TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D – NOVEMBER 1987 – REVISED MARCH 2001
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Input Offset Voltage Drift ...Typically
0.1 µV/Month, Including the First 30 Days
D
Wide Range of Supply Voltages Over
Specified Temperature Range:
0°C to 70°C...3 V to 16 V
–40°C to 85°C...4 V to 16 V
–55°C to 125°C...5 V to 16 V
D
Single-Supply Operation
D
Common-Mode Input Voltage Range
Extends Below the Negative Rail (C-Suffix
and I-Suffix Types)
D
Low Noise . . . 25 nV/Hz Typically at
f = 1 kHz (High-Bias Mode)
D
Output Voltage Range Includes Negative
Rail
D
High Input Impedance ...10
12 Typ
D
ESD-Protection Circuitry
D
Small-Outline Package Option Also
Available in Tape and Reel
D
Designed-In Latch-Up Immunity
description
The TLC271 operational amplifier combines a
wide range of input offset voltage grades with low
offset voltage drift and high input impedance. In
addition, the TLC271 offers a bias-select mode
that allows the user to select the best combination of power dissipation and ac performance for a particular
application. These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset
voltage stability far exceeding the stability available with conventional metal-gate processes.
AVAILABLE OPTIONS
VIOmax
PACKAGE
TA
V
IO
max
AT 25°CSMALL OUTLINE
(D) CHIP CARRIER
(FK) CERAMIC DIP
(JG) PLASTIC DIP
(P)
2 mV TLC271BCD TLC271BCP
0°C to 70°C
2
mV
5 mV
TLC271BCD
TLC271ACD
TLC271BCP
TLC271ACP
10 mV TLC271CD TLC271CP
2 mV TLC271BID TLC271BIP
–40°C to 85°C
2
mV
5 mV
TLC271BID
TLC271AID
TLC271BIP
TLC271AIP
10 mV TLC271ID TLC271IP
–55°C to 125°C10 mV TLC271MD TLC271MFK TLC271MJG TLC271MP
The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC271BCDR).
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright 2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
1
2
3
4
8
7
6
5
OFFSET N1
IN
IN +
GND
BIAS SELECT
VDD
OUT
OFFSET N2
D, JG, OR P PACKAGE
(TOP VIEW)
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
VDD
NC
OUT
NC
NC
IN
NC
IN +
NC
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
NC NC
NC
GND
NC
NC – No internal connection
OFFSET N2 BIAS SELECT
LinCMOS is a trademark of Texas Instruments.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DEVICE FEATURES
PARAMETER
BIAS-SELECT MODE
UNIT
PARAMETER
HIGH MEDIUM LOW
UNIT
PD3375 525 50 µW
SR 3.6 0.4 0.03 V/µs
Vn25 32 68 nV/Hz
B11.7 0.5 0.09 MHz
AVD 23 170 480 V/mV
Typical at VDD = 5 V, TA = 25°C
description (continued)
Using the bias-select option, these cost-effective devices can be programmed to span a wide range of
applications that previously required BiFET, NFET, or bipolar technology. Three offset voltage grades are
available (C-suffix and I-suffix types), ranging from the low-cost TLC271 (10 mV) to the TLC271B (2 mV)
low-offset version. The extremely high input impedance and low bias currents, in conjunction with good
common-mode rejection and supply voltage rejection, make these devices a good choice for new
state-of-the-art designs as well as for upgrading existing designs.
In general, many features associated with bipolar technology are available in LinCMOS operational amplifiers,
without the power penalties of bipolar technology. General applications such as transducer interfacing, analog
calculations, amplifier blocks, active filters, and signal buf fering are all easily designed with the TLC271. The
devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and
inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.
A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density
system applications.
The device inputs and output are designed to withstand 100-mA surge currents without sustaining latch-up.
The TLC271 incorporates internal ESD-protection circuits that prevent functional failures at voltages up to 2000
V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices
as exposure to ESD may result in the degradation of the device parametric performance.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of 55°C to 125°C.
bias-select feature
The TLC271 offers a bias-select feature that allows the user to select any one of three bias levels depending
on the level of performance desired. The tradeoffs between bias levels involve ac performance and power
dissipation (see Table 1).
Table 1. Effect of Bias Selection on Performance
TYPICAL PARAMETER VALUES
MODE
TYPICAL
PARAMETER
VALUES
TA
=
25
°
C, VDD
=
5V
HIGH BIAS MEDIUM BIAS LOW BIAS UNIT
TA
=
25 C
,
VDD
=
5
V
RL = 10 kRL = 100 kRL = 1 M
PDPower dissipation 3.4 0.5 0.05 mW
SR Slew rate 3.6 0.4 0.03 V/µs
VnEquivalent input noise voltage at f = 1 kHz 25 32 68 nV/Hz
B1Unity-gain bandwidth 1.7 0.5 0.09 MHz
φmPhase margin 46°40°34°
AVD Large-signal dif ferential voltage amplification 23 170 480 V/mV
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
bias selection
Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). For
medium-bias applications, it is recommended that the bias select pin be connected to the midpoint between the
supply rails. This procedure is simple in split-supply applications, since this point is ground. In single-supply
applications, the medium-bias mode necessitates using a voltage divider as indicated in Figure 1. The use of
large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However,
large-value resistors used in conjunction with a large-value capacitor require significant time to charge up to
the supply midpoint after the supply is switched on. A voltage other than the midpoint can be used if it is within
the voltages specified in Figure 1.
VDD
1 M
1 M
0.01 µF
Low
Medium
High
To the Bias
Select Pin
BIAS MODE BIAS-SELECT VOLTAGE
(single supply)
Low
Medium
High
VDD
1 V to VDD 1 V
GND
Figure 1. Bias Selection for Single-Supply Applications
high-bias mode
In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise.
Speed in this mode approaches that of BiFET devices but at only a fraction of the power dissipation. Unity-gain
bandwidth is typically greater than 1 MHz.
medium-bias mode
The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise.
Speed in this mode is similar to general-purpose bipolar devices but power dissipation is only a fraction of that
consumed by bipolar devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
low-bias mode
In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely low power
consumption, and high differential voltage gain.
ORDER OF CONTENTS
TOPIC BIAS MODE
schematic all
absolute maximum ratings all
recommended operating conditions all
electrical characteristics
operating characteristics
typical characteristics
high
(Figures 2 33)
electrical characteristics
operating characteristics
typical characteristics
medium
(Figures 34 65)
electrical characteristics
operating characteristics
typical characteristics
low
(Figures 66 97)
parameter measurement information all
application information all
equivalent schematic
P3
P1
R1
IN
IN +
P2 R2
P4 R6
N5
R5 C1
N3
N2N1
R3 D1
R4
D2 N4
OFFSET
N1 N2
OFFSET OUT GND
R7
N6
BIAS
SELECT
N10
N7
N9
N13
N12
N11
P12
P11
P10
P7A P8
P9A
P9B
P7B
P6BP6A
P5
VDD
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature (unless otherwise noted)
Supply voltage, VDD (see Note 1) 18 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (any input) 0.3 V to VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±30 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) Unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case temperature for 60 seconds: FK package 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package 260°C. . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package 300°C. . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.
2. Differential voltages are at IN+ with respect to IN.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded (see application section).
DISSIPATION RATING TABLE
PACKAGE TA 25°C
POWER RATING DERATING FACTOR
ABOVE TA = 25°CTA = 70°C
POWER RATING TA = 85°C
POWER RATING TA = 125°C
POWER RATING
D725 mW 5.8 mW/°C464 mW 377 mW 145 mW
FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW
P1000 mW 8.0 mW/°C640 mW 520 mW 200 mW
recommended operating conditions
C SUFFIX I SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD 3 16 4 16 5 16 V
Common mode in
p
ut voltage VIC
VDD = 5 V 0.2 3.5 0.2 3.5 0 3.5
V
Common
-
mode
input
voltage
,
V
IC VDD = 10 V 0.2 8.5 0.2 8.5 0 8.5
V
Operating free-air temperature, TA0 70 40 85 55 125 °C
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
HIGH-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271C, TLC271AC, TLC271BC
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
MIN TYP MAX MIN TYP MAX
TLC271C
25°C 1.1 10 1.1 10
TLC271C
VO=14V
Full range 12 12
VIO
In
p
ut offset voltage
TLC271AC
VO
=
1
.
4
V
,
V
IC
= 0 V, 25°C 0.9 5 0.9 5
mV
V
IO
Input
offset
voltage
TLC271AC
IC ,
RS = 50 ,
R10k
Full range 6.5 6.5
mV
TLC271BC
RL = 10 k25°C 0.34 2 0.39 2
TLC271BC
Full range 3 3
αVIO Average temperature coef ficient
of input offset voltage 25°C to
70°C1.8 2 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 p
A
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 70°C 7 300 7 300
pA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 p
A
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 70°C 40 600 50 600
pA
Common mode in
p
ut voltage
25°C0.2
to
4
0.3
to
4.2
0.2
to
9
0.3
to
9.2 V
VICR
C
ommon-mo
d
e
i
npu
t
vo
lt
age
range (see Note 5) Full range 0.2
to
3.5
0.2
to
8.5 V
V 100 V
25°C 3.2 3.8 8 8.5
VOH High-level output voltage VID = 100 mV,
RL=10k
0°C 3 3.8 7.8 8.5 V
RL
=
10
k
70°C 3 3.8 7.8 8.4
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
0°C 0 50 0 50 mV
IOL
=
0
70°C 0 50 0 50
L i l diff ti l
R10k
25°C 5 23 10 36
AVD Large-signal dif ferential
voltage am
p
lification
RL = 10 kΩ,
See Note 6
0°C 4 27 7.5 42 V/mV
voltage
am lification
See
Note
6
70°C 4 20 7.5 32
25°C 65 80 65 85
CMRR Common-mode rejection ratio VIC = VICRmin 0°C 60 84 60 88 dB
70°C 60 85 60 88
S l lt j ti ti
V 5Vt 10V
25°C 65 95 65 95
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
0°C 60 94 60 94 dB
(VDD/VIO)
VO
=
1
.
4
V
70°C 60 96 60 96
II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C1.4 1.9 µA
V
O
= V
DD
/2
,
25°C 675 1600 950 2000
IDD Supply current
VO
VDD/2,
VIC = VDD/2,
Nl d
0°C 775 1800 1125 2200 µA
No load 70°C 575 1300 750 1700
Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
HIGH-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271I, TLC271AI, TLC271BI
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
MIN TYP MAX MIN TYP MAX
TLC271I
25°C 1.1 10 1.1 10
TLC271I
VO=14V
Full range 13 13
VIO
In
p
ut offset voltage
TLC271AI
VO
=
1
.
4
V
,
V
IC
= 0 V, 25°C 0.9 5 0.9 5
mV
V
IO
Input
offset
voltage
TLC271AI
IC ,
RS = 50 ,
R10k
Full range 7 7
mV
TLC271BI
RL = 10 k25°C 0.34 2 0.39 2
TLC271BI
Full range 3.5 3.5
αVIO Average temperature coef ficient
of input offset voltage 25°C to
85°C1.8 2 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 p
A
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 85°C 24 1000 26 1000
pA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 p
A
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 85°C 200 2000 220 2000
pA
VICR
Common-mode input 25°C0.2
to
4
0.3
to
4.2
0.2
to
9
0.3
to
9.2 V
V
ICR voltage range (see Note 5) Full range 0.2
to
3.5
0.2
to
8.5 V
V 100 V
25°C 3.2 3.8 8 8.5
VOH High-level output voltage VID = 100 mV,
RL=10k
40°C 3 3.8 7.8 8.5 V
RL
=
10
k
85°C 3 3.8 7.8 8.5
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
40°C 0 50 0 50 mV
IOL
=
0
85°C 0 50 0 50
L i l diff ti l
R10k
25°C 5 23 10 36
AVD Large-signal dif ferential
voltage am
p
lification
RL = 10 kΩ,
See Note 6
40°C 3.5 32 7 46 V/mV
voltage
am lification
See
Note
6
85°C 3.5 19 7 31
25°C 65 80 65 85
CMRR Common-mode rejection ratio VIC = VICRmin 40°C 60 81 60 87 dB
85°C 60 86 60 88
S l lt j ti ti
V 5Vt 10V
25°C 65 95 65 95
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
40°C 60 92 60 92 dB
(VDD/VIO)
VO
=
1
.
4
V
85°C 60 96 60 96
II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C1.4 1.9 µA
V
O
= V
DD
/2
,
25°C 675 1600 950 2000
IDD Supply current
VO
VDD/2,
VIC = VDD/2,
Nl d
40°C 950 2200 1375 2500 µA
No load 85°C 525 1200 725 1600
Full range is 40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
HIGH-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271M
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
A
MIN TYP MAX MIN TYP MAX
VO
=
1.4 V,
25°C
11
10
11
10
VIO
In
p
ut offset voltage
VO
=
1
.
4
V
,
V
IC
= 0 V,
25°C
1
.
1
10
1
.
