units
DC Accuracy
Interchannel Gain Mismatch - 0.1 0.4 dB
Gain Error 5- %
Gain Drift - 100 - ppm/°C
Analog Output
Full Scale Output Voltage 3.25 3.5 3.75 Vpp
Quiescent Voltage VQ-2.2-VDC
Max AC-Load Resistance (Note 6) RL-3-k
Max Load Capacitance (Note 6) CL- 100 - pF
8
CS4334/5/8/9
POWER AND THERMAL CHARACTERISTICS
Notes: 7. Refer to Figure 4. Max Power Dissipation is measured at VA=5.5V.
Parameters Symbol Min Typ Max Units
Power Supplies
Power Supply Current normal operation
power-down state IA
IA
-
-15
40 19
-mA
A
Power Dissipation (Note 7)
normal operation
power-down -
-75
0.2 104
-mW
mW
Package Thermal Resistance JA -110-°C/Watt
Power Supply Rejection Ratio (1 kHz) PSRR - 79 - dB
AOUTx
AGND
10 µF
Vout
RLCL
Figure 2. Output Test Load
9
CS4334/5/8/9
DIGITAL INPUT CHARACTERISTICS
Notes: 8. Iin for CS433X LRCK is ±20A max.
Parameters Symbol Min Typ Max Units
High-Level Input Voltage VIH 2.0 - - V
Low-Level Input Voltage VIL --0.8V
Input Leakage Current (Note 8) Iin --±10A
Input Capacitance - 8 - pF
100
50
75
25
2.5
51015
Safe Operating
Region
Capacitive Load -- C (pF)
L
Resistive Load -- R (k
)
L
125
320
Figure 3. Maximum Loading Figure 4. Power vs. Sample Rate
10
CS4334/5/8/9
SWITCHING CHARACTERISTICS
Notes: 9. In Internal SCLK Mode, the Duty Cycle must be 50% 1/2 MCLK Period.
10. The SCLK / LRCK ratio may be either 32, 48, or 64. This ratio depends on part type and MCLK/LRCK
ratio. (See figures Figures 10-13)
Parameters Symbol Min Typ Max Units
Input Sample Rate Fs 2 - 100 kHz
MCLK Pulse Width High MCLK/LRCK = 512 10 - 1000 ns
MCLK Pulse Width Low MCLK/LRCK = 512 10 - 1000 ns
MCLK Pulse Width High MCLK / LRCK = 384 or 192 21 - 1000 ns
MCLK Pulse Width Low MCLK / LRCK = 384 or 192 21 - 1000 ns
MCLK Pulse Width High MCLK / LRCK = 256 or 128 31 - 1000 ns
MCLK Pulse Width Low MCLK / LRCK = 256 or 128 31 - 1000 ns
External SCLK Mode
LRCK Duty Cycle (External SCLK only) 40 50 60 %
SCLK Pulse Width Low tsclkl 20 - - ns
SCLK Pulse Width High tsclkh 20 - - ns
SCLK Period Base-Rate Mode
MCLK / LRCK = 512, 256 or 384 tsclkw --ns
SCLK Period High-Rate Mode
MCLK / LRCK = 128 or 192 tsclkw --ns
SCLK rising to LRCK edge delay tslrd 20 - - ns
SCLK rising to LRCK edge setup time tslrs 20 - - ns
SDATA valid to SCLK rising setup time tsdlrs 20 - - ns
SCLK rising to SDATA hold time tsdh 20 - - ns
Internal SCLK Mode
LRCK Duty Cycle (Internal SCLK only) (Note 9) -50-%
SCLK Period (Note 10) tsclkw --ns
SCLK rising to LRCK edge tsclkr --s
SDATA valid to SCLK rising setup time tsdlrs --ns
SCLK rising to SDATA hold time
MCLK / LRCK = 512, 256 or 128 tsdh --ns
SCLK rising to SDATA hold timeMCL K / LRCK = 384 or 192
tsdh --ns
1
128Fs
----------------------
1
64Fs
-------------------
1
SCLK
-----------------
tsclkw
2
------------------
1
512Fs
----------------------10+
1
512Fs
----------------------15+
1
384Fs
----------------------15+
11
CS4334/5/8/9
sclkh
t
slrs
t
slrd
t
sdlrs
tsdh
t
sclkl
t
SDATA
SCLK
LRCK
Figure 5. External Serial Mode Input Timing
SDATA
*INT E RNAL SCLK
LRCK
sclkw
t
sdlrs
t
sdh
t
sclkr
t
Figure 6. Internal Serial Mode Input Timing
The SCLK pulses shown are internal to the CS4334/5/8/9.
