74HC4017; 74HCT4017 Johnson decade counter with 10 decoded outputs Rev. 5 -- 3 February 2016 Product data sheet 1. General description The 74HC4017; 74HCT4017 is a 5-stage Johnson decade counter with 10 decoded outputs (Q0 to Q9), an output from the most significant flip-flop (Q5-9), two clock inputs (CP0 and CP1) and an overriding asynchronous master reset input (MR). The counter is advanced by either a LOW-to-HIGH transition at CP0 while CP1 is LOW or a HIGH-to-LOW transition at CP1 while CP0 is HIGH. When cascading counters, the Q5-9 output, which is LOW while the counter is in states 5, 6, 7, 8 and 9, can be used to drive the CP0 input of the next counter. A HIGH on MR resets the counter to zero (Q0 = Q5-9 = HIGH; Q1 to Q9 = LOW) independent of the clock inputs (CP0 and CP1). Automatic code correction of the counter is provided by an internal circuit: following any illegal code the counter returns to a proper counting mode within 11 clock pulses. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of VCC. 2. Features and benefits Wide supply voltage range from 2.0 V to 6.0 V Input levels: For 74HC4017: CMOS level For 74HCT4017: TTL level Complies with JEDEC standard no. 7 A ESD protection: HBM JESD22-A114E exceeds 2000 V MM JESD22-A115-A exceeds 200 V Multiple package options Specified from 40 C to +85 C and from 40 C to +125 C 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 3. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description Version 74HC4017D 40 C to +125 C SO16 plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 74HC4017DB 40 C to +125 C SSOP16 plastic shrink small outline package; 16 leads; body width 5.3 mm SOT338-1 74HC4017PW 40 C to +125 C TSSOP16 plastic thin shrink small outline package; 16 leads; SOT403-1 body width 4.4 mm 74HC4017BQ 40 C to +125 C DHVQFN16 plastic dual in-line compatible thermal-enhanced SOT763-1 very thin quad flat package; no leads; 16 terminals; body 2.5 3.5 0.85 mm 74HCT4017D 40 C to +125 C SO16 74HCT4017BQ 40 C to +125 C DHVQFN16 plastic dual in-line compatible thermal-enhanced SOT763-1 very thin quad flat package; no leads; 16 terminals; body 2.5 3.5 0.85 mm 74HC4017 74HCT4017 plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 4. Functional diagram &3 &3 67$*(-2+1621&2817(5 05 4 '(&2',1*$1'287387&,5&8,75< 4 4 4 4 4 4 4 4 4 4 Fig 1. DDK Functional diagram 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 2 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs &75',9'(& &3 &3 05 4 4 4 4 4 4 4 4 4 4 4 &7 Logic symbol Fig 3. ' 4 )) &3 4 5' &3 &3 DDK DDK Fig 2. &7 ' 4 )) &3 4 5' IEC logic symbol ' 4 )) &3 4 5' ' 4 )) &3 4 5' ' 4 )) &3 4 5' 05 4 4 4 4 4 4 4 4 4 4 4 DDK Fig 4. Logic diagram 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 3 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs &3,1387 &3,1387 05,1387 4287387 4287387 4287387 4287387 4287387 4287387 4287387 4287387 4287387 4287387 4287387 Fig 5. DDK Timing diagram 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 4 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 5. Pinning information 5.1 Pinning WHUPLQDO LQGH[DUHD +& +&7 05 4 &3 4 &3 4 4 4 4 4 4 *1' 05 4 &3 4 &3 4 4 4 4 4 *1' 4 4 4 4 4 9&& *1' 4 9&& 4 +& +&7 DDK 7UDQVSDUHQWWRSYLHZ DDK (1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND. Fig 6. Pin configuration SO16 and (T)SSOP16 Fig 7. Pin configuration DHVQFN16 5.2 Pin description Table 2. Pin description Symbol Pin Description Q[0:9] 3, 2, 4, 7, 10, 1, 5, 6, 9, 11 decoded output GND 8 ground (0 V) Q5-9 12 carry output (active LOW) CP1 13 clock input (HIGH-to-LOW edge-triggered) CP0 14 clock input (LOW-to-HIGH edge-triggered) MR 15 master reset input (active HIGH) VCC 16 supply voltage 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 5 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 6. Functional description Table 3. Function table[1] MR CP0 CP1 Operation H X X Q0 = Q5-9 = HIGH; Q1 to Q9 = LOW L H counter advances L L counter advances L L X no change L X H no change L H no change L L no change [1] H = HIGH voltage level; L = LOW voltage level; X = don't care; = LOW-to-HIGH transition; = HIGH-to-LOW transition; 7. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Max Unit VCC supply voltage 0.5 +7 V IIK input clamping current VI < 0.5 V or VI > VCC + 0.5 V [1] - 20 mA IOK output clamping current VO < 0.5 V or VO > VCC + 0.5 V [1] - 20 mA IO output current 0.5 V < VO < VCC + 0.5 V - 25 mA ICC supply current - 50 mA IGND ground current 50 - mA Tstg storage temperature 65 +150 C Ptot total power dissipation Tamb = 40 C to +125 C SO16 package [2] - 500 mW (T)SSOP16 package [3] - 500 mW DHVQFN16 package [4] - 500 mW [1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] Ptot derates linearly with 8 mW/K above 70 C. [3] Ptot derates linearly with 5.5 mW/K above 60 C. [4] Ptot derates linearly with 4.5 mW/K above 60 C. 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 6 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 8. Recommended operating conditions Table 5. Recommended operating conditions Symbol Parameter Conditions Min Typ Max Unit 74HC4017 VCC supply voltage 2.0 5.0 6.0 V VI input voltage 0 - VCC V VO output voltage 0 - VCC V t/V input transition rise and fall rate VCC = 2.0 V - - 625 ns/V VCC = 4.5 V - 1.67 139 ns/V VCC = 6.0 V - - 83 ns/V ambient temperature 40 - +125 Tamb C 74HCT4017 VCC supply voltage 4.5 5.0 5.5 V VI input voltage 0 - VCC V VO output voltage 0 - VCC V t/V input transition rise and fall rate VCC = 4.5 V - 1.67 139 ns/V Tamb ambient temperature 40 - +125 C 9. Static characteristics Table 6. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter 25 C Conditions Min Typ 40 C to +85 C 40 C to +125 C Unit Max Min Max Min Max 74HC4017 VIH VIL VOH HIGH-level input voltage VCC = 2.0 V 1.5 1.2 - 1.5 - 1.5 - V VCC = 4.5 V 3.15 2.4 - 3.15 - 3.15 - V VCC = 6.0 V 4.2 3.2 - 4.2 - 4.2 - V VCC = 2.0 V - 0.8 0.5 - 0.5 - 0.5 V VCC = 4.5 V - 2.1 1.35 - 1.35 - 1.35 V VCC = 6.0 V - 2.8 1.8 - 1.8 - 1.8 V HIGH-level VI = VIH or VIL output voltage IO = 20 A; VCC = 2.0 V 1.9 2.0 - 1.9 - 1.9 - V IO = 20 A; VCC = 4.5 V 4.4 4.5 - 4.4 - 4.4 - V IO = 20 A; VCC = 6.0 V 5.9 6.0 - 5.9 - 5.9 - V IO = 4.0 mA; VCC = 4.5 V 3.98 4.32 - 3.84 - 3.7 - V IO = 5.2 mA; VCC = 6.0 V 5.48 5.81 - 5.34 - 5.2 - V LOW-level input voltage 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 7 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs Table 6. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter VOL 25 C Conditions 40 C to +85 C 40 C to +125 C Unit Min Typ Max Min Max Min Max LOW-level VI = VIH or VIL output voltage IO = 20 A; VCC = 2.0 V - 0 0.1 - 0.1 - 0.1 V IO = 20 A; VCC = 4.5 V - 0 0.1 - 0.1 - 0.1 V IO = 20 A; VCC = 6.0 V - 0 0.1 - 0.1 - 0.1 V IO = 4.0 mA; VCC = 4.5 V - 0.15 0.26 - 0.33 - 0.4 V IO = 5.2 mA; VCC = 6.0 V - 0.16 0.26 - 0.33 - 0.4 V - - 0.1 - 1.0 - 1.0 A II input leakage current VI = VCC or GND; VCC = 6.0 V ICC supply current VI = VCC or GND; IO = 0 A; VCC = 6.0 V - - 8.0 - 80 - 160 A CI input capacitance - 3.5 - - - - - pF 74HCT4017 VIH HIGH-level input voltage VCC = 4.5 V to 5.5 V 2.0 1.6 - 2.0 - 2.0 - V VIL LOW-level input voltage VCC = 4.5 V to 5.5 V - 1.2 0.8 - 0.8 - 0.8 V VOH HIGH-level VI = VIH or VIL; VCC = 4.5 V output voltage IO = 20 A 4.4 4.5 - 4.4 - 4.4 - V 3.98 4.32 - 