1
10
mV
V
IO
Input
offset
voltage
IC ,
RS = 50 ,
Full range
12
12
mV
S
RL = 10 k
Full
range
12
12
αVIO Average temperature coef ficient
of input offset voltage 25°C to
125°C2.1 2.2 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 pA
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 125°C 1.4 15 1.8 15 nA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 pA
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 125°C 9 35 10 35 nA
VICR
Common-mode input volta
g
e25°C0
to
4
0.3
to
4.2
0
to
9
0.3
to
9.2 V
V
ICR
g
range (see Note 5) Full range 0
to
3.5
0
to
8.5 V
V 100 V
25°C 3.2 3.8 8 8.5
VOH High-level output voltage VID = 100 mV,
RL=10k
55°C 3 3.8 7.8 8.5 V
RL
=
10
k
125°C 3 3.8 7.8 8.4
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
55°C 0 50 0 50 mV
IOL
=
0
125°C 0 50 0 50
L i l diff ti l
R10k
25°C 5 23 10 36
AVD Large-signal dif ferential
voltage am
p
lification
RL = 10 kΩ,
See Note 6
55°C 3.5 35 7 50 V/mV
voltage
am lification
See
Note
6
125°C 3.5 16 7 27
25°C 65 80 65 85
CMRR Common-mode rejection ratio VIC = VICRmin 55°C 60 81 60 87 dB
125°C 60 84 60 86
S l lt j ti ti
V 5Vt 10V
25°C 65 95 65 95
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
55°C 60 90 60 90 dB
(VDD/VIO)
VO
=
1
.
4
V
125°C 60 97 60 97
II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C1.4 1.9 µA
V
O
= V
DD
/2
,
25°C 675 1600 950 2000
IDD Supply current
VO
VDD/2,
VIC = VDD/2,
Nl d
55°C 1000 2500 1475 3000 µA
No load 125°C 475 1100 625 1400
Full range is 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
HIGH-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC271C, TLC271AC,
TLC271BC UNIT
A
MIN TYP MAX
25°C 3.6
VI
(
PP
)
= 1 V 0°C 4
SR
Slew rate at unity gain
RL = 10 k,
CL20
p
F
()
70°C 3
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
p
F
,
See
Fi
gu
r
e
98
25°C 2.9
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 0°C 3.1
()
70°C 2.5
V
Equivalent in
p
ut noise voltage
f = 1 kHz, R
S
= 20 ,
25°C
25
nV/Hz
V
n
Equivalent
input
noise
voltage
,
See Figure 99
S,
25°C
25
n
V/H
z
VV
C20F
25°C 320
BOM Maximum output-swing bandwidth VO = VOH ,
RL=10k
CL = 20 pF,
See Figure 98
0°C 340 kHz
RL
=
10
k
,
See
Figure
98
70°C 260
V10V
C20F
25°C 1.7
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 0°C2MHz
See
Figure
100
70°C 1.3
V10mV
fB
25°C 46°
φmPhase margin
V
I =
10
m
V
,
CL
=
20
p
F,
f
=
B
1,
See Figure 100
0°C 47°
CL
=
20
F
,
See
Figure
100
70°C 44°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC271C, TLC271AC,
TLC271BC UNIT
A
MIN TYP MAX
25°C 5.3
VI(PP) = 1 V 0°C 5.9
SR
Slew rate at unity gain
RL = 10 k,
CL20
p
F
()
70°C 4.3
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
p
F
,
See
Fi
gu
r
e
98
25°C 4.6
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 0°C 5.1
()
70°C 3.8
V
Equivalent in
p
ut noise voltage
f = 1 kHz, R
S
= 20 ,
25
°
C
25
nV/Hz
V
n
Equivalent
input
noise
voltage
,
See Figure 99
S,
25°C
25
n
V/H
z
VV
C20F
25°C 200
BOM Maximum output-swing bandwidth VO = VOH,
RL=10k
CL = 20 pF,
See Figure 98
0°C 220 kHz
RL
=
10
k
,
See
Figure
98
70°C 140
V10V
C20F
25°C 2.2
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 0°C2.5 MHz
See
Figure
100
70°C 1.8
fB
V10mV
25°C 49°
φmPhase margin
f
=
B
1,
CL
=
20
p
F,
V
I =
10
m
V
,
See Figure 100
0°C 50°
CL
=
20
F
,
See
Figure
100
70°C 46°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
HIGH-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC271I, TLC271AI,
TLC271BI UNIT
A
MIN TYP MAX
25°C 3.6
VI
(
PP
)
= 1 V 40°C 4.5
SR
Slew rate at unity gain
RL = 10 k,
CL=20
p
F
()
85°C 2.8
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 2.9
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 40°C 3.5
()
85°C 2.3
V
Equivalent in
p
ut noise voltage
f = 1 kHz, R
S
= 20 ,
25°C
25
nV/H
V
n
Equivalent
input
noise
voltage
,
See Figure 99
S,
25°C
25
n
V/H
z
VV
C20F
25°C 320
BOM Maximum output-swing bandwidth VO = VOH,
RL=10k
CL = 20 pF,
See Figure 98
40°C 380 kHz
RL
=
10
k
,
See
Figure
98
85°C 250
V10V
C20F
25°C 1.7
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 40°C2.6 MHz
See
Figure
100
85°C 1.2
V10mV
fB
25°C 46°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
40°C 49°
CL
=
20
F
,
See
Figure
100
85°C 43°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC271I, TLC271AI,
TLC271BI UNIT
A
MIN TYP MAX
25°C 5.3
VI(PP) = 1 V 40°C 6.8
SR
Slew rate at unity gain
RL = 10 k,
CL=20
p
F
()
85°C 4
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 4.6
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 40°C 5.8
()
85°C 3.5
V
Equivalent in
p
ut noise voltage
f = 1 kHz, R
S
= 20 ,
25
°
C
25
nV/Hz
V
n
Equivalent
input
noise
voltage
,
See Figure 99
S,
25°C
25
n
V/H
z
VV
C20F
25°C 200
BOM Maximum output-swing bandwidth VO = VOH,
RL=10k
CL = 20 pF,
See Figure 98
40°C 260 kHz
RL
=
10
k
,
See
Figure
98
85°C 130
V10V
C20F
25°C 2.2
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 40°C3.1 MHz
See
Figure
100
85°C 1.7
V10mV
fB
25°C 49°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
40°C 52°
CL
=
20
F
,
See
Figure
100
85°C 46°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
HIGH-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLC271M
UNIT
PARAMETER
TEST
CONDITIONS
T
AMIN TYP MAX
UNIT
25°C 3.6
VI
(
PP
)
= 1 V 55°C 4.7
SR
Slew rate at unity gain
RL = 10 k,
CL20
p
F
()
125°C 2.3
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
p
F
,
See
Fi
gu
r
e
98
25°C 2.9
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 55°C 3.7
()
125°C 2
V
Equivalent in
p
ut noise voltage
f = 1 kHz, R
S
= 20 ,
25°C
25
nV/H
V
n
Equivalent
input
noise
voltage
,
See Figure 99
S,
25°C
25
n
V/H
z
VV
C20F
25°C 320
BOM Maximum output-swing bandwidth VO = VOH,
RL=10k
CL = 20 pF,
See Figure 98
55°C 400 kHz
RL
=
10
k
,
See
Figure
98
125°C 230
V10V
C20F
25°C 1.7
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 55°C2.9 MHz
See
Figure
100
125°C 1.1
V10mV
fB
25°C 46°
φmPhase margin
V
I =
10
m
V
,
CL
=
20
p
F,
f
=
B
1,
See Figure 100
55°C 49°
CL
=
20
F
,
See
Figure
100
125°C 41°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER
TEST CONDITIONS
TA
TLC271M
UNIT
PARAMETER
TEST
CONDITIONS
T
AMIN TYP MAX
UNIT
25°C 5.3
VI
(
PP
)
= 1 V 55°C 7.1
SR
Slew rate at unity gain
RL = 10 k,
CL20
p
F
()
125°C 3.1
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
p
F
,
See
Fi
gu
r
e
98
25°C 4.6
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 55°C 6.1
()
125°C 2.7
V
Equivalent in
p
ut noise voltage
f = 1 kHz, R
S
= 20 ,
25°C
25
nV/H
V
n
Equivalent
input
noise
voltage
,
See Figure 99
S,
25°C
25
n
V/H
z
VV
C20F
25°C 200
BOM Maximum output-swing bandwidth VO = VOH,
RL=10k
CL = 20 pF,
See Figure 98
55°C 280 kHz
RL
=
10
k
,
See
Figure
98
125°C110
V10V
C20F
25°C 2.2
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 55°C3.4 MHz
See
Figure
100
125°C 1.6
fB
V10mV
25°C 49°
φmPhase margin
f
=
B
1,
CL
=
20
p
F,
V
I =
10
m
V
,
See Figure 100
55°C 52°
CL
=
20
F
,
See
Figure
100
125°C 44°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Table of Graphs
FIGURE
VIO Input of fset voltage Distribution 2, 3
αVIO Temperature coefficient Distribution 4, 5
vs Hi
g
h-level output current 6
,
7
VOH High-level output voltage
vs
High level
out ut
current
vs Supply voltage
6,
7
8
OH
gg
yg
vs Free-air temperature 9
vs Common
-
mode in
p
ut voltage
10, 11
VOL
Low level out
p
ut voltage
vs
Common mode
in ut
voltage
vs Differential input volta
g
e
10
,
11
12
V
OL
Low
-
level
output
voltage
g
vs Free-air temperature 13
vs Low-level output current 14, 15
vs Suppl
y
volta
g
e 16
AVD Large-signal dif ferential voltage amplification
vs
Su ly
voltage
vs Free-air temperature
16
17
VD
gg g
vs Frequency 28, 29
IIB Input bias current vs Free-air temperature 18
IIO Input offset current vs Free-air temperature 18
VIC Common-mode input voltage vs Supply voltage 19
IDD
Su
pp
ly current
vs Suppl
y
volta
g
e 20
I
DD
Supply
current
yg
vs Free-air temperature 21
SR
Slew rate
vs Supply volta
g
e 22
SR
Slew
rate
yg
vs Free-air temperature 23
Bias-select current vs Supply voltage 24
VO(PP) Maximum peak-to-peak output voltage vs Frequency 25
B1
Unity gain bandwidth
vs Free-air temperature 26
B
1
Unity
-
gain
bandwidth
vs Supply voltage 27
AVD Large-signal dif ferential voltage amplification vs Frequency 28, 29
vs Suppl
y
volta
g
e 30
φmPhase margin
vs
Su ly
voltage
vs Free-air temperature
30
31
φm
g
vs Capacitive load 32
VnEquivalent input noise voltage vs Frequency 33
Phase shift vs Frequency 28, 29
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 2
5
0
Percentage of Units %
VIO Input Offset Voltage mV 5
60
4 3 2 101234
10
20
30
40
50
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TA = 25°C
P Package
ÎÎÎÎÎÎÎÎÎÎÎÎ
753 Amplifiers Tested From 6 Wafer Lots
VDD = 5 V
Figure 3
50
40
30
20
10
43210 1 2 3 4
60
5
Percentage of Units %
0 5
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
VIO Input Offset Voltage mV
P Package
TA = 25°C
VDD = 10 V
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
753 Amplifiers Tested From 6 Wafer Lots
Figure 4
50
40
30
20
10
86420 2 4 6 8
60
10
αVIO Temperature Coefficient µV/°C
Percentage of Units %
0
10
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
P Package
TA = 25°C to 125°C
VDD = 5 V
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
324 Amplifiers Tested From 8 Wafer Lots
Outliers:
ÎÎÎÎÎ
(1) 20.5 µV/°C
Figure 5
10
0
Percentage of Units %
10
60
8 6 4 20 2 4 6 8
10
20
30
40
50
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
TA = 25°C to 125°C
Outliers:
P Package
ÎÎÎÎÎ
(1) 21.2 µV/°C
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
324 Amplifiers Tested From 8 Wafer lots
VDD = 10 V
αVIO Temperature Coefficient µV/°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 6
0
0
VOH High-Level Output Voltage V
IOH High-Level Output Current mA 10
5
2 4 6 8
1
2
3
4TA = 25°C
VID = 100 mV
VDD = 5 V
VDD = 4 V
VDD = 3 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁÁ
ÁÁÁ
ÁÁÁ
VOH
Figure 7
0
0
IOH High-Level Output Current mA 40
16
10 20 30
2
4
6
8
10
12
14
VDD = 16 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
VID = 100 mV
TA = 25°C
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VOH High-Level Output Voltage V
ÁÁ
ÁÁ
ÁÁ
VOH
5 15 25 35
Figure 8
0VDD Supply Voltage V 162 4 6 8 10 12 14
14
12
10
8
6
4
2
16
0
VID = 100 mV
