May 2009
1
MITSUBISHI HIGH VOLTAGE DIODE MODULE
RM1200DG-66S
HIGH POWER SWITCHING USE
INSULATED TYPE
IF ................................................................ 1200A
VRRM ...................................................... 3300V
High Insulated Type
2-element in a Pack
AlSiC Baseplate
APPLICATION
Traction drives, High Reliability Converters / Inverters, DC choppers
RM1200DG-66S
OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm
High Voltage Diode Module
High Voltage Diode Module
(K) (K)
2
4
(A) (A)
1
3
CIRCUIT DIAGRAM
42
31
6-φ7 MOUNTING HOLES
Screwing depth
min. 16.5
4-M8 NUTS
+1.0
0
48
130
±0.5
57
±0.25
57
±0.25
17
±0.1
44
±0.3
22
±0.3
124
±0.25
140
±0.5
16.5
±0.3
5
±0.15
40.4
±0.5
61.2
±0.5
34.4
±0.5
>PET+PBT<
May 2009
2
MITSUBISHI HIGH VOLTAGE DIODE MODULE
RM1200DG-66S
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS
Symbol Item Conditions UnitRatings
High Voltage Diode Module
High Voltage Diode Module
Typ Max
ELECTRICAL CHARACTERISTICS
Conditions Limits
Note 1. It doesn't include the voltage drop by internal lead resistance.
2. Erec is the integral of 0.1VR
x
0.1Irr
x
dt.
VRM = VRRM
IF = 1200 A
Tj = 25 °C
Tj = 125 °C
Tj = 25 °C
Tj = 125 °C
Repetitive reverse current
Forward voltage (Note 1)
Reverse recovery time
Reverse recovery current
Reverse recovery charge
Reverse recovery energy (Note 2)
5
30
mA
V
µs
A
µC
J/P
3
2.80
2.70
1.0
1600
800
0.9
IRRM
VFM
trr
Irr
Qrr
Erec
VR = 1650 V, IF = 1200 A
di/dt = –4000 A/µs
Ls=100nH, Tj = 125 °C
Symbol Item Min Unit
VRRM
VRSM
VR(DC)
IF
IFSM
I2t
Viso
Ve
Tj
Top
Tstg
Repetitive peak reverse voltage
Non-repetitive peak reverse voltage
Reverse DC voltage
DC forward current
Surge forward current
Current-squared, time integration
Isolation voltage
Partial discharge extinction voltage
Junction temperature
Operating temperature
Storage temperature
Tj = 25 °C
Tj = 25 °C
Tj = 25 °C
TC = 25 °C
Tj = 25 °C start, tw = 8.3 ms
Half sign wave
Tj = 25 °C start, tw = 8.3 ms
Half sign wave
Charged part to the baseplate
RMS sinusoidal, 60Hz 1min.
RMS sinusoidal, 60Hz, QPD 10PC
3300
3300
2200
1200
9600
384
10200
5100
–40 ~ +150
–40 ~ +125
–40 ~ +125
V
V
V
A
A
kA2s
V
V
°C
°C
°C
May 2009
3
MITSUBISHI HIGH VOLTAGE DIODE MODULE
RM1200DG-66S
HIGH POWER SWITCHING USE
INSULATED TYPE
High Voltage Diode Module
High Voltage Diode Module
Min Typ Max
THERMAL CHARACTERISTICS
Symbol Item Conditions Limits Unit
Min Typ Max
MECHANICAL CHARACTERISTICS
Symbol Item Conditions Limits Unit
Rth(j-c)
Rth(c-f)
Junction to case
(per 1/2 module)
Case to Fin, λgrease = 1W/m·K
D(c-f)=100µm, (per 1/2 module)
K/kW
K/kW
Thermal resistance
Contact thermal resistance
18.0
16.0
Mt
Ms
m
CTI
Da
Ds
LP CE
RCC’+EE’
M8: Main terminals screw
M6: Mounting screw
Tc = 25 °C
N·m
N·m
kg
mm
mm
nH
m
Mounting torque
Mass
Comparative tracking index
Clearance
Creepage distance
Internal inductance
Internal lead resistance
15.0
6.0
1.0
44
0.27
7.0
3.0
600
26
56
PERFORMANCE CURVES
REVERSE RECOVERY ENERGY
CHARACTERISTICS
(TYPICAL)
FORWARD CHARACTERISTICS
(TYPICAL)
FORWARD CURRENT I
F
(A)
Tj = 25°C
Tj = 125°C
0
2500
2000
1500
1000
500
FORWARD VOLTAGE V
F
(V)
0123456 0
1.5
1.0
0.5
0500 1000 20001500 2500
FORWARD CURRENT I
F
(A)
REVERSE RECOVERY ENERGY E
rec
(J/p)
VR = 1650V, di/dt = 4000A/µs
Tj = 125°C, LS = 100nH
May 2009
4
FORWARD CURRENT IF (A)
REVERSE RECOVERY
CHARACTERISTICS
(TYPICAL)
NORMALIZED TRANSIENT THERMAL IMPEDANCE
TRANSIENT THERMAL IMPEDANCE
CHARACTERISTICS
0
0.2
0.4
0.6
0.8
1.0
1.2
TIME (s)
103
104
102
101
101
102
100
10-1
2
3
5
7
2
3
5
7
2
3
5
7
2
3
5
7
2
3
5
7
2
3
5
7
10
-2
10
-3
23 57
10
-1
23 57
10
0
23 57
10
1
23 57
REVERSE RECOVERY TIME trr (µs)
REVERSE RECOVERY CURRENT Irr (A)
REVERSE RECOVERY CURRENT Irr (A)
103
102
23 57
104
23 5447
REVERSE RECOVERY
SAFE OPERATING AREA
(RRSOA)
REVERSE VOLTAGE VR (V)
01000 2000 3000 4000
0
500
1500
1000
2000
3000
2500
Rth(j–c) = 18K/kW
VR 2200V, di/dt 5400A/µs
Tj = 125°C
VR = 1650V, di/dt = 4000A/µs
Tj = 125°C, LS = 100nH
Irr
trr
MITSUBISHI HIGH VOLTAGE DIODE MODULE
RM1200DG-66S
HIGH POWER SWITCHING USE
INSULATED TYPE
High Voltage Diode Module
High Voltage Diode Module
ZR
th( j –c ) (
t
)=Σ
n
i=1
i1–exp t
i
t
R
i
[K/kW]
τ
i
[sec]
1
0.0059
0.0002
2
0.0978
0.0074
3
0.6571
0.0732
4
0.2392
0.4488