3.84 - 3.7 - V IO = 4 mA VOL LOW-level VI = VIH or VIL; VCC = 4.5 V output voltage IO = 20 A - 0 0.1 - 0.1 - 0.1 V IO = 4.0 mA - 0.15 0.26 - 0.33 - 0.4 V VI = VCC or GND; VCC = 5.5 V - - 0.1 - 1.0 - 1.0 A - - 8.0 - 80 - 160 A II input leakage current ICC supply current VI = VCC or GND; VCC = 5.5 V; IO = 0 A ICC additional per input pin; supply current VI = VCC 2.1 V; other inputs at VCC or GND; VCC = 4.5 V to 5.5 V; IO = 0 A CI input capacitance 74HC_HCT4017 Product data sheet CP0 input - 25 90 - 113 - 123 A CP1 input - 40 144 - 180 - 196 A MR input - 50 180 - 225 - 245 A - 3.5 - - - - - pF All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 8 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 10. Dynamic characteristics Table 7. Dynamic characteristics GND = 0 V; tr = tf = 6 ns; CL = 50 pF; see Figure 11. Symbol Parameter 25 C Conditions 40 C to +85 C 40 C to +125 C Unit Min Typ Max Min Max Min Max 74HC4017 tpd propagation delay CP0 to Qn; CP0 to Q5-9; see Figure 10 [1] VCC = 2.0 V - 63 230 - 290 - 345 ns VCC = 4.5 V - 23 46 - 58 - 69 ns VCC = 5.0 V; CL = 15 pF - 20 - - - - - ns VCC = 6.0 V - 18 39 - 49 - 59 ns - 61 250 - 315 - 375 ns CP1 to Qn; CP1 to Q5-9; see Figure 10 VCC = 2.0 V tPHL tPLH tt tW HIGH to LOW propagation delay LOW to HIGH propagation delay transition time pulse width VCC = 4.5 V - 22 50 - 63 - 75 ns VCC = 5.0 V; CL = 15 pF - 20 - - - - - ns VCC = 6.0 V - 18 43 - 54 - 64 ns VCC = 2.0 V - 52 230 - 290 - 345 ns VCC = 4.5 V - 19 46 - 58 - 69 ns VCC = 6.0 V - 15 39 - 49 - 59 ns VCC = 2.0 V - 55 230 - 290 - 345 ns VCC = 4.5 V - 20 46 - 58 - 69 ns VCC = 6.0 V - 16 39 - 49 - 59 ns VCC = 2.0 V - 19 75 - 95 - 110 ns VCC = 4.5 V - 7 15 - 19 - 22 ns VCC = 6.0 V - 6 13 - 16 - 19 ns VCC = 2.0 V 80 17 - 100 - 120 - ns VCC = 4.5 V 16 6 - 20 - 24 - ns VCC = 6.0 V 14 5 - 17 - 20 - ns VCC = 2.0 V 80 19 - 100 - 120 - ns VCC = 4.5 V 16 7 - 20 - 24 - ns VCC = 6.0 V 14 6 - 17 - 20 - ns MR to Q[1:9]; see Figure 10 MR to Q5-9, Q0; see Figure 10 [2] see Figure 10 CP0 and CP1 (HIGH or LOW); see Figure 9 MR (HIGH); see Figure 9 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 9 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs Table 7. Dynamic characteristics ...continued GND = 0 V; tr = tf = 6 ns; CL = 50 pF; see Figure 11. Symbol Parameter tsu th trec fmax set-up time hold time recovery time maximum frequency 25 C Conditions Min Typ Max Min Max Min Max VCC = 2.0 V 50 8 - 65 - 75 - ns VCC = 4.5 V 10 3 - 13 - 15 - ns VCC = 6.0 V 9 2 - 11 - 13 - ns VCC = 2.0 V 50 17 - 65 - 75 - ns VCC = 4.5 V 10 6 - 13 - 15 - ns VCC = 6.0 V 9 5 - 11 - 13 - ns VCC = 2.0 V 5 17 - 5 - 5 - ns VCC = 4.5 V 5 6 - 5 - 5 - ns VCC = 6.0 V 5 5 - 5 - 5 - ns CP1 to CP0; CP0 to CP1; see Figure 8 CP1 to CP0; CP0 to CP1; see Figure 8 MR to CP0 and MR to CP1; see Figure 9 CP0 or CP1; see Figure 9 VCC = 2.0 V 6.0 23 - 4.8 - 4.0 - MHz VCC = 4.5 V 30 70 - 24 - 20 - MHz VCC = 5.0 V; CL = 15 pF - 77 - - - - - MHz 25 83 - 28 - 24 - MHz - 35 - - - - - pF VCC = 4.5 V - 25 46 - 58 - 69 ns VCC = 5.0 V; CL = 15 pF - 21 - - - - - ns VCC = 6.0 V CPD power dissipation capacitance 40 C to +85 C 40 C to +125 C Unit VI = GND to VCC; VCC = 5 V; fi = 1 MHz [3] CP0 to Qn; CP0 to Q5-9; see Figure 10 [1] 74HCT4017 tpd propagation delay CP1 to Qn; CP1 to Q5-9; see Figure 10 tPHL tPLH VCC = 4.5 V - 25 50 - 63 - 75 ns VCC = 5.0 V; CL = 15 pF - 21 - - - - - ns - 22 46 - 58 - 69 ns - 20 46 - 58 - 69 ns HIGH to LOW propagation delay MR to Q[1:9]; see Figure 10 LOW to HIGH propagation delay MR to Q5-9, Q0; see Figure 10 74HC_HCT4017 Product data sheet VCC = 4.5 V VCC = 4.5 V All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 10 