RL = 10 k
TA = 25°C
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
VOH High-Level Output Voltage V
ÁÁ
ÁÁ
VOH
Figure 9
1.7
1.8
1.9
2
2.1
2.2
2.3
1007550200 25 50
VDD 1.6
125
TA Free-Air Temperature °C
2.4
75
IOH = 5 mA
VID = 100 mA
VDD = 5 V
VDD = 10 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOH High-Level Output Voltage V
ÁÁ
ÁÁ
VOH
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 10
0
300
VOL Low-Level Output Voltage mV
VIC Common-Mode Input Voltage V 4
700
123
400
500
600
TA = 25°C
IOL = 5 mA
VDD = 5 V
VID = 1 V
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
650
550
450
350
ÁÁ
ÁÁ
VOL
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VID = 100 mV
Figure 11
250 0VIC Common-Mode Input Voltage V
300
350
400
450
500
246810
VDD = 10 V
IOL = 5 mA
TA = 25°C
VID = 1 V
VID = 2.5 V
VID = 100 mV
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
13579
VOL Low-Level Output Voltage mV
ÁÁÁ
ÁÁÁ
VOL
Figure 12
0VID Differential Input Voltage V 10 2 4 6 8
800
700
600
500
400
300
200
100
0
IOL = 5 mA
VIC = VID/2
TA = 25°C
VDD = 10 V
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
VOL
1 3 5 7 9
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
Figure 13
75
0
TA Free-Air Temperature °C125
900
50 25 0 25 50 75 100
100
200
300
400
500
600
700
800 VIC = 0.5 V
VID = 1 V
IOL = 5 mA
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
VOL
ÎÎÎÎ
ÎÎÎÎ
VDD = 10 V
ÎÎÎÎ
VDD = 5 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 14
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0IOL Low-Level Output Current mA
1
8
01 2 345 6 7
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 VID = 1 V
VIC = 0.5 V
TA = 25°C
VDD = 5 V
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
VOL
ÎÎÎÎ
ÎÎÎÎ
VDD = 3 V
ÎÎÎÎ
VDD = 4 V
Figure 15
0IOL Low-Level Output Current mA
3
30
05 10 15 20 25
0.5
1
1.5
2
2.5 TA = 25°C
VIC = 0.5 V
VID = 1 V
VDD = 10 V
VDD = 16 V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
ÁÁ
VOL
Figure 16
0
60
16
0246 8 10 12 14
10
20
30
40
50
VDD Supply Voltage V
85°C
125°C
TA = 55°C
ÎÎÎÎ
ÎÎÎÎ
RL = 10 k
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
ÎÎÎ
ÎÎÎ
0°C
ÎÎÎ
ÎÎÎ
25°C
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification V/mV
Figure 17
75 TA Free-Air Temperature °C
50
125
0 50 25 0 25 50 75 100
5
10
15
20
25
30
35
40
45
VDD = 5 V
VDD = 10 V
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification V/mV
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 10 k
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 18
0.1 125
10000
45 65 85 105
1
10
100
1000
25 TA Free-Air Temperature °C
INPUT BIAS CURRENT AND INPUT OFFSET
CURRENT
vs
FREE-AIR TEMPERATURE
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
VDD = 10 V
VIC = 5 V
See Note A
ÎÎ
ÎÎ
IIB
ÎÎ
ÎÎ
IIO
IIB and IIO Input Bias and
IB
IIIO
Input Offset Currents nA
NOTE A: The typical values of input bias current and input offset
current below 5 pA were determined mathematically. Figure 19
0VDD Supply Voltage V
16
16
0246 8 10 12 14
2
4
6
8
10
12
14 TA = 25°C
COMMON-MODE INPUT VOLTAGE
(POSITIVE LIMIT)
vs
SUPPLY VOLTAGE
Common-Mode Input Voltage V
VIC
Figure 20
0
IDD Supply Current mA
VDD Supply Voltage V
2.5
16
02 4 6 8 10 12 14
0.5
1
1.5
2TA =55°C
25°C
70°C
125°C
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
ÁÁÁ
ÁÁÁ
ÁÁÁ
DD
I
ÎÎÎ
0°C
ÎÎÎÎ
ÎÎÎÎ
VO = VDD/2
No Load
Figure 21
75 TA Free-Air Temperature °C
2
125
0
0.5
1
1.5
50 25 0 25 50 75 100
VDD = 10 V
VDD = 5 V
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
IDD Supply Current mA
ÁÁ
ÁÁ
ÁÁ
DD
I
ÎÎÎÎÎ
ÎÎÎÎÎ
VO = VDD/2
No Load
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 22
TA = 25°C
See Figure 98
AV = 1
VI(PP) = 1 V
RL = 10 k
CL = 20 pF
8
7
6
5
4
3
2
1
1412108642
016
VDD Supply Voltage V
SR Slew Rate V/ us
0
SLEW RATE
vs
SUPPLY VOLTAGE
sµ
Figure 23
VDD = 10 V
VI(PP) = 1 V
VDD = 5 V
RL = 10 k
AV = 1
See Figure 99
CL = 20 pF
75
0
1
2
3
4
5
6
7
8
10075502502550 125
TA Free-Air Temperature °C
SLEW RATE
vs
FREE-AIR TEMPERATURE
SR Slew Rate V/ us
sµ
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VI(PP) = 5.5 V
ÎÎÎÎ
VI(PP) = 1 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 5 V
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VI(PP) = 2.5 V
Figure 24
VI(SEL) = 0
TA = 25°C
2.4
1.8
1.2
0.6
1412108642
016
3
VDD Supply Voltage V
0
BIAS-SELECT CURRENT
vs
SUPPLY VOLTAGE
2.7
2.1
1.5
0.9
0.3
Bias-Select Current ua
Aµ
Figure 25
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
1000100
9
8
7
6
5
4
3
2
1
010000
10
f Frequency kHz
10
MAXIMUM PEAK-TO-PEAK OUTPUT
VOLTAGE
vs
FREQUENCY
ÎÎÎÎ
ÎÎÎÎ
TA = 125°C
ÎÎÎÎ
TA = 25°C
ÎÎÎÎ
ÎÎÎÎ
TA = 55°C
ÎÎÎÎ
ÎÎÎÎ
VDD = 10 V
ÎÎÎÎ
RL = 10 k
ÎÎÎÎÎ
ÎÎÎÎÎ
See Figure 98
Maximum Peak-to-Peak Output Voltage V
VO(PP)
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 26
See Figure 100
CL = 20 pF
VI = 10 mV
VDD = 5 V
2.5
2
1.5
1007550250 25 50
1125
3
TA Free-Air Temperature °C
B1 Unity-Gain Bandwidth MHz
75
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
B1
Figure 27
VI = 10 mV
CL = 20 pF
TA = 25°C
See Figure 100
2
1.5
1412108642
116
2.5
VDD Supply Voltage V
0
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
B1 Unity-Gain Bandwidth MHz
B1
Phase Shift
AVD
VDD = 5 V
RL = 10 k
TA = 25°C
Phase Shift
106
105
104
103
102
101
1
1 M100 k10 k1 k100
0.1 10 M
f Frequency Hz
10
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
107
150°
120°
90°
60°
30°
0°
180°
AVD Large-Signal Differential
ÁÁ
ÁÁ
AVD V oltage Amplification
Figure 28
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Phase Shift
AVD
TA = 25°C
RL = 10 k
VDD = 10 V
Phase Shift
150°
120°
90°
60°
30°
0°
180°
106
105
104
103
102
101
1
1 M100 k10 k1 k100
0.1 10 M
f Frequency Hz
10
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
107
AVD Large-Signal Differential
ÁÁ
ÁÁ
AVD V oltage Amplification
Figure 29
Figure 30
0
m Phase Margin
VDD Supply Voltage V
53°
16
2 4 6 8 10 12 14
47°
49°
51°
CL = 20 pF
TA = 25°C
VI = 10 mV
See Figure 100
PHASE MARGIN
vs
SUPPLY VOLTAGE
46°
45°
48°
50°
52°
ÁÁ
ÁÁ
m
φ
Figure 31
75
50°
125
40° 50 25 0 25 50 75 100
42°
44°
46°
48°
VDD = 5 V
CL = 20 pF
VI = 10 mV
See Figure 100
TA Free-Air Temperature °C
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
m Phase Margin
ÁÁ
ÁÁ
m
φ
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)
Figure 32
0CL Capacitive Load pF
50°
100
25°20 40 60 80
30°
35°
40°
45°See Figure 100
VI = 10 mV
TA = 25°C
VDD = 5 mV
PHASE MARGIN
vs
CAPACITIVE LOAD
m Phase Margin
ÁÁ
ÁÁ
m
φ
Figure 33
VN Equivalent Input Noise Voltage nV/Hz
1f Frequency Hz
400
1000
0
100
200
300
10 100
EQUIVALENT NOISE VOLTAGE
vs
FREQUENCY
Vn
ÁÁ
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
350
250
150
50
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VDD = 5 V
TA = 25°C
RS = 20
See Figure 99
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MEDIUM-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TLC271C, TLC271AC, TLC271BC
PARAMETER TEST CONDITIONS TA
VDD = 5 V VDD = 10 V UNIT
A
MIN TYP MAX MIN TYP MAX
TLC271C
25°C 1.1 10 1.1 10
TLC271C
VO=14V
Full range 12 12
VIO
In
p
ut offset voltage
TLC271AC
VO
=
1
.
4
V
,
V
IC
= 0 25°C 0.9 5 0.9 5
mV
V
IO
Input
offset
voltage
TLC271AC
IC
RS = 50 ,
R 100 k
Full range 6.5 6.5
mV
TLC271BC
RI = 100 k25°C 0.25 2 0.26 2
TLC271BC
Full range 3 3
αVIO Average temperature coef ficient
of input offset voltage 25°C to
70°C1.7 2.1 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 p
A
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 70°C 7 300 7 300
pA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 p
A
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 70°C 40 600 50 600
pA
VICR
Common-mode input 25°C0.2
to
4
0.3
to
4.2
0.2
to
9
0.3
to
9.2 V
V
ICR voltage range (see Note 5) Full range 0.2
to
3.5
0.2
to
8.5 V
V 100 V
25°C 3.2 3.9 8 8.7
VOH High-level output voltage VID = 100 mV,
RL= 100 k
0°C 3 3.9 7.8 8.7 V
RL
=
100
k
70°C 3 4 7.8 8.7
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
0°C 0 50 0 50 mV
IOL
=
0
70°C 0 50 0 50
L i l diff ti l
R 100 k
25°C 25 170 25 275
AVD Large-signal dif ferential
voltage am
p
lification
RL = 100 kΩ,
See Note 6
0°C 15 200 15 320 V/mV
voltage
am lification
See
Note
6
70°C 15 140 15 230
25°C 65 91 65 94
CMRR Common-mode rejection ratio VIC = VICRmin 0°C 60 91 60 94 dB
70°C 60 92 60 94
S l lt j ti ti
V 5Vt 10V
25°C 70 93 70 93
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
0°C 60 92 60 92 dB
(VDD/VIO)
VO
=
1
.
4
V
70°C 60 94 60 94
II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD/2 25°C130 160 nA
V
O
= V
DD
/2
,
25°C 105 280 143 300
IDD Supply current
VO
VDD/2,
VIC = VDD/2, 0°C 125 320 173 400 µA
No load 70°C 85 220 110 280
Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MEDIUM-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271I, TLC271AI, TLC271BI
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
A
MIN TYP MAX MIN TYP MAX
25°C 1.1 10 1.1 10
VO=14V
Full range 13 13
VIO
In
p
ut offset voltage
VO
=
1
.
4
V
,
V
IC
= 0 V, 25°C 0.9 5 0.9 5
mV
V
IO
Input
offset
voltage
IC ,
RS = 50 ,
R 100 k
Full range 7 7
mV
RL = 100 k25°C 0.25 2 0.26 2
Full range 3.5 3.5
αVIO Average temperature coef ficient
of input offset voltage 25°C to
85°C1.7 2.1 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 p
A
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 85°C 24 1000 26 1000
pA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 p
A
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 85°C 200 2000 220 2000
pA
VICR
Common-mode input 25°C0.2
to
4
0.3
to
4.2
0.2
to
9
0.3
to
9.2 V
V
ICR voltage range (see Note 5) Full range 0.2
to
3.5
0.2
to
8.5 V
V 100 V
25°C 3.2 3.9 8 8.7
VOH High-level output voltage VID = 100 mV,
RL= 100 k
40°C 3 3.9 7.8 8.7 V
RL
=
100
k
85°C 3 4 7.8 8.7
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
40°C 0 50 0 50 mV
IOL
=
0
85°C 0 50 0 50
L i l diff ti l
R 100 k
25°C 25 170 25 275
AVD Large-signal dif ferential
voltage am
p
lification
RL = 100 kΩ,
See Note 6
40°C 15 270 15 390 V/mV
voltage
am lification
See
Note
6
85°C 15 130 15 220
25°C 65 91 65 94
CMRR Common-mode rejection ratio VIC = VICRmin 40°C 60 90 60 93 dB
85°C 60 90 60 94
S l lt j ti ti
V 5Vt 10V
25°C 70 93 70 93
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
40°C 60 91 60 91 dB
(VDD/VIO)
VO
=
1
.
