Rugged Power MOSFETs IRF340R, IRF341R, IRF342R, IRF343R Avalanche Energy Rated N-Channel Power MOSFETs 10A and 8A, 400V and 350V los(On) = 0.55 and 0.802 Features: @ Single pulse avalanche energy rated @ SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics Mi High input impedance The IRF340R, IRF341R, IRF342R and IRF343R are ad- vanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. These are n-channel en- hancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The iRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings File Number 2005 N-CHANNEL ENHANCEMENT MODE D 92s-a2658 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE (FLANGE ) oe =D 92CS- 3780 JEDEC TO-204AA Parameter IRF340R IRF341R IRF342R tRF343R Units Vos Drain - Source Voltage 400 350 400 350 Vv Vosa Drain - Gate Voltage (Res = 20 KQ) 400 350 400 350 Vv Ip @ Tc = 25C Continuous Drain Current 10 10 8.0 8.0 A lo @ Tc = 100C Continuous Drain Current 6.0 6.0 5.0 5.0 A lom Pulsed Drain Current @ 40 40 32 32 A Ves Gate - Source Voltage +20 Vv Po @ Te = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) W/K Eas Single Pulse Avalanche Energy Rating @ 520 mj Te Storage femperature Hange ~55 to 150 C Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) c 6-52Rugged Power MOSFETs IRF340R, IRF341R, IRF342R, IRF343R Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Turn-on speed is substantially controlled by Ls + Lo. Pi t Type Min. | Typ. | Max. | Units Test Conditions BVoss Drain - Source Breakdown Voltage IRF340R _ inFa42n| 400 | _ V | Ves = OV IRF341R _ IRF343R 350 _ Vv Ip = 250uA Vesa Gate Threshold Voltage ALL 2.0 = 4.0 Vv Vos = Vas, lp = 2500 A lass Gate-Source Leakage Forward ALL _ 100 nA Vas = 20V lass Gate-Source Leakage Reverse ALL _ = -100 nA Vas = -20V loss Zero Gate Voltage Drain Current = = 250 HA__| Vos = Max. Rating, Ves = OV ALL | | = \1000 | vA _| Vos = Max. Rating x 0.8, Vas = OV, To = 125C loom On-State Drain Current @ IRF340R | 49 _ _ A IRFS41R Vos > Ipion X Roston max, Ves = 10V IRF342R | 34 _ _ A IRF343R . : Rosion Static Drain-Source On-State IRF340R . *" Resistance tAF34iR| ~~ | O47 | 055 | o _ _ IRES42R Ves = 10V, ln = 5.0A IRF343R _ 0.63 0.80 n Qis Forward Transconductance @ ALL 4.0 7.0 S(3)_ | Vos > lotom X Rostemmax, Ip = 5.0A Ciss Input Capacitance ALL = 1250 = pr Vos = OV, Vos = 25V, f= 1.0 MHz Coss Output Capacitance ALL 300 _ pF See Fig. 10 Cre Reverse Transfer Capacitance ALL = &0 = pF . taton) Turn-On Delay Time ALL _ 17 35 ns Voo = 175V, lo = 5.0A, Zo = 4.72 te Rise Time ALL = 5.0 15 ns See Fig. 17 tatotn Turn-Off Delay Time ALL 45 90 ns (MOSFET switching times are essentially tt Fall Time ALL _ 16 35 ns independent of operating temperature.) Q, Total Gate Charge ALL _ a1 60 nc Ves = 10V, In = 12A, Vos = 0.8 Max. Rating. (Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is Qos Gate-Source Charge ALL 18 nc essentially independent of operating TRA er o ~ temperature.) Qo Gate-Drain (Miller) Charge ALL _ 23 _ nc Lo internal Drain Inductance ALL _ 5.0 _ ni Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to | internal device , source and gate pins inductances and center of die. Lo Ls internal Source Inductance ALL - 12.5 - nH Measured from the source pin, 6mm s Ls (0.25 in.) from header and source $ bonding pad. . ote anees Thermal Resistance RuJC Junstlon-to-Case ALL al = 1.0 | C/w RunCS Case-to-Sink ALL - 0.1 = C/W_| Mounting surface flat, smooth, and greased. RiJdA Junction-to-Amblent ALL - -- 30 C/W | Free Air Operation Source-Drain Diode Ratings and Characteristics ls Continuous Source Current IRF340OR; _ _ 10 A Modified MOSFET symbol (Body Diode) IRF341R showing the Integra! . IRF342R 8 A reverse P-N Junction rectifier. InFa4gR| | 0 lam Pulse Source