SDATA
LRCK
MCLK
*INTERNAL SCLK
1N
2N
Figure 7. Internal Serial Clock Generation
* The SCLK pulses shown are internal to the CS4334/5/8/9.
N equals MCLK divided by SCLK
12
CS4334/5/8/9
3. GENERAL DESCRIPTION
The CS4334 family of devices offers a complete stereo digital-to-analog system including digital interpolation,
fourth-order delta-sigma digital-to-analog conversion, digital de-emphasis and analog filtering, as shown in
Figure 8. This architecture provides a high tolerance to clock jitter.
The primary purpose of using delta-sigma modulation technique s is to avoid the limitations of resistive laser trimmed
digital-to-analog converter architectures by using an inherently linear 1-bit digital-to-analog converter. The advan-
tages of a 1-bit d igital-to-analog conver ter include: ideal differential linearity, n o distortion mechanisms due to resis-
tor matching errors and no linearity drift over time and temperature due to variations in resistor values.
The CS4334 family of devices supports two modes of operation. The devices operate in Base Rate Mode (BRM)
when MCLK/LRCK is 256, 384 or 512 and in High Rate Mode (HRM) when MCLK/LRCK is 128 or 192. High Rate
Mode allows input sample rates up to 100 kHz.
3.1 Digital Interpolation Filter
The digital interpolation filter increases the sample rate, Fs, by a factor of 4 and is followed by a 32× digital
sample-and-hold (16× in HRM). This filter eliminates images of the baseband audio signal which exist at
multiples of the input sample rate. The re sultin g fr eq uency spectr um ha s images of th e input sig nal at mul-
tiples of 4 Fs. These images are easily removed by the on-chip analog low-pass filter and a sim ple external
analog filter (see Figure 1).
3.2 Delta-Sigma Modulator
The interpolation filter is followed by a fourth order delta-sigma modulator which converts the interpolation
filter output into 1-bit data at a rate of 128 Fs in BRM (or 64 Fs in HRM).
3.3 Switched-Capacitor DAC
The delta-sigma modulat or is followed by a digital- to-anal og converter wh ich translates the 1-bit da ta into a
series of charge packets. The magnitude of the charge in each packet is determined by sampling of a volt-
age reference onto a switched capacitor, where the polarity of each packet is controlled by the 1-bit data.
This technique greatly reduces the sensitivity to clock jitter and provides low-pass filtering of the output.
3.4 Analog Low-Pass Filter
The final signal stage consists of a continuous-time low-pass filter which serves to smooth the output and
attenuate ou t- of-band nois e.
Interpolator
Delta-Sigma
Modulator
DAC Analog
Low-Pass
Filter
Analog
Output
Digital
Input
Figure 8. System Block Diagram
13
CS4334/5/8/9
4. SYSTEM DESIGN
The CS4334 family accepts data at standard audio sample rates including 48, 44.1 and 32 kHz in BRM and 96, 88.2
and 64 kHz in HRM. Audio data is input via the seri al dat a input p in ( SDATA ). The Le ft/Right Clock ( LRCK) defines
the channel and delineation of data, and the Serial Clock (SCLK) clocks audio data into the input data buffer. The
CS4334/5/8/9 differ in serial data formats as shown in Figures 10-13.
4.1 Master Clock
MCLK must be either 256x, 384x or 512x th e desired input sa mple rate in BRM and either 1 28x or 192x the
desired input sample rate in HRM. The LRCK frequency is equal to Fs, the frequency at which words for
each channel are input to the device. The MCLK-to-LRCK frequency ratio is detected automatically during
the initialization sequence by counting the number of MCLK transitions during a single LRCK period. Internal
dividers are set to generate the proper clocks. Table 1 illustrates several standard audio sample rates and
the required MCLK and LRCK fr equencies. Plea se note there is no required phase relationship, but MCLK,
LRCK and SCLK must be synchronous.
Table 1. Common Clock Frequencies
4.2 Serial Clock
The serial clock controls the shifting of data into the input data buffers. The CS4334 family supports both
external and internal serial clock generation modes. Refer to Figures 10-13 for data formats.