4
V
85°C 60 94 60 94
II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD/2 25°C130 160 nA
V
O
= V
DD
/2
,
25°C 105 280 143 300
IDD Supply current
VO
VDD/2,
VIC = VDD/2, 40°C 158 400 225 450 µA
No load 85°C 80 200 103 260
Full range is 40°C to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MEDIUM-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271M
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
VO = 1.4 V,
VIC = 0 V, 25°C 1.1 10 1.1 10 mV
V
IO
Input
offset
voltage
RS = 50 ,
RL = 100 kFull range 12 12
αVIO Average temperature coef ficient
of input offset voltage 25°C to
125°C1.7 2.1 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 pA
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 125°C 1.4 15 1.8 15 nA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 pA
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 125°C 9 35 10 35 nA
VICR
Common-mode input 25°C0
to
4
0.3
to
4.2
0
to
9
0.3
to
9.2 V
V
ICR voltage range (see Note 5) Full range 0
to
3.5
0
to
8.5 V
V 100 V
25°C 3.2 3.9 8 8.7
VOH High-level output voltage VID = 100 mV,
RL= 100 k
55°C 3 3.9 7.8 8.6 V
RL
=
100
k
125°C 3 4 7.8 8.6
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
55°C 0 50 0 50 mV
IOL
=
0
125°C 0 50 0 50
L i l diff ti l
R10k
25°C 25 170 25 275
AVD Large-signal dif ferential
voltage am
p
lification
RL = 10 k
See Note 6
55°C 15 290 15 420 V/mV
voltage
am lification
See
Note
6
125°C 15 120 15 190
25°C 65 91 65 94
CMRR Common-mode rejection ratio VIC = VICRmin 55°C 60 89 60 93 dB
125°C 60 91 60 93
S l lt j ti ti
V 5Vt 10V
25°C 70 93 70 93
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
55°C 60 91 60 91 dB
(VDD/VIO)
VO
=
1
.
4
V
125°C 60 94 60 94
II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD/2 25°C130 160 nA
V
O
= V
DD
/2
,
25°C 105 280 143 300
IDD Supply current
VO
VDD/2,
VIC = VDD/2, 55°C 170 440 245 500 µA
No load 125°C 70 180 90 240
Full range is 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MEDIUM-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC271C, TLC271AC,
TLC271BC UNIT
A
MIN TYP MAX
25°C 0.43
VI
(
PP
)
= 1 V 0°C 0.46
SR
Slew rate at unity gain
RL = 100 k,
CL=20
p
F
()
70°C 0.36
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.40
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 0°C 0.43
()
70°C 0.34
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 32 nV/Hz
VV
C20F
25°C 55
BOM Maximum output-swing bandwidth VO = VOH,
RL= 100 k
CL = 20 pF,
See Figure 98
0°C 60 kHz
RL
=
100
k
,
See
Figure
98
70°C 50
V10V
C20F
25°C 525
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 0°C600 kHz
See
Figure
100
70°C 400
V10mV
fB
25°C 40°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
0°C 41°
CL
=
20
F
,
See
Figure
100
70°C 39°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC271C, TLC271AC,
TLC271BC UNIT
A
MIN TYP MAX
25°C 0.62
VI(PP) = 1 V 0°C 0.67
SR
Slew rate at unity gain
RL = 100 k,
CL=20
p
F
()
70°C 0.51
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.56
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 0°C 0.61
()
70°C 0.46
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 32 nV/Hz
VV
C20F
25°C 35
BOM Maximum output-swing bandwidth VO = VOH,
RL= 100 k
CL = 20 pF,
See Figure 98
0°C 40 kHz
RL
=
100
k
,
See
Figure
98
70°C 30
V10V
C20F
25°C 635
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 0°C710 kHz
See
Figure
100
70°C 510
V10mV
fB
25°C 43°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
0°C 44°
CL
=
20
F
,
See
Figure
100
70°C 42°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MEDIUM-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC271I, TLC271AI,
TLC271BI UNIT
A
MIN TYP MAX
25°C 0.43
VI
(
PP
)
= 1 V 40°C 0.51
SR
Slew rate at unity gain
RL = 100 k,
CL=20
p
F
()
85°C 0.35
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.40
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 40°C 0.48
()
85°C 0.32
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 32 nV/Hz
VV
C20F
25°C 55
BOM Maximum output-swing bandwidth VO = VOH,
RL= 100 k
CL = 20 pF,
See Figure 98
40°C 75 kHz
RL
=
100
k
,
See
Figure
98
85°C 45
V10V
C20F
25°C 525
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 40°C770 MHz
See
Figure
100
85°C 370
V10mV
fB
25°C 40°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
40°C 43°
CL
=
20
F
,
See
Figure
100
85°C 38°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC271I, TLC271AI,
TLC271BI UNIT
A
MIN TYP MAX
25°C 0.62
VI(PP) = 1 V 40°C 0.77
SR
Slew rate at unity gain
RL = 100 k,
CL=20
p
F
()
85°C 0.47
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.56
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 40°C 0.70
()
85°C 0.44
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 32 nV/Hz
VV3
C20F
25°C 35
BOM Maximum output-swing bandwidth VO = VOH,3
RL= 100 k
CL = 20 pF,
See Figure 98
40°C 45 kHz
RL
=
100
k
,
See
Figure
98
85°C 25
V10V
C20F
25°C 635
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 40°C880 kHz
See
Figure
100
85°C 480
V10mV
fB
25°C 43°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
40°C 46°
CL
=
20
F
,
See
Figure
100
85°C 41°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MEDIUM-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLC271M
UNIT
PARAMETER
TEST
CONDITIONS
T
AMIN TYP MAX
UNIT
25°C 0.43
VI
(
PP
)
= 1 V 55°C 0.54
SR
Slew rate at unity gain
RL = 100 k,
CL=20
p
F
()
125°C 0.29
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.40
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 55°C 0.50
()
125°C 0.28
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 32 nV/Hz
VV
C20F
25°C 55
BOM Maximum output-swing bandwidth VO = VOH,
RL= 100 k
CL = 20 pF,
See Figure 98
55°C 80 kHz
RL
=
100
k
,
See
Figure
98
125°C 40
V10V
C20F
25°C 525
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 55°C850 kHz
See
Figure
100
125°C 330
V10mV
fB
25°C 40°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
55°C 43°
CL
=
20
F
,
See
Figure
100
125°C 36°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER
TEST CONDITIONS
TA
TLC271M
UNIT
PARAMETER
TEST
CONDITIONS
T
AMIN TYP MAX
UNIT
25°C 0.62
VI
(
PP
)
= 1 V 55°C 0.81
SR
Slew rate at unity gain
RL = 100 k,
CL=20
p
F
()
125°C 0.38
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.56
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 55°C 0.73
()
125°C 0.35
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 32 nV/Hz
VV
C20F
25°C 35
BOM Maximum output-swing bandwidth VO = VOH,
RL= 100 k
CL = 20 pF,
See Figure 98
55°C 50 kHz
RL
=
100
k
,
See
Figure
98
125°C 20
V10V
C20F
25°C 635
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 55°C960 kHz
See
Figure
100
125°C 440
V10mV
fB
25°C 43°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
55°C 47°
CL
=
20
F
,
See
Figure
100
125°C 39°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Table of Graphs
FIGURE
VIO Input of fset voltage Distribution 34, 35
αVIO Temperature coefficient Distribution 36, 37
vs Hi
g
h-level output current 38
,
39
VOH High-level output voltage
vs
High level
out ut
current
vs Supply voltage
38,
39
40
OH
gg
yg
vs Free-air temperature 41
vs Common
-
mode in
p
ut voltage
42, 43
VOL
Low level out
p
ut voltage
vs
Common mode
in ut
voltage
vs Differential input volta
g
e
42
,
43
44
V
OL
Low
-
level
output
voltage
g
vs Free-air temperature 45
vs Low-level output current 46, 47
vs Suppl
y
volta
g
e 48
AVD Large-signal dif ferential voltage amplification
vs
Su ly
voltage
vs Free-air temperature
48
49
VD
gg g
vs Frequency 60, 61
IIB Input bias current vs Free-air temperature 50
IIO Input offset current vs Free-air temperature 50
VIMaximum Input voltage vs Supply voltage 51
IDD
Su
pp
ly current
vs Suppl
y
volta
g
e 52
I
DD
Supply
current
yg
vs Free-air temperature 53
SR
Slew rate
vs Supply volta
g
e 54
SR
Slew
rate
yg
vs Free-air temperature 55
Bias-select current vs Supply voltage 56
VO(PP) Maximum peak-to-peak output voltage vs Frequency 57
B1
Unity gain bandwidth
vs Free-air temperature 58
B
1
Unity
-
gain
bandwidth
vs Supply voltage 59
vs Suppl
y
volta
g
e 62
φmPhase margin
vs
Su ly
voltage
vs Free-air temperature
62
63
φm
g
vs Capacitive load 64
VnEquivalent input noise voltage vs Frequency 65
Phase shift vs Frequency 60, 61
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 34
5
0
Percentage of Units %
VIO Input Offset Voltage mV 543210 1 2 3 4
10
20
30
40
50
60
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎ
N Package
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
612 Amplifiers Tested From 6 Wafer Lots
Figure 35
60
50
40
30
20
10
4321012345
VIO Input Offset Voltage mV
Percentage of Units %
05
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
ÎÎÎÎÎÎÎÎÎÎÎÎ
612 Amplifiers Tested From 6 Wafer Lots
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
ÎÎÎÎ
N Package
Figure 36
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
60
50
40
30
20
10
0
10 810
αVIO Temperature Coefficient µV/°C
Percentage of Units %
6 4 20 246 8
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
224 Amplifiers Tested From 6 Water Lots
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VDD = 5 V
TA = 25°C to 125°C
P Package
Outliers:
(1) 33.0 µV/°C
Figure 37
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
20
60
50
40
30
10
0
10 8 6 4 20 246 810
αVIO Temperature Coefficient µV/°C
Percentage of Units %
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
224 Amplifiers Tested From 6 Water Lots
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VDD = 10 V
TA = 25°C to 125°C
P Package
Outliers:
(1) 34.6 µV/°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 38
0
0
VOH High-Level Output Voltage V
IOH High-Level Output Current mA 10
5
2 4 6 8
1
2
3
4
TA = 25°C
VID = 100 mV
VDD = 5 V
VDD = 4 V
VDD = 3 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁÁ
ÁÁÁ
VOH
Figure 39
0
0
IOH High-Level Output Current mA 40
16
10 20 30
2
4
6
8
10
12
14
VDD = 16 V
VDD = 10 V
VID = 100 mV
TA = 25°C
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
35 25 15 5
VOH High-Level Output Voltage V
ÁÁÁ
ÁÁÁ
VOH
Figure 40
0VDD Supply Voltage V 162 4 6 8 10 12 14
14
12
10
8
6
4
2
16
0
VID = 100 mV
RL = 10 k
TA = 25°C
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
VOH High-Level Output Voltage V
ÁÁÁ
ÁÁÁ
ÁÁÁ
VOH
Figure 41
1.7
1.8
1.9
2
2.1
2.2
2.3
1007550200 25 50
VDD 1.6
125
TA Free-Air Temperature °C
2.4
75
IOH = 5 mA
VID = 100 mA
VDD = 5 V
VDD = 10 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOH High-Level Output Voltage V
ÁÁ
ÁÁ
VOH
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 42
0
300
VIC Common-Mode Input Voltage V 4
700
1 2 3
400
500
600
TA = 25°C
IOL = 5 mA
VDD = 5 V
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
650
550
450
350
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
VOL
ÎÎÎÎ
VID = 1 V
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VID = 100 mV
Figure 43
250 0VIC Common-Mode Input Voltage V
300
350
400
450
500
246810
VDD = 10 V
IOL= 5 mA
TA = 25°C
VID = 1 V
VID = 2.5 V
VID = 100 mV
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
VOL Low-Level Output Voltage mV
ÁÁÁ
ÁÁÁ
VOL
97531
Figure 44
0VID Differential Input Voltage V 10 2 4 6 8
800
700
600
500
400
300
200
100
0
VDD = 5 V
VDD = 10 V
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
VOL
1 3 5 7 9
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
IOL = 5 mA
VIC = |VID/2|
TA = 25°C
Figure 45
75
0
TA Free-Air Temperature °C125
900
50 25 0 25 50 75 100
100
200
300
400
500
600
700
800 VIC = 0.5 V
VID = 1 V
IOL = 5 mA
VDD = 5 V
VDD = 10 V
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL Low-Level Output Voltage mV
ÁÁÁ
ÁÁÁ
VOL
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 46
0IOL Low-Level Output Current mA
1
8
01 2 3 4 5 6 7
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
VID = 1 V
VIC = 0.5 V
TA = 25°C
VDD = 3 V
VDD = 4 V
VDD = 5 V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL Low-Level Output Voltage V
ÁÁ
ÁÁ
ÁÁ
VOL
Figure 47
0IOL Low-Level Output Current mA
3
30
051015 20 25
0.5
1
1.5
2
2.5 TA = 25°C
VIC = 0.5 V
VID = 1 V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL Low-Level Output Voltage V
ÁÁ
ÁÁ
VOL
ÎÎÎÎ
ÎÎÎÎ
VDD = 16 V
ÎÎÎÎ
ÎÎÎÎ
VDD = 10 V
Figure 48
0VDD Supply Voltage V
500
16
02 4 6 8 10 12 14
50
100
150
200
250
300
350
400
450 TA = 55°C
40°C
0°C
25°C
70°C
85°C
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
ÎÎÎÎ
TA = 125°C
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 100 k
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification V/mV
Figure 49
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
450
400
350
300
250
200
150
100
50
10075502502550
0125
500
TA Free-Air Temperature °C
75
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 5 V
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 100 k
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification V/mV
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 50
0.1 125
10000
45 65 85 105
1
10
100
1000
25 TA Free-Air Temperature °C
INPUT BIAS CURRENT AND INPUT OFFSET
CURRENT
vs
FREE-AIR TEMPERATURE
115957555
35
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VDD = 10 V
VIC = 5 V
See Note A
ÎÎ
IIB
ÎÎÎ
ÎÎÎ
IIO
IIB and IIO Input Bias and
IB
IIIO
Input Offset Currents pA
NOTE A: The typical values of input bias current and input offset
current below 5 pA were determined mathematically.