Current IRFS40R | __ _ 40 A 6 (Body Diode) IRF341A IRF342R Petr) inFsaan| ~ | ~ | 3 | A _ Van Diode Forward Voltage @ IRES4OR _ _- 20 Vv | Te = 25C, Is = 104, Vas = OV Resgea; | | 4.8 | VV | Te=25C, le =8.0A, Vas = OV te Reverse Recovery Time ALL = 800 = as | Ti = 150C, le = 10A, die/dt = 100A/us Qna Reverse Recovered Charge ALL = 5.7 - LG Ts = 150C, le = 10A, die/dt = 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time Is negligible. @ T, = 25C to 160C, @ Pulse Test: Pulse width < 300us, Duty Cycle = 2%. @ Repetitive Rating: Pulse width limited by max. Junction temperature. See Transient Thermal Impedance Curve (Fig. 5). Vpo = SOV, starting Ty = 25C, L = 8.2 MH, Rye = 502, Inenk = 10A. See figures 15, 16. 6-53Rugged Power MOSFETs IRF340R, IRF341R, IRF342R, IRF343R 6-54 3B 20 % g = = a o 2 2 =z = = 15 < E 5 =z 2 2 i us PULSE z= ac 1 U 1 3 3 Vps > 'Dton) * Boston) max. z 10 z < < zc oa a 3s 3s 5 a 20 40 60 80 100 0 2 4 6 8 10 Vg, ORAIN-TO-SGURCE VOLTAGE (VOLTS) Vos, GATE-TO-SQUACE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics AREA IS LIMITED BY 80 us PULSE TEST a a = ue a S = a = = E . a a < x 3 3 = 2 < = 5 5 3 a Te = 25C Ty 180% MAX Rinye LOK We SINGLE PULSE oR 2A 0 2 4 6 4 10 102 5 0 20 50 100 200 $00 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vps. DRAIN TO SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area ns > s ow 2 a footy oy bo- 12 e a SINGLE (TRANSIENT 1, DUTY FACTOR, D= 4 . zi 2 0.02 2. PER UNIT BASE fine = 1.0 BEG. C/W. 3. Tym - To = Pom Zenuctt). Zensclt/ Binge. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEOANCE (PER UNIT) 0.01 w5 2 5 gd 2 5 03 2 5 2 2 5 wl 2 5 10 2 5 0 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse DurationRugged Power MOSFETs IRF340R, IRF341R, IRF342R, IRF343R wa PULSE igueermena Vos > IDion) * Ros(an) max. Spy TRANSCONDUCTANCE (SIEMENS) Ipp. REVERSE DRAIN CURRENT (AMPERES) 0 5 10 18 20 8 - 0 1 2 3 4 5 Ip, ORAIN CURRENT (AMPERES) Vgy. SQURCE-TO DRAIN VOLTAGE (VOLTS) Fig, 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 25 20 {NORMALIZED} in (NORMALIZED) S Ves = 10V 265A 05 BVpsc, DRAIN-TO-SGURCE BREAKOOWN VOLTAGE Roston), ORAIN-TO-SOURCE ON-STATE RESISTANCE 0 -40 0 40 80 120 160 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (@C} Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature 2000 Cigg = Cys + Cog, Cas Crss = Ogg Cg, C, Be Cogs = Cas + Cys + Egg = Cys + Ogg 1600 Vos = 80V 1 ' Vos = | | Vos = 320V. 1200 C, CAPACITANCE (pF) ips 12a FOR TEST CIRCUIT SEE FIGURE 18 Vos. GATE-TO-SOURCE VOLTAGE (VOLTS) 400 a 5 10 15 20 3 0 3% 40 45 50 Q 20 40 60 80 Vas. ORAIN-TO-SOUACE VOLTAGE (VOLTS) Og. TOTAL GATE CHARGE (nC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 6-55Rugged Power MOSFETs IRF340R, IRF341R, IRF342R, IRF343R T T tT qT y t Aos{on) MEASURED WITH CURRENT PULSE OF | 2048 DURATION. INITIAL Ty = 25C, (HEATING EFFECT OF 2.0 us PULSE 1S MINIMAL.) ! Ves = ww / GS 08 a4 Rosion). DRAIN-TO-SOURCE ON RESISTANCE (OHMS) 0 w 20 0 40 Jg. DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 140 2 a oe So 2 3S 3 S Se a Pg. POWER DISSIPATION (WATTS) ~ S a 20 40 60 80 100 120 140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve 176V ADJUST RL TO OBTAIN 436) SPECIFIED Ip Vos P euise GENERATOR 4.792 | SOURCE I i IMPEDANCE Fig. 17 Switching Time Test Circuit 6-56 (p, ORAIN CURRENT {AMPE RES) a 25 50 7 100 125 150 Tc, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature VARY tp TO OBTAIN REQUIRED PEAK i, but Res vggtt0V I Fe] 9208-42659 Fig. 15 Unclamped Energy Test Circuit 92CS- 42660 Fig. 16 Unclamped Energy Waveforms CURRENT _O +Vog REGULATOR (ISOLATED SUPPLY) ) SAME TYPE AS DUT VND) Vos IG = 'p CURRENT CURRENT SHUNT SHUNT 92G8-44103 Fig. 18 Gate Charge Test Circuit