4.2.1 External Serial Clock Mode
The CS4334 family will enter the External Serial Clock Mode when 16 low to high transitions are detected
on the DEM/SCLK pin duri ng any phase of the LRCK perio d. When this mode is enabled, the Internal Se-
rial Clock Mode and de-emphasis filter cannot be accessed. The CS4334 family will switch to Internal Se-
rial Clock Mode if no low to high tr an sitio ns are detected on the DEM/SCLK pin for 2 consecutive frames
of LRCK. Refer to Figure 14.
4.2.2 Internal Serial Clock Mode
In the Inte rnal Serial Cloc k Mode, the serial clock is in ternally derive d and synch ronous with MCLK and
LRCK. The SCLK/LRCK frequency ratio is either 32, 48, or 64 depending upon data format. Operat ion in
this mode is identical to operation with an exte rnal serial clock synchronized with L RCK. This mode allows
access to the digita l de-em p hasis func tion. Refer to Figures 10 - 14 for details.
LRCK
(kHz)
MCLK (MHz)
HRM BRM
128x 192x 256x 384x 512x
32 4.0960 6.1440 8.1920 12.2880 16.3840
44.1 5.6448 8.4672 11.2896 16.9344 22.5792
48 6.1440 9.2160 12.2880 18.4320 24.5760
64 8.1920 12.2880 - - -
88.2 11.2896 16.9344 - - -
96 12.2880 18.4320 - - -
14
CS4334/5/8/9
4.3 De-Emphasis
The CS4334 family includes on-chip digital de-emphasis. Figure 9 shows the de-emphasis curve for Fs
equal to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes
in sample rate, Fs.
The de-emphasis filter is active (inactive) if the DEM/SCLK pin is low (high) for 5 consecutive falling edges
of LRCK. This function is available only in the internal serial clock mode.
4.4 Initialization and Power-Down
The Initialization and Power-Down sequence flow chart is shown in Figure 14. The CS4334 family enters
the Power-Down State upon initial power-up . The interpolation filters and delta-sigma mod ulators are reset,
and the internal voltage reference, one-bit digital-to-analog converters and switched-capacitor low-pass fil-
ters are powered down. The device will remain in the Power-Down mode until MCLK and LRCK are present.
Once MCLK and LRCK are detected, MCLK occurrences are counted over one LRCK period to determine
the MCLK/LRC K frequ ency r atio. Pow er is th en app lied t o the in ternal voltage reference. Finally, power is
applied to the D/A converters and switched-capacitor filters, and the analog outputs will ramp to the quiescent
voltage, VQ.
4.5 Output Transient Control
The CS4334 family uses Popguard® technology to minimize the effects of output transients during power-
up and power-down. This technique eliminates the audio transients commonly produced by single-ended
single-supply converters when it is implemented with external DC-blocking capacitors connected in series
with the audio outputs. To make best use of this feature, it is necessary to understand its operation.
When the device is initially powered-up, the audio outputs, AOUTL and AOUTR, are clamped to AGND. Af-
ter a short delay of approx imately 10 00 sample periods, each outp ut begins to ra mp toward s its quies cent
voltage, VQ. Approximately 10,000 sample cycles later, the outputs reach VQ and audio output begins. This
gradual voltage ramping allows time for the external DC-blocking capacitor to charge to VQ, effectively
blocking the quiescent DC voltage.
To prevent tr ansients at power-down, the device mu st first enter its power-down state. This is accomplished
by removing MCLK or LRCK. When this occurs, audio ou tput ceases and the internal output buffers are dis-
connected from AOUTL an d AOUTR. A soft-start curren t sink is substituted in place of AOUTL a nd AOUTR
which allows the DC-blocking capacitors to slowly discharge. Once this charge is dissipated, the power to
the device may be turned off, and the system is ready for the next power-on.
To prevent an audio tra nsient at the next powe r-on, the DC-blocking capacitors must fully discharge before
turning off the power or exiting the power-down state. If full discharge does not occur, a transient will occur
when the audio outputs are initially clamped to AGND. The time that the device must remain in the power-
Gain
dB
-10dB
0dB
Frequency
T2 = 15 µs
T1=50 µs
F1 F2
3.183 kHz 10.61 kHz
Figure 9. De-Emphasis Curve (Fs = 44.1kHz)
15
CS4334/5/8/9
down state is related to the value of the DC-blocking capacitance. For example, with a 3.3 F capacit or, the
time that the device must remain in the power-down state will be approximately 0.4 seconds.