Figure 51
MAXIMUM INPUT VOLTAGE
vs
SUPPLY VOLTAGE
0VDD Supply Voltage V
16
16
0246 8 10 12 14
2
4
6
8
10
12
14
ÎÎÎÎ
TA = 25°C
VI Maximum Input Voltage V
VI
Figure 52
IDD Supply Current mA
VDD Supply Voltage V
VO = VDD/2
No Load TA = 55°C
0°C
25°C
70°C
125°C
0
400
16
02 4 6 8 10 12 14
50
100
150
200
250
300
350
40°C
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
ÁÁÁ
ÁÁÁ
IDD
Figure 53
75 TA Free-Air Temperature °C
250
125
050 25 0 25 50 75 100
25
50
75
100
125
150
175
200
225
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
IDD Supply Current mA
ÁÁ
ÁÁ
IDD
ÁÁÁÁÁ
ÁÁÁÁÁ
No Load
VO = VDD/2
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 54
0
SR Slew Rate V/
VDD Supply Voltage V
0.9
16
0.3 2 4 6 8 10 12 14
0.4
0.5
0.6
0.7
0.8
SLEW RATE
vs
SUPPLY VOLTAGE
sµ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
CL = 20 pF
RL = 100 k
VI(PP) = 1 V
AV = 1
See Figure 99
TA = 25°C
Figure 55
75 TA Free-Air Temperature °C
0.9
125
0.2 50 25 0 25 50 75 100
0.3
0.4
0.5
0.6
0.7
0.8
SLEW RATE
vs
FREE-AIR TEMPERATURE
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
RL = 10 k
AV = 1
See Figure 99
CL = 20 pF
SR Slew Rate V/ sµ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VI(PP) = 5.5 V
VDD = 10 V
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VDD = 10 V
VI(PP) = 1 V
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
VDD = 5 V
VI(PP) = 2.5 V
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎÎ
VI(PP) = 1 V
VDD = 5 V
Figure 56
0
Bias-Select Current nA
VDD Supply Voltage V
300
16
02 4 6 8 101214
30
60
90
120
150
180
210
240
270
BIAS-SELECT CURRENT
vs
SUPPLY VOLTAGE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VI(SEL) = 1/2 VDD
TA = 25°C
Figure 57
1f Frequency kHz
10
1000
0
1
2
3
4
5
6
7
8
9
10 100
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁ
ÁÁÁÁ
RL = 100 k
See Figure 99
ÎÎÎÎ
ÎÎÎÎ
VDD = 10 V
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 55°C
TA = 25°C
TA = 125°C
Maximum Peak-to-Peak Output Voltage V
VO(PP)
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
35
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 58
800
700
600
500
400
10075502502550
300 125
900
TA Free-Air Temperature °C
B1 Unity-Gain Bandwidth MHz
75
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
See Figure 101
CL = 20 pF
VI = 10 mV
VDD = 5 V
B1
Figure 59
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
750
700
650
600
550
500
450
1412108642
400 16
800
VDD Supply Voltage V
0
VI = 10 mV
CL = 20 pF
TA = 25°C
See Figure 101
B1 Unity-Gain Bandwidth MHz
B1
Phase Shift
Phase Shift
180°
0°
30°
60°
90°
120°
150°
106
105
104
103
102
101
1
100 K101 k10010
0.1 1 M
f Frequency Hz
1
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VDD = 5 V
RL = 100 k
TA = 25°C
107
ÎÎÎ
ÎÎÎ
AVD
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD V oltage Amplification
Figure 60
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
36 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
1f Frequency Hz 1 M
0.1 10 100 1 k 10 k 100 k
1
101
102
103
104
105
106
150°
120°
90°
60°
30°
0°
180°
Phase Shift
ÎÎÎÎ
AVD
Phase Shift
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
107
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
RL = 100 k
ÎÎÎÎÎ
VDD = 10 V
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD V oltage Amplification
Figure 61
Figure 62
0
38°
m Phase Margin
VDD Supply Voltage V 16
50°
2 4 6 8 10 12 14
40°
42°
44°
46°
48°See Figure 100
TA = 25°C
CL = 20 pF
VI = 10 mV
PHASE MARGIN
vs
SUPPLY VOLTAGE
ÁÁ
ÁÁ
ÁÁ
m
φ
Figure 63
75
35°
TA Free-Air Temperature °C125
45°
50 25 0 25 50 75 100
37°
39°
41°
43°
VDD = 5 V
VI = 10 mV
CL = 20 pF
See Figure 100
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
m Phase Margin
ÁÁ
ÁÁ
ÁÁ
m
φ
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
37
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (MEDIUM-BIAS MODE)
Figure 64
0
28°
CL Capacitive Load pF 100
44°
20 40 60 80
30°
32°
34°
36°
38°
40°
42°VDD = 5 V
VI = 10 mV
TA = 25°C
See Figure 100
PHASE MARGIN
vs
CAPACITIVE LOAD
m Phase Margin
ÁÁ
ÁÁ
m
φ
Figure 65
1
0
Vn Equivalent Input Noise Voltage nV/Hz
f Frequency Hz 1000
300
50
100
150
200
250
10 100
See Figure 99
TA = 25°C
RS = 20
VDD = 5 V
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn
ÁÁÁ
ÁÁÁ
ÁÁÁ
nV/ Hz
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
38 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LOW-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271C, TLC271AC, TLC271BC
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
A
MIN TYP MAX MIN TYP MAX
TLC271C
25°C 1.1 10 1.1 10
TLC271C
VO=14V
Full range 12 12
VIO
In
p
ut offset voltage
TLC271AC
VO
=
1
.
4
V
,
V
IC
= 0 V, 25°C 0.9 5 0.9 5
mV
V
IO
Input
offset
voltage
TLC271AC
IC ,
RS = 50 ,
R1M
Full range 6.5 6.5
mV
TLC271BC
RI = 1 M25°C 0.24 2 0.26 2
TLC271BC
Full range 3 3
αVIO Average temperature coef ficient of
input offset voltage 25°C to
70°C1.1 1 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 p
A
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 70°C 7 300 8 300
pA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 p
A
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 70°C 40 600 50 600
pA
VICR
Common-mode input 25°C0.2
to
4
0.3
to
4.2
0.2
to
9
0.3
to
9.2 V
V
ICR voltage range (see Note 5) Full range 0.2
to
3.5
0.2
to
8.5 V
V 100 V
25°C 3.2 4.1 8 8.9
VOH High-level output voltage VID = 100 mV,
RL=1M
0°C 3 4.1 7.8 8.9 V
RL=
1
M
70°C 3 4.2 7.8 8.9
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
0°C 0 50 0 50 mV
IOL
=
0
70°C 0 50 0 50
L i l diff ti l
R1M
25°C 50 520 50 870
AVD Large-signal dif ferential
voltage am
p
lification
RL= 1 MΩ,
See Note 6
0°C 50 700 50 1030 V/mV
voltage
am lification
See
Note
6
70°C 50 380 50 660
25°C 65 94 65 97
CMRR Common-mode rejection ratio VIC = VICRmin 0°C 60 95 60 97 dB
70°C 60 95 60 97
S l lt j ti ti
V 5Vt 10V
25°C 70 97 70 97
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
0°C 60 97 60 97 dB
(VDD/VIO)
VO
=
1
.
4
V
70°C 60 98 60 98
II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD 25°C 65 95 nA
V
O
= V
DD
/2
,
25°C 10 17 14 23
IDD Supply current
VO
VDD/2,
VIC = VDD/2,
Nl d
0°C 12 21 18 33 µA
No load 70°C 8 14 11 20
Full range is 0°C to 70°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
39
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LOW-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271I, TLC271AI, TLC271BI
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
A
MIN TYP MAX MIN TYP MAX
TLC271I
25°C 1.1 10 1.1 10
TLC271I
VO=14V
Full range 13 13
VIO
In
p
ut offset voltage
TLC271AI
VO
=
1
.
4
V
,
V
IC
= 0 V, 25°C 0.9 5 0.9 5
mV
V
IO
Input
offset
voltage
TLC271AI
IC ,
RS = 50 ,
R1M
Full range 7 7
mV
TLC271BI
RL = 1 M25°C 0.24 2 0.26 2
TLC271BI
Full range 3.5 3.5
αVIO Average temperature coef ficient
of input offset voltage 25°C to
85°C1.1 1 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 p
A
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 85°C 24 1000 26 1000
pA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 p
A
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 85°C 200 2000 220 2000
pA
VICR
Common-mode input 25°C0.2
to
4
0.3
to
4.2
0.2
to
9
0.3
to
9.2 V
V
ICR voltage range (see Note 5) Full range 0.2
to
3.5
0.2
to
8.5 V
V 100 V
25°C 3 4.1 8 8.9
VOH High-level output voltage VID = 100 mV,
RL=1M
40°C 3 4.1 7.8 8.9 V
RL=
1
M
85°C 3 4.2 7.8 8.9
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
40°C 0 50 0 50 mV
IOL
=
0
85°C 0 50 0 50
L i l diff ti l
R1M
25°C 50 520 50 870
AVD Large-signal dif ferential
voltage am
p
lification
RL= 1 M
See Note 6
40°C 50 900 50 1550 V/mV
voltage
am lification
See
Note
6
85°C 50 330 50 585
25°C 65 94 65 97
CMRR Common-mode rejection ratio VIC = VICRmin 40°C 60 95 60 97 dB
85°C 60 95 60 98
S l lt j ti ti
V 5Vt 10V
25°C 70 97 70 97
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
40°C 60 97 60 97 dB
(VDD/VIO)
VO
=
1
.
4
V
85°C 60 98 60 98
II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD 25°C 65 95 nA
V
O
= V
DD
/2
,
25°C 10 17 14 23
IDD Supply current
VO
VDD/2,
VIC = VDD/2,
Nl d
40°C 16 27 25 43 µA
No load 85°C 17 13 10 18
Full range is 40 to 85°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
40 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LOW-BIAS MODE
electrical characteristics at specified free-air temperature (unless otherwise noted)
TEST
TLC271M
PARAMETER
TEST
CONDITIONS
TA
VDD = 5 V VDD = 10 V UNIT
CONDITIONS
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
VO = 1.4 V,
VIC = 0 V, 25°C 1.1 10 1.1 10
mV
V
IO
Input
offset
voltage
RS = 50 ,
RL = 1 MFull range 12 12
mV
αVIO Average temperature coef ficient
of input offset voltage 25°C to
125°C1.4 1.4 µV/°C
IIO
In
p
ut offset current (see Note 4)
V
O
= V
DD
/2, 25°C 0.1 60 0.1 60 pA
I
IO
Input
offset
current
(see
Note
4)
ODD
,
VIC = VDD/2 125°C 1.4 15 1.8 15 nA
IIB
In
p
ut bias current (see Note 4)
V
O
= V
DD
/2, 25°C 0.6 60 0.7 60 pA
I
IB
Input
bias
current
(see
Note
4)
ODD
,
VIC = VDD/2 125°C 9 35 10 35 nA
VICR
Common-mode input 25°C0
to
4
0.3
to
4.2
0
to
9
0.3
to
9.2 V
V
ICR voltage range (see Note 5) Full range 0
to
3.5
0
to
8.5 V
V 100 V
25°C 3.2 4.1 8 8.9
VOH High-level output voltage VID = 100 mV,
RL=1M
55°C 3 4.1 7.8 8.8 V
RL=
1
M
125°C 3 4.2 7.8 9
V 100 V
25°C 0 50 0 50
VOL Low-level output voltage VID = 100 mV,
IOL =0
55°C 0 50 0 50 mV
IOL
=
0
125°C 0 50 0 50
L i l diff ti l
R1M
25°C 50 520 50 870
AVD Large-signal dif ferential
voltage am
p
lification
RL= 1 MΩ,
See Note 6
55°C 25 1000 25 1775 V/mV
voltage
am lification
See
Note
6
125°C 25 200 25 380
25°C 65 94 65 97
CMRR Common-mode rejection ratio VIC = VICRmin 55°C 60 95 60 97 dB
125°C 60 85 60 91
S l lt j ti ti
V 5Vt 10V
25°C 70 97 70 97
kSVR Supply-voltage rejection ratio
(VDD/VIO)
VDD = 5 V to 10 V
VO=14V
55°C 60 97 60 97 dB
(VDD/VIO)
VO
=
1
.