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs Table 7. Dynamic characteristics ...continued GND = 0 V; tr = tf = 6 ns; CL = 50 pF; see Figure 11. Symbol Parameter tt transition time 25 C Conditions Min Typ Max Min Max Min Max - 7 15 - 19 - 22 ns 16 7 - 20 - 24 - ns 16 4 - 20 - 24 - ns 10 3 - 13 - 15 - ns 10 6 - 13 - 15 - ns 5 5 - 5 - 5 - ns VCC = 4.5 V 30 61 - 24 - 20 - MHz VCC = 5.0 V; CL = 15 pF - 67 - - - - - MHz - 36 - - - - - pF [2] see Figure 10 VCC = 4.5 V pulse width tW 40 C to +85 C 40 C to +125 C Unit CP0 and CP1 (HIGH or LOW); see Figure 9 VCC = 4.5 V MR (HIGH); see Figure 9 VCC = 4.5 V set-up time tsu CP1 to CP0; CP0 to CP1; see Figure 8 VCC = 4.5 V th hold time CP1 to CP0; CP0 to CP1; see Figure 8 trec recovery time MR to CP0 and MR to CP1; see Figure 9 VCC = 4.5 V VCC = 4.5 V maximum frequency fmax power dissipation capacitance CPD [1] CP0 or CP1; see Figure 9 VI = GND to VCC 1.5 V; VCC = 5 V; fi = 1 MHz [3] tpd is the same as tPHL and tPLH. [2] tt is the same as tTHL and tTLH. [3] CPD is used to determine the dynamic power dissipation (PD in W): PD = CPD VCC2 fi N + (CL VCC2 fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; (CL VCC2 fo) = sum of outputs. 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 11 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 11. Waveforms 9, &3LQSXW 90 *1' WVX WK WVX WK 9, &3LQSXW 90 *1' DDK Measurement points are given in Table 8. VOL and VOH are typical voltage output levels that occur with the output load. Fig 8. Waveforms showing the set-up and hold times for CP0 to CP1 and CP1 to CP0 IPD[ W: 9, &3LQSXW 90 *1' IPD[ 9, &3LQSXW 90 *1' W: WUHF 9, 05LQSXW 90 *1' W: 92+ 44 RXWSXW 92/ 90 W3+/ 92+ 444 RXWSXW 92/ 90 W3/+ DDK Measurement points are given in Table 8. VOL and VOH are typical voltage output levels that occur with the output load. Fig 9. Waveforms showing the minimum pulse width for CP0, CP1 and MR input; the maximum frequency for CP0 and CP1 input; the recovery time for MR and the MR input to Qn and Q5-9 output propagation delays 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 12 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 9, &3LQSXW 90 *1' 9, &3LQSXW 90 *1' W3+/ W3/+ 92+ 44 RXWSXW 90 92/ W3/+ W3+/ 92+ 444 RXWSXW 92/ 90 W7/+ W7+/ DDK Measurement points are given in Table 8. VOL and VOH are typical voltage output levels that occur with the output load. Conditions: CP1 = LOW while CP0 is triggered on a LOW-to-HIGH transition and CP0 = HIGH, while CP1 is triggered on a HIGH-to-LOW transition. Fig 10. Waveforms showing the propagation delays for CP0, CP1 to Qn, Q5-9 outputs and the output transition times Table 8. Measurement points Type Input Output VM VM 74HC4017 0.5 VCC 0.5 VCC 74HCT4017 1.3 V 1.3 V 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 13 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 9, W: QHJDWLYH SXOVH 90 9 WI WU WU WI 9, SRVLWLYH SXOVH 9 90 90 90 W: 9&& 9&& * 9, 92 5/ 6 RSHQ '87 &/ 57 DDG Test data is given in Table 9. Definitions test circuit: RT = Termination resistance should be equal to output impedance Zo of the pulse generator. CL = Load capacitance including jig and probe capacitance. RL = Load resistance. S1 = Test selection switch. Fig 11. Load circuitry for measuring switching times Table 9. Test data Type Input Load S1 position VI tr, tf CL RL tPHL, tPLH tPZH, tPHZ tPZL, tPLZ 74HC4017 VCC 6 ns 15 pF, 50 pF 1 k open GND VCC 74HCT4017 3V 6 ns 15 pF, 50 pF 1 k open GND VCC 12. Application information Some examples of applications for the 74HC4017; 74HCT4017 are: * * * * Decade counter with decimal decoding 1 out of n decoding counter (when cascaded) Sequential controller Timer Figure 12 shows a technique for extending the number of decoded output states for the 74HC4017; 74HCT4017. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay). 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 14 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs &3 05 &3 +& +&7 &3 4 4 4 4 FORFN 05 &3 +& +&7 05 +& +&7 &3 4 4 4 4 &3 4 4 4 GHFRGHG RXWSXWV GHFRGHG RXWSXWV GHFRGHG RXWSXWV ILUVWVWDJH LQWHUPHGLDWHVWDJHV ODVWVWDJH DDK Fig 12. Counter expansion Remark: It is essential not to enable the counter on CP1 when CP0 is HIGH, or on CP0 when CP1 is LOW, as this would cause an extra count. Figure 13 shows an example of a divide-by 2 through divide-by 10 circuit using one 74HC4017; 74HCT4017. Since the 74HC4017; 74HCT4017 has an asynchronous reset, the output pulse widths are narrow (minimum expected pulse width is 6 ns). The output pulse widths can be enlarged by inserting an RC network at the MR input. +& +&7 GLYLGHE\ 4 9&& 9&& 4 05 4 &3 GLYLGHE\ 4 &3 GLYLGHE\ 4 4 GLYLGHE\ 4 4 GLYLGHE\ GLYLGHE\ 4 4 GLYLGHE\ *1' 4 GLYLGHE\ ILQ GLYLGHE\ IRXW DDK Fig 13. Divide-by 2 through divide-by 10 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 15 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 13. Package outline 62SODVWLFVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP 627 ' ( $ ; F \ +( Y 0 $ = 4 $ $ $ $ SLQLQGH[ /S / H Z 0 ES GHWDLO; PP VFDOH ',0(16,216 LQFKGLPHQVLRQVDUHGHULYHGIURPWKHRULJLQDOPPGLPHQVLRQV 81,7 $ PD[ $ $ $ ES F ' ( H +( / /S 4 Y Z \ = PP LQFKHV R R 1RWH 3ODVWLFRUPHWDOSURWUXVLRQVRIPP LQFK PD[LPXPSHUVLGHDUHQRWLQFOXGHG 5()(5(1&(6 287/,1( 9(56,21 ,(& -('(& 627 ( 06 -(,7$ (8523($1 352-(&7,21 ,668('$7( Fig 14. Package outline SOT109-1 (SO16) 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 16 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 6623SODVWLFVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP ' 627 ( $ ; F \ +( Y 0 $ = 4 $ $ $ $ SLQLQGH[ /S / GHWDLO; Z 0 ES H PP VFDOH ',0(16,216 PPDUHWKHRULJLQDOGLPHQVLRQV 81,7 $ PD[ $ $ $ ES F ' ( H +( / /S 4 Y Z \ = PP R R 1RWH 3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG 287/,1( 9(56,21 627 5()(5(1&(6 ,(& -('(& -(,7$ (8523($1 352-(&7,21 ,668('$7( 02 Fig 15. Package outline SOT338-1 (SSOP16) 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 17 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 76623SODVWLFWKLQVKULQNVPDOORXWOLQHSDFNDJHOHDGVERG\ZLGWKPP ' 627 ( $ ; F \ +( Y 0 $ = 4 $ SLQLQGH[ $ $ $ /S / H GHWDLO; Z 0 ES PP VFDOH ',0(16,216 PPDUHWKHRULJLQDOGLPHQVLRQV 81,7 $ PD[ $ $ $ ES F ' ( H +( / /S 4 Y Z \ = PP R R 1RWHV 3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG 3ODVWLFLQWHUOHDGSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG 287/,1( 9(56,21 627 5()(5(1&(6 ,(& -('(& -(,7$ (8523($1 352-(&7,21 ,668('$7( 02 Fig 16. Package outline SOT403-1 (TSSOP16) 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 18 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs '+94)1SODVWLFGXDOLQOLQHFRPSDWLEOHWKHUPDOHQKDQFHGYHU\WKLQTXDGIODWSDFNDJHQROHDGV 627 WHUPLQDOVERG\[[PP % ' $ $ $ ( F GHWDLO; WHUPLQDO LQGH[DUHD WHUPLQDO LQGH[DUHD & H H E \ \ & Y 0 & $ % Z 0 & / (K H 'K ; PP VFDOH ',0(16,216 PPDUHWKHRULJLQDOGLPHQVLRQV 81,7 $ PD[ $ E F ' 'K ( (K H H / Y Z \ \ PP 1RWH 3ODVWLFRUPHWDOSURWUXVLRQVRIPPPD[LPXPSHUVLGHDUHQRWLQFOXGHG 5()(5(1&(6 287/,1( 9(56,21 ,(& -('(& -(,7$ 627 02 (8523($1 352-(&7,21 ,668('$7( Fig 17. Package outline SOT763-1 (DHVQFN16) 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 19 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 14. Abbreviations Table 10. Abbreviations Acronym Description CMOS Complementary Metal Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model TTL Transistor-Transistor Logic 15. Revision history Table 11. Revision history Document ID Release date Data sheet status Change notice Supersedes 74HC_HCT4017 v.5 20160203 Product data sheet - Modifications: 74HC_HCT4017 v.4 Modifications: 74HC_HCT4017 v.3 Modifications: 74HC_HCT4017_CNV v.2 74HC_HCT4017 Product data sheet * Type numbers 74HC4017N and 74HCT4017N (SOT38-4) removed. 