4.6 Grounding and Power Supply Decoupling
As with any high resolution converter, the CS4334 family requires careful attention to power supply and
grounding arrangements to optimize performance. Figure 1 shows the recommended power arrangement
with VA connected to a clean +5V supply. For best performance, decoupling capacitors should be located
as close to the device package as po ssible with the smallest capacitor closest.
4.7 Analog Output and Filtering
The analog filter present in the CS4334 family is a switched-capacitor filter followed by a continuous time
low pass filter. Its response, combined with that of the digital interpolator, is given in Figures 15 - 22.
LRCK
SCLK
Left Channel Right Channel
SDATA +3 +2 +1
LSB
+5 +4
MSB
-1 -2 -3 -4 -5 +3 +2 +1
LSB
+5 +4
MSB
-1 -2 -3 -4
Internal SCLK Mode External SCLK Mode
I²S, 16-Bit data and INT SCLK = 32 Fs if
MCLK/LRCK = 512, 256 or 128
I²S, Up to 24-Bit data and INT SCLK = 48 Fs if
MCLK/LRCK = 384 or 192
I²S, up to 24-Bit Data
Data Valid on Rising Edge of SCLK
Figure 10. CS4334 Data Format (I²S)
LRCK
SCLK
Left Channel Right Channel
SDATA +3 +2 +1
LSB
+5 +4
MSB
-1 -2 -3 -4 -5 +3 +2 +1
LSB
+5 +4
MSB
-1 -2 -3 -4
Internal SCLK Mode External SCLK Mode
Left Justified, up to 24-Bit Dat a
INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128
INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192
Left Justified, up to 24-Bit Data
Data Valid on Rising Edge of SCLK
Figure 11. CS4335 Data Format
16
CS4334/5/8/9
LRCK
SCLK
Left Channel Right Channel
SDATA 6543210987
15 14 13 12 11 10 6543210987
15 14 13 12 11 10
32 clocks
Internal SCLK Mode External SCLK Mode
Right Justified, 16-Bit Data
INT SCLK = 32 Fs if MCLK/LRCK = 512, 256 or 128
INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192
Right Justified, 16-Bit Data
Data Valid on Rising Edge of SCLK
SCLK Must Have at Least 32 Cycles per LRCK Period
Figure 12. CS4338 Data Format
LRCK
SCLK
Left Channel Right Channel
SDATA 6543210987
15 14 13 12 11 10
10 6543210987
15 14 13 12 11 10
17 16 17 16
32 clocks
Internal SCLK Mode External SCLK Mode
Right Justified, 18-Bit Data
INT SCLK = 64 Fs if MCLK/LRCK = 512, 256 or 128
INT SCLK = 48 Fs if MCLK/LRCK = 384 or 192
Right Justified, 18-Bit Data
Data Valid on Rising Edge of SCLK
SCLK Must Have at Least 36 Cycles per LRCK Period
Figure 13. CS4339 Data Format
17
CS4334/5/8/9
Figure 14. CS4334/5/8/9 Initialization and Power-Down Sequ ence
18
CS4334/5/8/9
4.8 Overall Base-Rate Frequency Response
Figure 15. Stopband Rejection Figure 16. Transition Band
Figure 17. Transition Band Figure 18. Passband Ripple
19
CS4334/5/8/9
4.9 Overall High-Rate Frequency Response
Figure 19. Stopband Rejection Figure 20. Transition Band
Figure 21. Transition Band Figure 22. Passband Ripple
20
CS4334/5/8/9
4.10 Base Rate Mode Performance Plots
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz 20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
20k
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz
20k
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
(16k FFT of a 1 kHz input signal)
Figure 23. 0 dBFS FFT (BRM)
(16k FFT of a 1 kHz input signal)
Figure 24. -60 dBFS FFT (BRM)
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz 20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz
20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
(16k FFT with no input signal)
Figure 25. Idle Channel Noise FFT (BRM)
(16k FFT of intermodulatio n di stort ion using 13 kHz and 14 kHz i nput sign als)
Figure 26. Twin Tone IMD FFT (BRM)
-110
-60
-100
-90
-80
-70
d
B
r
A
-60 +0-50 -40 -30 -20 -10
dBFS
-50 -40 -30 -20 -10
dBFS
-60 +0
-110
-100
-90
-80
-70
-60
dBr A
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
20 50 100 200 500 1k 2k 5k 10k 20k
Hz
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
dBr A
100
50 200 500 1k 2k 5k 10k
Hz
20 20k
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
Figure 27. THD+N vs. Amplitude (BRM)
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
Figure 28. THD+N vs. Frequency (BRM)
All measurements were taken from the CDB4334 evaluation board using the Audio Precision Dual Domain
System Two Cascade.