4
V
125°C 60 98 60 98
II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD 25°C 65 95 nA
V
O
= V
DD
/2
,
25°C 10 17 14 23
IDD Supply current
VO
VDD/2,
VIC = VDD/2,
Nl d
55°C 17 30 28 48 µA
No load 125°C 7 12 9 15
Full range is 55°C to 125°C.
NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.
5. This range also applies to each input individually.
6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
41
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LOW-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC271C, TLC271AC,
TLC271BC UNIT
A
MIN TYP MAX
25°C 0.03
VI
(
PP
)
= 1 V 0°C 0.04
SR
Slew rate at unity gain
RL = 1 M,
CL=20
p
F
()
70°C 0.03
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.03
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 0°C 0.03
()
70°C 0.02
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 68 nV/Hz
VV
C20F
25°C 5
BOM Maximum output-swing bandwidth VO = VOH,
RL=1M
CL = 20 pF,
See Figure 98
0°C 6 kHz
RL
=
1
M
,
See
Figure
98
70°C 4.5
V10V
C20F
25°C 85
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 0°C100 kHz
See
Figure
100
70°C 65
V10mV
fB
25°C 34°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
0°C 36°
CL
=
20
F
,
See
Figure
100
70°C 30°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC271C, TLC271AC,
TLC271BC UNIT
A
MIN TYP MAX
25°C 0.05
VI(PP) = 1 V 0°C 0.05
SR
Slew rate at unity gain
RL = 1 M,
CL=20
p
F
()
70°C 0.04
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.04
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 0°C 0.05
()
70°C 0.04
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 68 nV/Hz
VV
C20F
25°C 1
BOM Maximum output-swing bandwidth VO = VOH,
RL=1M
CL = 20 pF,
See Figure 98
0°C 1.3 kHz
RL
=
1
M
,
See
Figure
98
70°C 0.9
V10mV
C20F
25°C110
B1Unity-gain bandwidth
V
I =
10
m
V
,
See Figure 100
CL = 20 pF, 0°C125 kHz
See
Figure
100
70°C 90
V10mV
fB
25°C 38°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
0°C 40°
CL
=
20
F
,
See
Figure
100
70°C 34°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
42 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LOW-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLC271I, TLC271AI,
TLC271BI UNIT
A
MIN TYP MAX
25°C 0.03
VI
(
PP
)
= 1 V 40°C 0.04
SR
Slew rate at unity gain
RL = 1 M,
CL=20
p
F
()
85°C 0.03
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.03
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 40°C 0.04
()
85°C 0.02
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 68 nV/Hz
VV
C20F
25°C 5
BOM Maximum output-swing bandwidth VO = VOH,
RL=1M
CL = 20 pF,
See Figure 98
40°C 7 kHz
RL
=
1
M
,
See
Figure
98
85°C 4
V10V
C20F
25°C 85
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 40°C130 MHz
See
Figure
100
85°C 55
V10mV
fB
25°C 34°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
40°C 38°
CL
=
20
F
,
See
Figure
100
85°C 28°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER TEST CONDITIONS TA
TLC271C, TLC271AC,
TLC271BC UNIT
A
MIN TYP MAX
25°C 0.05
VI(PP) = 1 V 40°C 0.06
SR
Slew rate at unity gain
RL = 1 M,
CL=20
p
F
()
85°C 0.03
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.04
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 40°C 0.05
()
85°C 0.03
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 68 nV/Hz
VV
C20F
25°C 1
BOM Maximum output-swing bandwidth VO = VOH,
RL=1M
CL = 20 pF,
See Figure 98
40°C 1.4 kHz
RL
=
1
M
,
See
Figure
98
85°C 0.8
V10V
C20F
25°C110
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 40°C155 MHz
See
Figure
100
85°C 80
V10mVl
fB
25°C 38°
φmPhase margin
V
I =
10
m
V
,
l
CL=20
p
F
f
=
B
1,
See Figure 100
40°C 42°
CL
=
20
F
,
See
Figure
100
85°C 32°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
43
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
LOW-BIAS MODE
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLC271M
UNIT
PARAMETER
TEST
CONDITIONS
T
AMIN TYP MAX
UNIT
25°C 0.03
VI
(
PP
)
= 1 V 55°C 0.04
SR
Slew rate at unity gain
RL = 1 M,
CL=20
p
F
()
125°C 0.02
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.03
V/
µ
s
See
Figure
98
VI
(
PP
)
= 2.5 V 55°C 0.04
()
125°C 0.02
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 68 nV/Hz
VV
C20F
25°C 5
BOM Maximum output-swing bandwidth VO = VOH,
RL=1M
CL = 20 pF,
See Figure 98
55°C 8 kHz
RL
=
1
M
,
See
Figure
98
125°C 3
V10V
C20F
25°C 85
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 55°C140 kHz
See
Figure
100
125°C 45
V10mV
fB
25°C 34°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
55°C 39°
CL
=
20
F
,
See
Figure
100
125°C 25°
operating characteristics at specified free-air temperature, VDD = 10 V
PARAMETER
TEST CONDITIONS
TA
TLC271M
UNIT
PARAMETER
TEST
CONDITIONS
T
AMIN TYP MAX
UNIT
25°C 0.05
VI
(
PP
)
= 1 V 55°C 0.06
SR
Slew rate at unity gain
RL = 1 M,
CL=20
p
F
()
125°C 0.03
V/µs
SR
Slew
rate
at
unity
gain
C
L =
20
pF
,
See Fi
g
ure 98 25°C 0.04
V/
µ
s
See
Figure
98
VI
(
PP
)
= 5.5 V 55°C 0.06
()
125°C 0.03
VnEquivalent input noise voltage f = 1 kHz,
See Figure 99 RS = 20 ,25°C 68 nV/Hz
VV
C20F
25°C 1
BOM Maximum output-swing bandwidth VO = VOH,
RL=1M
CL = 20 pF,
See Figure 98
55°C 1.5 kHz
RL
=
1
M
,
See
Figure
98
125°C 0.7
V10V
C20F
25°C110
B1Unity-gain bandwidth VI = 10 mV,
See Figure 100
CL = 20 pF, 55°C165 kHz
See
Figure
100
125°C 70
V10mV
fB
25°C 38°
φmPhase margin
V
I =
10
m
V
,
CL=20
p
F
f
=
B
1,
See Figure 100
55°C 43°
CL
=
20
F
,
See
Figure
100
125°C 29°
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
44 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Table of Graphs
FIGURE
VIO Input of fset voltage Distribution 66, 67
αVIO Temperature coefficient Distribution 68, 69
vs Hi
g
h-level output current 70
,
71
VOH High-level output voltage
vs
High level
out ut
current
vs Supply voltage
70,
71
72
OH
gg
yg
vs Free-air temperature 73
vs Common
-
mode in
p
ut voltage
74, 75
VOL
Low level out
p
ut voltage
vs
Common mode
in ut
voltage
vs Differential input volta
g
e
74
,
75
76
V
OL
Low
-
level
output
voltage
g
vs Free-air temperature 77
vs Low-level output current 78, 79
vs Suppl
y
volta
g
e 80
AVD Large-signal dif ferential voltage amplification
vs
Su ly
voltage
vs Free-air temperature
80
81
VD
gg g
vs Frequency 92, 93
IIB Input bias current vs Free-air temperature 82
IIO Input offset current vs Free-air temperature 82
VIMaximum input voltage vs Supply voltage 83
IDD
Su
pp
ly current
vs Suppl
y
volta
g
e 84
I
DD
Supply
current
yg
vs Free-air temperature 85
SR
Slew rate
vs Supply volta
g
e 86
SR
Slew
rate
yg
vs Free-air temperature 87
Bias-select current vs Supply voltage 88
VO(PP) Maximum peak-to-peak output voltage vs Frequency 89
B1
Unity gain bandwidth
vs Free-air temperature 90
B
1
Unity
-
gain
bandwidth
vs Supply voltage 91
vs Suppl
y
volta
g
e 94
φmPhase margin
vs
Su ly
voltage
vs Free-air temperature
94
95
φm
g
vs Capacitive load 96
VnEquivalent input noise voltage vs Frequency 97
Phase shift vs Frequency 92, 93
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
45
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 66
5
0
Percentage of Units %
VIO Input Offset Voltage mV 5
70
432101234
10
20
30
40
50
60
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
VDD = 5 V
TA = 25°C
P Package
ÎÎÎÎÎÎÎÎÎÎÎÎ
905 Amplifiers Tested From 6 Wafer Lots
Figure 67
60
50
40
30
20
10
432101234
70
5
VIO Input Offset Voltage mV
Percentage of Units %
05
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
P Package
TA = 25°C
VDD = 10 V
905 Amplifiers Tested From 6 Wafer Lots
Figure 68
60
50
40
30
20
10
864202468
70
10
Percentage of Units %
0
10
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient µV/°C
(1) 12.1 µV/°C
(1) 19.2 µV/°C
Outliers:
P Package
TA = 25°C to 125°C
VDD = 5 V
356 Amplifiers Tested From 8 Wafer Lots
Figure 69
10
0
Percentage of Units %
αVIO Temperature Coefficient µV/°C10
70
86420 2 4 6 8
10
20
30
40
50
60
DISTRIBUTION OF TLC271
INPUT OFFSET VOLTAGE
TEMPERATURE COEFFICIENT
356 Amplifiers Tested From 8 Wafer Lots
VDD = 10 V
P Package
Outliers:
(1) 18.7 µV/°C
(1) 11.6 µV/°C
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
TA = 25°C to 125°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
46 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 70
0
0
VOH High-Level Output Voltage V
IOH High-Level Output Current mA 10
5
2468
1
2
3
4
VDD = 5 V
VDD = 3 V
VDD = 4 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁÁ
ÁÁÁ
ÁÁÁ
VOH
TA = 25°C
VID = 100 mV
Figure 71
0
0
IOH High-Level Output Current mA 40
16
10 20 30
2
4
6
8
10
12
14 TA = 25°C
VID = 100 mV
VDD = 16 V
VDD = 10 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
3525155
VOH High-Level Output Voltage V
ÁÁ
ÁÁ
ÁÁ
VOH
Figure 72
0
0
VDD Supply Voltage V 16
16
2 4 6 8 10 12 14
2
4
6
8
10
12
14 VID = 100 mV
RL = 1 M
TA = 25°C
HIGH-LEVEL OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
VOH High-Level Output Voltage V
ÁÁ
ÁÁ
ÁÁ
VOH
Figure 73
75
2.4
TA Free-Air Temperature °C125
1.6
50 25 0 25 50 75 100
2.3
2.2
2.1
2
1.9
1.8
1.7
IOH = 5 mA
VID = 100 mV
VDD = 5 V
VDD = 10 V
HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOH High-Level Output Voltage V
ÁÁ
ÁÁ
ÁÁ
VOH
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
47
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 74
0
300
VOL Low-Level Output Voltage mV
VIC Common-Mode Input Voltage V 4
700
123
400
500
600
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
650
550
450
350
ÁÁ
ÁÁ
VOL
TA = 25°C
IOL = 5 mA
VDD = 5 V
VID = 1 V
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VID = 100 mV
Figure 75
250 0VIC Common-Mode Input Voltage V
300
350
400
450
500
246810
LOW-LEVEL OUTPUT VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
13 579
VOL Low-Level Output Voltage mV
ÁÁÁ
ÁÁÁ
VOL
VDD = 10 V
IOL = 5 mA
TA = 25°C
VID = 1 V
VID = 2.5 V
VID = 100 mV
Figure 76
LOW-LEVEL OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
0VID Differential Input Voltage V 102468
800
700
600
500
400
300
200
100
013579
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
ÁÁ
VOL
IOL = 5 mA
VIC = VID/2
TA = 25°C
VDD = 10 V
ÎÎÎÎ
ÎÎÎÎ
VDD = 5 V
Figure 77
75
0
TA Free-Air Temperature °C125
900
50 25 0 25 50 75 100
100
200
300
400
500
600
700
800
LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VOL Low-Level Output Voltage mV
ÁÁ
ÁÁ
ÁÁ
VOL
VIC = 0.5 V
VID = 1 V
IOL = 5 mA
ÎÎÎÎÎ
ÎÎÎÎÎ
VDD = 10 V
ÎÎÎÎ
VDD = 5 V
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
48 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 78
0
1
8
01 2 3 4 5 6 7
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 VID = 1 V
VIC = 0.5 V
TA = 25°C
VDD = 3 V
VDD = 4 V
VDD = 5 V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
IOL Low-Level Output Current mA
VOL Low-Level Output Voltage V
ÁÁ
ÁÁ
ÁÁ
VOL
Figure 79
0IOL Low-Level Output Current mA
3
30
05 10 15 20 25
0.5
1
1.5
2
2.5 TA = 25°C
VIC = 0.5 V
VID = 1 V
VDD = 10 V
VDD = 16 V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL Low-Level Output Voltage V
ÁÁ
ÁÁ
VOL
Figure 80
0VDD Supply Voltage V
2000
16
0246 8 10 12 14
200
400
600
800
1000
1200
1400
1600
1800 TA = 55°C
40°C
TA = 0°C
ÎÎÎ
25°C
ÎÎÎ
70°C
ÎÎÎ
85°C
125°C
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
ÁÁ
ÁÁ
ÁÁ
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification V/mV
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 1 M
Figure 81
10075502502550
0125
TA Free-Air Temperature °C
75
VDD = 5 V
VDD = 10 V
1800
1600
1400
1200
1000
800
600
400
200
2000
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
ÁÁ
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification V/mV
ÎÎÎÎÎ
ÎÎÎÎÎ
RL = 1 M
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
49
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 82
0.1 125
10000
45 65 85 105
1
10
100
1000
25 TA Free-Air Temperature °C
INPUT BIAS CURRENT AND INPUT OFFSET
CURRENT
vs
FREE-AIR TEMPERATURE
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
VDD = 10 V
VIC = 5 V
See Note A
35 55 75 95 115
ÎÎ
ÎÎ
IIB
ÎÎ
ÎÎ
IIO
IIB and IIO Input Bias and