20131210 * 74HC_HCT4017 v.4 Product data sheet - 74HC_HCT4017 v.3 - 74HC_HCT4017_CNV v.2 General description updated. 20080108 Product data sheet * The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. * * * * Legal texts have been adapted to the new company name where appropriate. Section 3: DHVQFN16 package added. Section 7: derating values added for DHVQFN16 package. Section 13: outline drawing added for DHVQFN16 package. 19970829 Product specification - - All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 20 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term `short data sheet' is explained in section "Definitions". [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com. 16.2 Definitions Draft -- The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet -- A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification -- The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet. 16.3 Disclaimers Limited warranty and liability -- Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia. In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia. Right to make changes -- Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. 74HC_HCT4017 Product data sheet Suitability for use -- Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications -- Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect. Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale -- Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer. No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 21 of 23 (c) Nexperia B.V. 2017. All rights reserved 74HC4017; 74HCT4017 Nexperia Johnson decade counter with 10 decoded outputs Export control -- This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Non-automotive qualified products -- Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications. Translations -- A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com 74HC_HCT4017 Product data sheet All information provided in this document is subject to legal disclaimers. . Rev. 5 -- 3 February 2016 22 of 23 (c) Nexperia B.V. 2017. All rights reserved Nexperia 74HC4017; 74HCT4017 Johnson decade counter with 10 decoded outputs 18. Contents 1 2 3 4 5 5.1 5.2 6 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 (c) General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 5 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional description . . . . . . . . . . . . . . . . . . . 6 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6 Recommended operating conditions. . . . . . . . 7 Static characteristics. . . . . . . . . . . . . . . . . . . . . 7 Dynamic characteristics . . . . . . . . . . . . . . . . . . 9 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Application information. . . . . . . . . . . . . . . . . . 14 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 20 Legal information. . . . . . . . . . . . . . . . . . . . . . . 21 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 21 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Contact information. . . . . . . . . . . . . . . . . . . . . 22 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Nexperia B.V. 2017. All rights reserved For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 03 February 2016