21
CS4334/5/8/9
4.11 High Rate Mode Performance Plots
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz 20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz 20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
(16k FFT of a 1 kHz input signal)
Figure 29. 0 dBFS FFT (HRM)
(16k FFT of a 1 kHz input signal)
Figure 30. -60 dBFS FFT (HRM)
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz 20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
Audio Precision 08/05/99 11:11:36D-A CCIF IMD vs AMPLITUDE
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
2k 20k4k 6k 8k 10k 12k 14k 16k 18k
Hz
2k 4k 6k 8k 10k 12k 14k 16k 18k
-140
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
Hz
20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
dBr A
2k 6k4k 8k 10k 12k 14k 16k 18k 20k
Hz
(16k FFT with no input signal)
Figure 31. Idle Channel Noise FFT (HRM)
(16k FFT of intermodulatio n di stort ion using 13 kHz and 14 kHz i nput sign als)
Figure 32. Twin Tone IMD FFT (HRM)
-110
-60
-100
-90
-80
-70
d
B
r
A
-60 +0-50 -40 -30 -20 -10
dBFS
-50 -40 -30 -20 -10
dBFS
-60 +0
-110
-100
-90
-80
-70
-60
dBr A
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
dBr A
20 50 100 200 500 1k 2k 5k 10k 20k
Hz
100
50 200 500 1k 2k 5k 10k
Hz
20 20k
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
dBr A
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
Figure 33. THD+N vs. Amplitude (HRM)
(THD+N plots measured using a 1kHz 24-bit dithered input signal)
Figure 34. THD+N vs. Frequency (HRM)
All measurements were taken from the CDB43 34 eval uatio n board using the Audi o Precision Du al Domain
System Two Cascade.
22
CS4334/5/8/9
5. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms va lue of the signa l to the rms sum of all other spectral components over the specified
bandwidth (typically 10Hz to 20kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full scale rms value of the signal to the rms sum of all other spectral components over the
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made
with a -60 dBFS signal. 60 dB is then added to the resulting measuremen t to refer the measurement to full
scale. This technique ensu res that the distortion components are be low the noise level and do not effect the
measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17-
1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the in put under test and a full-scale signal applied to the other channel. Units in deci-
bels.
Interchannel Gain Mismatc h
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
6. REFERENCES
1. "How to Achieve Optimum Performance fr om Delta -Si gma A/D & D/A Conver te rs" by Steven Har ris. Paper
presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4334/5/8/9 Evaluation Board Datasheet
23
CS4334/5/8/9
7. PACKAGE DIMENSIONS
INCHES MILLIMETERS
DIM MIN MAX MIN MAX
A 0.053 0.069 1.35 1.75
A1 0.004 0.010 0.10 0.25
b 0.013 0.020 0.33 0.51
c 0.007 0.010 0.19 0.25
D 0.189 0.197 4.80 5.00
E 0.150 0.157 3.80 4.00
e 0.040 0.060 1.02 1.52
H 0.228 0.244 5.80 6.20
L 0.016 0.050 0.40 1.27
JEDEC # : MS-012
8L SOIC (150 MIL BODY) PACKAGE DRAWING
D
H
E
e
b
A1
A
c
L
SEATING
PLANE
1
24
CS4334/5/8/9
8. ORDERING INFORMATION
9. FUNCTIONAL COMPATIBILITY
CS4330-KS CS4339-KSZx
CS4331-KS CS4334-KSZx
CS4333-KS CS4338-KSZx
CS4330-BS CS4339-DSZx
CS4331-BS CS4334-DSZx
CS4333-BS CS4338-DSZx
Model Temperature Package Container Serial Interface
CS4334-KSZ -10 to +70 °C 8-p in Plastic SOIC, lead free Rail 16 to 24-bit, I²S
CS4335-KSZ -10 to +70 °C 8-p in Plastic SOIC, lead free Rail 16 to 24-bit, left justified