IB
IIIO
Input Offset Currents pA
NOTE A: The typical values of input bias current and input offset
current below 5 pA were determined mathematically. Figure 83
0
VDD Supply Voltage V
16
16
0246 8 10 12 14
2
4
6
8
10
12
14
MAXIMUM INPUT VOLTAGE
vs
SUPPLY VOLTAGE
ÎÎÎÎ
ÎÎÎÎ
TA = 25°C
VI Maximum Input Voltage V
VI
Figure 84
TA = 55°C
ÎÎÎ
25°C
70°C
125°C
0
IDD Supply Current mA
VDD Supply Voltage V
45
16
02 4 6 8 10 12 14
5
10
15
20
25
30
35
40
ÎÎÎ
40°C
0°C
No Load
VO = VDD/2
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
ÁÁ
ÁÁ
DD
IAµ
Figure 85
VO = VDD/2
No Load
VDD = 10 V
VDD = 5 V
75 TA Free-Air Temperature °C
30
125
050 25 0 25 50 75 100
5
10
15
20
25
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
IDD Supply Current mA
ÁÁ
ÁÁ
DD
IAµ
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
50 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 86
SR Slew Rate V/s
CL = 20 pF
RL = 1 M
VI(PP) = 1 V
AV = 1
See Figure 98
TA= 25°C
0VDD Supply Voltage V
0.07
16
0.00 2 4 6 8 10 12 14
0.01
0.02
0.03
0.04
0.05
0.06
SLEW RATE
vs
SUPPLY VOLTAGE
sµ
Figure 87
SLEW RATE
vs
FREE-AIR TEMPERATURE
VI(PP) = 5.5 V
VDD = 10 V
VDD = 5 V
VI(PP) = 1 V
VDD = 5 V
VI(PP) = 2.5 V
VDD = 10 V
VI(PP) = 1 V
75 TA Free-Air Temperature °C
0.07
125
0.00 50 25 0 25 50 75 100
0.01
0.02
0.03
0.04
0.05
0.06 CL = 20 pF
RL = 1 M
See Figure 98
AV = 1
SR Slew Rate V/s sµ
Figure 88
0
Bias-Select Current nA
VDD Supply Voltage V
150
16
02 4 6 8 10 12 14
30
60
90
120
TA = 25°C
BIAS-SELECT CURRENT
vs
SUPPLY VOLTAGE
135
105
75
45
15
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VI(SEL) = VDD
Figure 89
0.1 f Frequency kHz
10
100
0
1
2
3
4
5
6
7
8
9
110
VDD = 10 V
VDD = 5 V
ÁÁ
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
See Figure 98
RL = 1 M
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
TA = 125°C
TA = 25°C
TA = 55°C
Maximum Peak-to-Peak Output Voltage V
VO(PP)
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
51
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 90
UNITY-GAIN BANDWIDTH
vs
FREE-AIR TEMPERATURE
VDD = 5 V
VI = 10 mV
CL = 20 pF
See Figure 100
75
B1 Unity-Gain Bandwidth kHz
TA Free-Air Temperature °C
150
125
30 50 25 0 25 50 75 100
50
70
90
110
130
B1
Figure 91
0VDD Supply Voltage V
140
16
50 2468 10 12 14
60
70
80
90
100
110
120
130 TA = 25°C
CL = 20 pF
VI = 10 mV
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
B1 Unity-Gain Bandwidth kHz
B1
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
See Figure 100
1f Frequency Hz 1 M
0.1 10 100 1 k 10 k 100 k
1
101
102
103
104
105
106
150°
120°
90°
60°
30°
0°
180°
Phase Shift
TA = 25°C
RL = 1 M
VDD = 5 V
ÎÎÎ
ÎÎÎ
AVD
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
107
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD V oltage Amplification
Figure 92
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
52 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
VDD = 10 V
RL = 1 M
TA = 25°C
Phase Shift
180°
0°
30°
60°
90°
120°
150°
106
104
103
102
101
1
100 k10 k1 k10010
0.1 1 M
f Frequency Hz
1
105
107
ÎÎÎÎ
AVD
ÎÎÎÎÎ
ÎÎÎÎÎ
Phase Shift
AVD Large-Signal Differential
ÁÁ
ÁÁ
AVD V oltage Amplification
Figure 93
Figure 94
PHASE MARGIN
vs
SUPPLY VOLTAGE
0
m Phase Margin
VDD Supply Voltage V
42°
16
30°2 4 6 8 10 12 14
32°
34°
36°
38°
40°
See Figure 100
VI = 10 mV
TA = 25°C
CL = 20 pF
ÁÁ
ÁÁ
m
φ
Figure 95
See Figure 100
VI = 10 mV
CL = 20 pF
VDD = 5 mV
75 TA Free-Air Temperature °C
40°
125
20°50 25 0 25 50 75 100
24°
28°
32°
36°
PHASE MARGIN
vs
FREE-AIR TEMPERATURE
38°
34°
30°
26°
22°
m Phase Margin
ÁÁ
ÁÁ
m
φ
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
53
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS (LOW-BIAS MODE)
Figure 96
VDD = 5 mV
TA = 25°C
See Figure 100
VI = 10 mV
0CL Capacitive Load pF
37°
100
25°20 40 60 80
27°
29°
31°
33°
35°
PHASE MARGIN
vs
CAPACITIVE LOAD
10 30 50 70 90
m Phase Margin
ÁÁ
ÁÁ
m
φ
Figure 97
75
1
VN Equivalent Input Noise Voltage nV/Hz
f Frequency Hz
200
1000
0
25
50
100
125
150
175
10 100
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
Vn
ÁÁ
ÁÁ
ÁÁ
ÁÁ
nV/ Hz
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
TA = 25°C
RS = 20
VDD = 5 V
ÎÎÎÎÎ
See Figure 99
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
54 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
single-supply versus split-supply test circuits
Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests
often present some inconvenience since the input signal, in many cases, must be offset from ground. This
inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative
rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives
the same result.
+
VDD
CLRL
VO
VIVI
VO
RL
CL
+
VDD+
VDD
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 98. Unity-Gain Amplifier
VDD
+
VDD+
+
1/2 VDD
20
VO
2 k
20
VDD
20 20
2 k
VO
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 99. Noise-Test Circuit
100 VDD
+
10 k
VO
CL
1/2 VDD
VIVI
CL
100
VO
10 k
+
VDD+
VDD
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
Figure 100. Gain-of-100 Inverting Amplifier
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
55
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
input bias current
Because of the high input impedance of the TLC271 operational amplifiers, attempts to measure the input bias
current can result in erroneous readings. The bias current at normal room ambient temperature is typically less
than 1 pA, a value that is easily exceeded by leakages on the test socket. T wo suggestions are offered to avoid
erroneous measurements:
1. Isolate the device from other potential leakage sources. Use a grounded shield around and between the
device inputs (see Figure 101). Leakages that would otherwise flow to the inputs are shunted away.
2. Compensate for the leakage of the test socket by actually performing an input bias current test (using a
picoammeter) with no device in the test socket. The actual input bias current can then be calculated by
subtracting the open-socket leakage readings from the readings obtained with a device in the test socket.
One word of caution: many automatic testers as well as some bench-top operational amplifier testers us the
servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage
drop across the series resistor is measured and the bias current is calculated). This method requires that a
device be inserted into the test socket to obtain a correct reading; therefore, an open-socket reading is not
feasible using this method.
V = VIC
41
58
Figure 101. Isolation Metal Around Device inputs (JG and P packages)
low-level output voltage
To obtain low-supply-voltage operation, some compromise is necessary in the input stage. This compromise
results in the device low-level output being dependent on both the common-mode input voltage level as well
as the differential input voltage level. When attempting to correlate low-level output readings with those quoted
in the electrical specifications, these two conditions should be observed. If conditions other than these are to
be used, please refer to the Typical Characteristics section of this data sheet.
input offset voltage temperature coefficient
Erroneous readings often result from attempts to measure temperature coefficient of input of fset voltage. This
parameter is actually a calculation using input offset voltage measurements obtained at two different
temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device
and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input
offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the
moisture also covers the isolation metal itself, thereby rendering it useless. It is suggested that these
measurements be performed at temperatures above freezing to minimize error.
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
56 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
full-power response
Full-power response, the frequency above which the amplifier slew rate limits the output voltage swing, is often
specified two ways: full-linear response and full-peak response. The full-linear response is generally
measuredby monitoring the distortion level of the output while increasing the frequency of a sinusoidal input
signal until the maximum frequency is found above which the output contains significant distortion. The full-peak
response is defined as the maximum output frequency, without regard to distortion, above which full
peak-to-peak output swing cannot be maintained.
Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified
in this data sheet and is measured using the circuit of Figure 98. The initial setup involves the use of a sinusoidal
input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is
increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same
amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained
(Figure 102). A square wave is used to allow a more accurate determination of the point at which the maximum
peak-to-peak output is reached.
(a) f = 100 Hz (b) BOM > f > 100 Hz (c) f = BOM (d) f > BOM
Figure 102. Full-Power-Response Output Signal
test time
Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume,
short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET
devices, and require longer test times than their bipolar and BiFET counterparts. The problem becomes more
pronounced with reduced supply levels and lower temperatures.
APPLICATION INFORMATION
single-supply operation
While the TLC271 performs well using dual power
supplies (also called balanced or split supplies),
the design is optimized for single-supply
operation. This includes an input common mode
voltage range that encompasses ground as well
as an output voltage range that pulls down to
ground. The supply voltage range extends down
to 3 V (C-suffix types), thus allowing operation
with supply levels commonly available for TTL and
HCMOS; however, for maximum dynamic range,
16-V single-supply operation is recommended.
+
R4
VO
VDD
R2
R1
VI
Vref R3 C
0.01 µF
Vref
+
VDD R3
R1
)
R3
VO
+
(Vref
*
VI)R4
R2
)
Vref
Figure 103. Inverting Amplifier With Voltage
Reference
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
57
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
single-supply operation (continued)
Many single-supply applications require that a voltage be applied to one input to establish a reference level that
is above ground. A resistive voltage divider is usually sufficient to establish this reference level (see Figure 103).
The low input bias current consumption of the TLC271 permits the use of very large resistive values to
implement the voltage divider, thus minimizing power consumption.
The TLC271 works well in conjunction with digital logic; however, when powering both linear devices and digital
logic from the same power supply, the following precautions are recommended:
1. Power the linear devices from separate bypassed supply lines (see Figure 104); otherwise, the linear device
supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic.
2. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive
decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications.
(b) SEPARATE BYPASSED SUPPLY RAILS (preferred)
(a) COMMON SUPPLY RAILS
Logic
+
Logic Logic Power
Supply
Supply
Power
LogicLogic
+
Logic
OUT
OUT
Figure 104. Common Versus Separate Supply Rails
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
58 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input offset voltage nulling
The TLC271 offers external input offset null control. Nulling of the input off set voltage may be achieved by
adjusting a 25-k potentiometer connected between the offset null terminals with the wiper Connected as
shown in Figure 105. The amount of nulling range varies with the bias selection. In the high-bias mode, the
nulling range allows the maximum offset voltage specified to be trimmed to zero. In low-bias and medium-bias
modes, total nulling may not be possible.