CS4338-KSZ -10 to +70 °C 8-p in Plastic SOIC, le ad free Rail 16-bit, right justified
CS4339-KSZ -10 to +70 °C 8-p in Plastic SOIC, lead free Rail 18-bit, right justified, 32 Fs Internal SCLK mode
CS4334-KSZR -10 to +70 °C 8-pin Plastic SOIC, lead free Tape & reel 16 to 24-bit, I²S
CS4335-KSZR -10 to +70 °C 8-pin Plastic SOIC, lead free Tape & reel 16 to 24-bit, left justified
CS4338-KSZR -10 to +70 °C 8-pin Plastic SOIC, lead free Tape & reel 16-bit, right justified
CS4339-KSZR -10 to +70 °C 8-pin Plastic SOIC, lead free Tape & reel 18-bit, right justified, 32 Fs Internal SCLK mode
CS4334-DSZ -40 to +85 °C 8-pin Plastic SOIC, lead free R ail 16 to 24-bit, I²S
CS4335-DSZ -40 to +85 °C 8-pin Plastic SOIC, lead free R ail 16 to 24-bit, left justified
CS4338-DSZ -40 to +85 °C 8-pin Plastic SOIC, lead free Rail 16-bit, right justified
CS4339-DSZ -40 to +85 °C 8-pin Plastic SOIC, lead free R ail 18-bit, right justified, 32 Fs Internal SCLK mode
CS4334-DSZR -40 to +85 °C 8-pin Plastic SOIC, lead free Tape & reel 16 to 24-bit, I²S
CS4335-DSZR -40 to +85 °C 8-pin Plastic SOIC, lead free Tape & reel 16 to 24-bit, left justified
CS4338-DSZR -40 to +85 °C 8-pin Plastic SOIC, lead free Tape & reel 16-bit, right justified
CS4339-DSZR -40 to +85 °C 8-pin Plastic SOIC, lead free Tape & reel 18-bit, right justified, 32 Fs Internal SCLK mode
25
CS4334/5/8/9
10.REVISION HISTORY
Revision Changes
F5 Corrected “B” to “b” and “C” to “c” to match drawing in “Package Dimensions” on page 23
Updated legal text
F6
Changed “One-half LSB...” to “One LSB of triangular PDF dither added to data” in footnote to Analog Charac-
teristics specification table.
Added tape and reel options to the Ordering Information section and updated references to -KSZ and -DSZ
in specification tables to show -KSZR and -DSZR options.
Contacting Cirrus Logic Support
For all product questions and inq uiries, contact a Cirrus Logic Sales Representative.
To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without not ice and is pr ovided "AS IS" witho ut warr anty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and co nditio ns of sa le
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of paten ts or other r ights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work ri ghts,
copyrights, tradem arks, trade secrets or oth er intellectual prop erty rights. Cirrus ow ns the copyrights a ssociated with the information contained herein and gives con-
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE P RO P-
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WAR RANTIES OF M ERCHANTABILITY
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CI RRUS PRODUCT THAT IS US ED IN SUCH A MANNER. IF THE CUSTOMER OR
CUSTOMER ’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODU CTS IN CRITICAL APPLIC ATIONS, CUSTOMER AGREES, BY SUCH USE, TO
FULLY INDEMNI FY CI RRUS , I TS OF FI CERS, DI RE CTORS , EMPLOYEE S, DIST RIB UTORS AND OTHER AGE NTS FROM ANY AND ALL LI A BIL I TY, I NCLUD-
ING ATTORNE YS ’ FEES AND COSTS, THAT MAY RESULT FROM OR ARIS E IN CO NNECTION WITH THE SE US ES .
Cirrus Logi c , Ci rr us , the Cirru s Log i c lo go desi g ns an d Popg ua r d ar e tr a de marks o f Ci r ru s Lo gi c, I nc . Al l o the r b ra nd an d pr o d uct names in this document may be
trademarks or service marks of their respective owners.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Cirrus Logic:
CS4334-DSZ CS4334-KSZ CS4334-KSZR CS4335-KSZ CS4338-KSZ CS4338-KSZR CS4339-KSZR CS4339-
KSZ CS4334-DSZR CS4335-KSZR CS4334-BS CS4334-DSR CS4334-BSR