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
25 k
N2
VDD N2
N1 25 k
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
GND
(a) SINGLE SUPPLY (b) SPLIT SUPPLY
+
+
N1
OUTOUT
IN
IN+
IN
IN+
Figure 105. Input Offset Voltage Null Circuit
bias selection
Bias selection is achieved by connecting the bias select pin to one of the three voltage levels (see Figure 106).
For medium-bias applications, R is recommended that the bias select pin be connected to the mid-point
between the supply rails. This is a simple procedure in split-supply applications, since this point is ground. In
single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated. The use
of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line.
However, large-value resistors used in conjunction with a large-value capacitor requires significant time to
charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint may be used
if it is within the voltages specified in the table of Figure 106.
0.01 µF
1 M
VDD
Low
Medium
High
1 M
To BIAS SELECT
BIAS MODE BIAS-SELECT VOLTAGE
(single supply)
Low
Medium
High
VDD
1 V to VDD 1 V
GND
Figure 106. Bias Selection for Single-Supply Applications
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
59
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
input characteristics
The TLC271 is specified with a minimum and a maximum input voltage that, if exceeded at either input, could
cause the device to malfunction. Exceeding this specified range is a common problem, especially in
single-supply operation. Note that the lower range limit includes the negative rail, while the upper range limit
is specified at VDD 1 V at TA = 25°C and at VDD 1.5 V at all other temperatures.
The use of the polysilicon-gate process and the careful input circuit design gives the TLC271 very good input
offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS
devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant
implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the
polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset
voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of operation.
Because of the extremely high input impedance and resulting low bias current requirements, the TLC271 is well
suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can
easily exceed bias current requirements and cause a degradation in device performance. It is good practice to
include guard rings around inputs (similar to those of Figure 101 in the Parameter Measurement Information
section). These guards should be driven from a low-impedance source at the same voltage level as the
common-mode input (see Figure 107).
The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation.
noise performance
The noise specifications in operational amplifier circuits are greatly dependent on the current in the first-stage
differential amplifier . The low input bias current requirements of the TLC271 results in a very low noise current,
which is insignificant in most applications. This feature makes the devices especially favorable over bipolar
devices when using values of circuit impedance greater than 50 k, since bipolar devices exhibit greater noise
currents.
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
+
VI
VOVO
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
+
VO
VI
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
VI
(a) NONINVERTING AMPLIFIER (b) INVERTING AMPLIFIER (c) UNITY-GAIN AMPLIFIER
Figure 107. Guard-Ring Schemes
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
60 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
feedback
Operational amplifier circuits almost always
employ feedback, and since feedback is the first
prerequisite for oscillation, a little caution is
appropriate. Most oscillation problems result from
driving capacitive loads and ignoring stray input
capacitance. A small-value capacitor connected
in parallel with the feedback resistor is an effective
remedy (see Figure 108). The value of this
capacitor is optimized empirically.
electrostatic discharge protection
The TLC271 incorporates an internal electrostatic-discharge (ESD) protection circuit that prevents functional
failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2. Care should be exercised,
however, when handling these devices as exposure to ESD may result in the degradation of the device
parametric performance. The protection circuit also causes the input bias currents to be temperature dependent
and have the characteristics of a reverse-biased diode.
latch-up
Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLC271 inputs
and output were designed to withstand 100-mA surge currents without sustaining latchup; however,
techniques should be used to reduce the chance of latch-up whenever possible. Internal protection diodes
should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage
by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply
transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails
as close to the device as possible.
The current path established if latch-up occurs is usually between the positive supply rail and ground and can
be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply
voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the
forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of
latch-up occurring increases with increasing temperature and supply voltages.
output characteristics
The output stage of the TLC271 is designed to
sink and source relatively high amounts of current
(see Typical Characteristics). If the output is
subjected to a short-circuit condition, this high
current capability can cause device damage
under certain conditions. Output current capability
increases with supply voltage.
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
Figure 108. Compensation for Input
Capacitance
VO
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
2.5 V
VO
CL
2.5 V
VITA = 25°C
f = 1 kHz
VI(PP) = 1 V
Figure 109. Test Circuit for Output
Characteristics
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
61
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
output characteristics (continued)
All operating characteristics of the TLC271 were measured using a 20-pF load. The devices drive higher
capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower
frequencies, thereby causing ringing, peaking, or even oscillation (see Figures 110, 111, and 112). In many
cases, adding some compensation in the form of a series resistor in the feedback loop alleviates the problem.
(a) CL = 20 pF, RL = NO LOAD (b) CL = 130 pF, RL = NO LOAD (c) CL = 150 pF, RL = NO LOAD
Figure 110. Effect of Capacitive Loads in High-Bias Mode
(c) CL = 190 pF, RL = NO LOAD
(b) CL = 170 pF, RL = NO LOAD(a) CL = 20 pF, RL = NO LOAD
Figure 111. Effect of Capacitive Loads in Medium-Bias Mode
(a) CL = 20 pF, RL = NO LOAD (b) CL = 260 pF, RL = NO LOAD (c) CL = 310 pF, RL = NO LOAD
Figure 112. Effect of Capacitive Loads in Low-Bias Mode
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
62 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
output characteristics (continued)
Although the TLC271 possesses excellent high-level output voltage and current capability, methods are
available for boosting this capability, if needed. The simplest method involves the use of a pullup resistor (RP)
connected from the output to the positive supply rail (see Figure 113). There are two disadvantages to the use
of this circuit. First, the NMOS pulldown transistor, N4 (see equivalent schematic) must sink a comparatively
large amount of current. In this circuit, N4 behaves like a linear resistor with an on-resistance between
approximately 60 and 180 , depending on how hard the operational amplifier input is driven. With very low
values of RP, a voltage of fset from 0 V at the output occurs. Secondly, pullup resistor RP acts as a drain load
to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the
output current.
RP
+
VDDVO
IF
)
IL
)
IP
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
VI
VDD
RP
VO
R2
R1 RL
IP
IF
IL
IP = Pullup current required
by the operational amplifier
(typically 500 µA)
+
Figure 113. Resistive Pullup to Increase VOH
5 V
BIAS SELECT
0.016 µF
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
Low Pass
High Pass
Band Pass
R = 5 k(3/d-1)
(see Note A)
0.016 µF
BIAS SELECT
5 V
10 k
10 k
10 k5 V
BIAS SELECT
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
VI
5 k
10 k
10 k
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
+
TLC271
+
TLC271
NOTE B: d = damping factor, I/O
Figure 114. State-Variable Filter
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
63
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
output characteristics (continued)
BIAS
SELECT
R1, 100 k
9 V
100 k
C = 0.1 µF
R3, 47 k
10 k
10 k
BIAS SELECT
VO (see Note B)
9 V
VO (see Note A)
R2
9 V
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
FO
+
1
4C(R2)
ƪ
R1
R3
ƫ
+
TLC271
+
TLC271
NOTES: A. VO(PP) = 8 V
B. VO(PP) = 4 V
Figure 115. Single-Supply Function Generator
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
64 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION (HIGH-BIAS MODE)
100 k10 k
5 V
5 V
VI
5 V
VI+
5 V
5 V
10 k95 k
10 k
BIAS
SELECT
BIAS SELECT
BIAS
SELECT
VO
R1, 10 k
(see Note A)
5 V
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
+
TLC271
+
TLC271
NOTE A: CMRR adjustment must be noninductive.
Figure 116. Low-Power Instrumentation Amplifier
fNOTCH
+
1
2
p
RC
BIAS SELECT
5 V
VI
VO
R
10 M
2C
540 pF
10 M
R
C
270 pF C
270 pF
5 M
R/2
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
Figure 117. Single-Supply Twin-T Notch Filter
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
65
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION (HIGH-BIAS MODE)
VI
(see Note A)
1.2 k
4.7 k
0.1 µF
22 k
47 k
0.01 µF
TIS 193
15
0.47 µF
100 k
1 k
BIAS SELECT
20 k
TL431 TIP31
10 k
250 µF,
25 V VO
(see Note B)
110
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
NOTES: A. VI = 3.5 to 15 V
B. VO = 2.0 V, 0 to 1 A
+
Figure 118. Logic-Array Power Supply
BIAS
SELECT 100 k
VO
12 V
N.O.
Reset
0.5 µF
Mylar
H.P.
5082-2835
12 V
BIAS
SELECT
VI
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
Figure 119. Positive-Peak Detector
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
66 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION (MEDIUM-BIAS MODE)
NOTES: A. VO(PP) = 2 V
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
fo
+
1
2
p
R1R2C1C2
Ǹ
R2
68 k
2.2 nF
C2
VO
1N4148
470 k
100 k
C1
2.2 nF
R1
68 k
47 k
BIAS
SELECT
2.5 V
100 k
1 µF
100 k
5 V
+
TLC271
B.
Figure 120. Wein Oscillator
2.5 V
SELECT
BIAS
0.22 µF
100 k
100 k
5 V
0.1 µF
10 k
1 M
0.01 µF1 M
VI
VO
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
Figure 121. Single-Supply AC Amplifier
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
67
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION (MEDIUM-BIAS MODE)
SELECT
BIAS
2.5 V
100 k
1 µF
100 k
100 k
Gain Control
1 M
1 k
10 k
5 V
1 µF
(see Note A)
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
NOTE A: Low to medium impedance dynamic mike
+
+
0.1 µF+
Figure 122. Microphone Preamplifier
SELECT
BIAS
VDD/2
VDD
10 M
VO
VREF
150 pF
100 k
15 nF
SELECT
BIAS
VDD/2
VDD
1 k
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
+
TLC271
NOTES: A. NOTES: VDD = 4 V to 15 V
B. Vref = 0 V to VDD2 V
Figure 123. Photo-Diode Amplifier With Ambient Light Rejection
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
+
TLC271
2N3821
IS
5 V
2.5 V
BIAS
SELECT
R
VI
IS
+
VI
R
NOTES: A. VI = 0 V TO 3 V
B.
Figure 124. Precision Low-Current Sink
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
68 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION (LOW-BIAS MODE)
TLC4066
VDD
BIAS SELECT
VI
90 k
9 k
X1
11B
VDD
VI
S1
S2
C
A
C
A2
X2 2B
1 k
Analog
Switch
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
+
TLC271
AV
Select S1S2
10 100
NOTE A: VDD = 5 V to 12 V
Figure 125. Amplifier With Digital Gain Selection
5 V
500 k
500 k
5 V
500 k
0.1 µF
500 k
VO2
VO1
BIAS
SELECT
BIAS SELECT
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
+
TLC271
Figure 126. Multivibrator
TLC271, TLC271A, TLC271B
LinCMOS PROGRAMMABLE LOW-POWER
OPERATIONAL AMPLIFIERS
SLOS090D NOVEMBER 1987 REVISED MARCH 2001
69
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION (LOW-BIAS MODE)
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
10 k
VO
100 k
BIAS SELECT
20 k
VI
+
TLC271
VDD
NOTE A: VDD = 5 V to 16 V
Figure 127. Full-Wave Rectifier
Set 100 k
VDD
BIAS
SELECT
10 k
100 k
Reset
33
ÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
+
TLC271
NOTE A: VDD = 5 V to 16 V
Figure 128. Set/Reset Flip-Flop
BIAS
SELECT
5 V
0.016 µF
10 k10 k
VO
0.016 µF
VI
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
+
TLC271
NOTE A: Normalized to FC = 1 kHz and RL = 10 k
Figure 129. Two-Pole Low-Pass Butterworth Filter
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC271ACD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271ACDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271ACDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271ACDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271ACP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271ACPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271ACPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271ACPSRG4 ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271BCD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BCDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BCDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BCDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BCP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC271BCPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271BID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271BIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271BIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271CPSR ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CPSRG4 ACTIVE SO PS 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLC271CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLC271ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type
TLC271MDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271MDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLC271MJG OBSOLETE CDIP JG 8 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
PACKAGE OPTION ADDENDUM
www.ti.com 23-May-2012
Addendum-Page 4
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLC271ACDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC271ACPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TLC271AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC271BCDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC271BIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC271CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC271CPSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1
TLC271CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLC271IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLC271MDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLC271ACDR SOIC D 8 2500 340.5 338.1 20.6
TLC271ACPSR SO PS 8 2000 367.0 367.0 38.0
TLC271AIDR SOIC D 8 2500 340.5 338.1 20.6
TLC271BCDR SOIC D 8 2500 340.5 338.1 20.6
TLC271BIDR SOIC D 8 2500 340.5 338.1 20.6
TLC271CDR SOIC D 8 2500 340.5 338.1 20.6
TLC271CPSR SO PS 8 2000 367.0 367.0 38.0
TLC271CPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLC271IDR SOIC D 8 2500 340.5 338.1 20.6
TLC271MDR SOIC D 8 2500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated