1
Features
3-CCDPrismaticColorLinescanCamera
HighSensitivityandHighSNRPerformanceLinearCCDSensors
1024Pixels:10x10µmor14x14µm
2048Pixels:10x10µm
ExcellentCCDAlignmentAccuracy
CameraLinkDataFormat(BaseConfiguration)
DataRate:20or30Mpixels/s
DynamicRange:8-or10-bitChannel
SinglePowerSupply:20to36Vdc
EasyCameraControlwithProgrammableSettings
MemoryforStoringupto60Configurations
HighReliability–CEandFCCCompliant
Description
TheAKYLAisarugged,highperformance,fullydigital,colorlinescancamerafor
demandingindustrialapplications.Itincludesahighaccuracy3-CCDarchitecturewith
achoiceofeither1024or2048pixelsensorsatspeedsofupto30millionpixelsper
secondpercolorchannel.TheAKYLAcamerasareoptimizedforhighsensitivityand
precisecolorrecognition.
Applications
WebInspection
InspectionofNaturalMaterialsLikeFood,Wood,Ore,MineralsandLumber
Recycling
QualityControlinPrintingProcesses
TextureRecognition
CameraLink
3-CDDColor
Camera
AKYLA
MD20/30
1010/1014/2010CL
Preliminary
Rev.5303A–IMAGE–03/11/03
2AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Camera
Characteristics
Overview Table1.CameraCharacteristicsOverview
Parameter Value Unit
SensorCharacteristicsatMaximumPixelRate
Twopossibilities Model20MHz Model30MHz
Resolution 1024 2048 1024 2048 pixels
MaxLinerateinparallelmode 18 9.4 27 14 kHz
Pixelsize(square) 101410101410 µm
Antiblooming x150
RadiometricCharacteristics
Dynamicrange 8-10 bit
Spectralrange 350-750 nm
NonLinearity <0.1 %
Typicalgainrange Gmin
0Gmax
27 dB
Typicalpeakresponse
Red
Green
Blue
10µmpitch
10
5.4
4.1
14µmpitch
26
14
10.7
10µmpitch
240
130
100
14µmpitch
624
338
260
LSB/nJ/cm2
LSB/nJ/cm2
LSB/nJ/cm2
MechanicalandElectricalInterface
Size(wxhxl) 115x106x140 mm
Lensmount F
Sensoralignment <2max,0.1typical µm
Powersupply DC,single20to36V V
Powerdissipation <26 W
Operatingtemperature 5to35(noncondensing) °C
Storagetemperature -10to55(noncondensing) °C
SpectralResponse
0
20
40
60
80
100
120
Wavelength (nm) 750700650600550500450400350
Relative Spectral Response (%)
3
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Precautions
ReadtheManual Pleasereadthemanualcarefullybeforeusingthecameraforthefirsttime.
DoNotDrop
Camera Thecameraisasensitiveopticaldevice,handlewithcareatalltimes.Donotdropthecamera
andavoidmechanicalshocktothecamera.
KeepForeign
MattersOutside
theCamera
Donotspillliquidsonthecamera.Thecameraisnotliquidorwaterproof.
Donotdropmetallicobjectsintothecamera.Thismightcauseashort-circuitanddamagethe
camera.
Cleaning Keeptheshadecaponthecameraheadwhenitisnotinusetoavoidcontaminatingthe
prism.
ItisrecommendedthatthecamerabeservicedbyAtmelifthefrontsurfaceoftheprismis
verydirtybecausethesurfaceareaoftheprismcannotbefullyaccessedfromthefront.
Iftherearesmallamountsofcontaminantsordustontheprismsurface,useacleanlintfree
cottonswaborothernonabrasivemediumdippedinacetoneorpurealcoholtocleanthe
prismsurface.Shakeexcesssolventoffbeforetouchingthesurfaceoftheprismtoavoid
streaking.Atmelisnotresponsibleforanyscratchesordamageinflictedbythecustomerto
thefrontsurfaceoftheprism.
Tocleantheexteriorcasingofthecamera,useasoft,drycloth.Incaseofseverestainsusea
smallamountofpurealcoholorisopropylalcohol.Donotuseacetoneorothervolatilesol-
ventssuchasbenzeneorthinners.
DoNotOpenthe
Camera Donotopencamera.Thewarrantyofthecameraexpiresimmediatelyuponopening.Only
authorizedservicepersonnelmayopenthecamera.
Ventilation Allowsufficientaircirculationaroundthecamera.Ifthisconditionisnotmet,thecameramight
shutdownduringoperationbecauseitisdesignedtodosoinordertopreventdamagetothe
opticalassembliessinceafurthertemperatureincreasemaydamagethecamera.
Storage Donotstorethecameraintemperaturesover+55°C.Thereisapermanenttemperatureindi-
catorinsidethecamera,whichisinstalledtoensurethatifthecameraisdamagedduetoover
temperature,thewarrantyofthecameramaybevoid.
Electromagnetic
Fields Donotoperatethecamerainthevicinityofstrongelectromagneticfields(abovetherequire-
mentsofCEconformity).Thismaycauseerroneousoperationofthecamera.
Transporting Transportthecamerainitsoriginalpackaging.Iftheoriginalpackaginghasbeendiscarded,
packagethecamerawithcareinathicklayerofsoft,preferablyanti-staticmaterialwhen
transporting.Donotusematerialthatallowsthecameratofalltothebottomofthepackage
whiletransporting.Donottransportwithopticsattached.
4AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Standard
Conformity Thecamerashavebeentestedinthefollowingconditions:
Shieldedpowersupplycable.
CameraLink™datatransfercableref.14B26-SZLB-500-OLC(3M).
LinearAC-DCpowersupply.
Atmelrecommendsusingthesameconfigurationtoensurethecompliancewiththe
followingstandards.
CEConformity AKYLACamerascomplywiththerequirementsoftheEMC(European)directive89/336/EEC,
EMC(ElectromagneticCompatibility).Weherewithdeclarethatthisproductcomplieswiththe
followingprovisionsapplyingtoit.
EmissionCISPR22(1997)
ImmunityIEC61000-6-2(1999)
Camera
Overview
ColorSeparation Theincominglightisseparatedtothree(Red,GreenandBlue)colorimagesbyanRGBbeam
splitter(Figure1).Thespectraldistributionofeachcolorisstandardizedandwellknown.By
attachingaCCDtoeachofthesecoloroutputs,itispossibletomeasuretheintensityofeach
colorimage.
Figure1.RGBColorSeparationBeamSplitter
TheCCDsarealignedtoeachothertogettheperfectimageofthethreemeasuredcolorcom-
ponents.AllthreeCCDsseeexactlythesameareaoftheobjectatthesametime.
Correspondingpixelsofallthreesensorsareverypreciselypositionedopticallyinthesame
place(Figure2).Thismakesthecoloranalysissimpleranddoesnotrequireanylinematching
orsynchronizing.TheresolutionofthecameraisthesameasfortheindividualCCDarray.
Figure2.AlignmentoftheCCDLinearArrays
Blue
Green
Red
Incoming light
R
G
B
RGB color line
3 x CCD
5
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
CameraOperation TheCCDsconverttheincominglighttoelectricalcharges.Theamountofchargegeneratedin
eachoftheindividualpixelsisdirectlyproportionaltotheintensityoflighttheyreceive.The
resultingchargepacketsaretransferredintotwohigh-speedCCDshiftregistersandtrans-
ferredtotheoutputcharge-to-voltageconvertersoftheCCDs.Theoutputvideogeneratedis
CorrelateDoubleSampled(CDS)andtheresultisamplifiedbytheuseraccessiblegainfactor
priortodigitizationto10-bit.
Figure3.CameraSynoptic
TheAKYLAcamerasoperateinamono-shotmode.ForeachrisingedgeoftheNewLinesig-
nalthecamerarespondsbysendingoutthedigitaldatastreamofthepreviousexposuretime.
Theoutputfrequencyisconstant.ThedistanceintimebetweentwoNewLineedgescanbe
settoanyvalueabovethespecifiedminimum.Thereciprocalofthistimeisthelinerate(Hz).
Otherprogrammablefunctionsinclude:
Colorchannelspecificprogrammableexposurecontrol
Colorchannelspecificprogrammableanaloggain
Colorchannelspecificprogrammabledigitalgain
Programmableoffset
RetrievalofthePROMversionnumber
Non-volatilememorybanksforprogrammablesettings
AD
AD
CCD
AD
AD
CCD
AD
AD
CCD
CTRL
DC
DC
Vin
OSC
Ctrl out
Data out
Timing Temperature
monitoring Voltage
monitoring
Gain Ctrl
10-bit
10-bit
10-bit
10-bit
10-bit
10-bit
Ctrl in
RS 232 2
2
6AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Timing Figure4.RelationshipbetweentheDataOutputandNewLine(CC1)Signals
Theeffectiveintegrationtimecanbemadeshorterthantheactuallinescanperiod(time
betweentwoconsecutiveNewLinepulses)byholdingtheExpCtrl(CC2)signalinitsactive
stateuntilthebeginningofthetargetedinterceptionperiod.Withinthelinescanperiod,when-
evertheExpCtrlinputisheldlow,nochargecanbecollectedintothepixels.Thisiswhythe
actualintegrationtimeisthetimespanbetweenthe(last)risingedgeoftheExpCtrlinputsig-
nalandthenextrisingedgeoftheNewLineinput.
Figure5.LineRateandIntegrationTime
Thetwomostcommonmodesofoperationoflinescancamerasarefree-runmodeorencoder
input-drivenmode.
Inthefree-runmodeboththelinescanperiodandtheintegrationtimecanbepreciselycon-
trolled.Butifthelinescanperiodisdeterminedbyencoderinput,theintegrationtimecanbest
bekeptconstantbyusingtheencoderinputpulseforgeneratingtheExpCtrlsignal.TheNew-
Linepulseissentafteraconstantdelay(referto“ExposureControlMode(Address76)”on
page29).
TheAKYLAcameraisconstantlymonitoringalltheinternalsupplyvoltagesandtheinternal
temperatureofthecamera.TemperaturewarningscanbemonitoredviatheLEDsattherear
panelandtheTemperatureoutputsignalofthedataconnector.
Line 1
Line 0 Line 1 Line 2 Line 3
Line 2 Line 3
Data out
NewLine
(CC1)
Line scan period
NewLine
ExpCtrl
Pixel strobe
Data
Data read out
Line scan period
Integration time
R R N
N N+1
N-1
GGBB
7
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
AKYLAM301010/14CL
Figure6.ParallelColorChannelMode,30MHzperChannel–Version:1.2Date:5/27/02–PROM:B04
Figure7.TimingDiagram
NewLine
input
Change of line
internal
ExpCtrl
input
Line Valid
output
Pixel Strobe
output
Data 29-0
N = 1024
N-1 N - - 1 2 3 N-2
T9
T7
T6
T5
T2
T3
T4 T5
T4
T1
T8
N-1 N - - 1 2
T3
Table2.AKYLA1010/14CL–30MHz
Symbol Parameter Min Nom Max Unit
T1 NewLinelow 0.05 10 µs
T2 Linescanperiod 37 µs
T3 DelaytoChangeofLine 0.58 0.7 µs
T4 IntegrationTime 2 µs
T5 DelaytoExpCtrl 2 µs
T6 DelaytoLineValidhigh 1.36 1.48 µs
T7 LineValidhightofirstdata 17 µs
T8 LastdatatoLineValidlow 16 µs
T9 TransferTime 34 µs
T10 PixelStrobeperiod 33.3 ns
T11 PixelStrobelow 17 ns
T12 DataSetupTime 14 ns
T10
T11
T12
i - 2
Pixel Strobe
Data 29-0 i - 1 i i+1
8AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
AKYLAM302010CL
Figure8.ParallelColorChannelMode,30MHzperChannel–Version:1.2Date:5/27/02–PROM:B04
Figure9.TimingDiagram
NewLine
input
Change of line
internal
ExpCtrl
input
Line Valid
output
Pixel Strobe
output
Data 29-0 N-1 N - - 1 2 3 N-2
T9
T7
T6
T5
T2
T3
T4 T5
T4
T3
T1
T8
N-1 N - - 1 2
Table3.AKYLA2010CL–30MHz
Symbol Parameter Min Nom Max Unit
T1 NewLinelow 0.05 10 µs
T2 Linescanperiod 71 µs
T3 DelaytoChangeofLine 0.58 0.7 µs
T4 IntegrationTime 2 µs
T5 DelaytoExpCtrl 2 µs
T6 DelaytoLineValidhigh 1.36 1.48 µs
T7 LineValidhightofirstdata 17 µs
T8 LastdatatoLineValidlow 16 µs
T9 TransferTime 68 µs
T10 PixelStrobeperiod 33.3 ns
T11 PixelStrobelow 17 ns
T12 DataSetupTime 14 ns
T10
T11
T12
i - 2
Pixel Strobe
Data 29-0 i - 1 i i+1
9
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
AKYLAM201010/14CL
Figure10.ParallelColorChannelMode,20MHzperChannelVersion:1.0–Date:5/27/02PROM:B05
Figure11.TimingDiagram
NewLine
input
Change of line
internal
ExpCtrl
input
Line Valid
output
Pixel Strobe
output
Data 29-0 N-1 N - - 1 2 3 N-2
T9
T7
T6
T5
T2
T3
T4 T5
T4
T3
T1
T8
N-1 N - - 1 2
N = 1024
Table4.AKYLA1010/14CL–20MHz
Symbol Parameter Min Nom Max Unit
T1 NewLinelow 0.05 10 µs
T2 Linescanperiod 56 µs
T3 DelaytoChangeofLine 0.76 µs
T4 IntegrationTime 2 µs
T5 DelaytoExpCtrl 2 µs
T6 DelaytoLineValidhigh 1.9 µs
T7 LineValidhightofirstdata 26 µs
T8 LastdatatoLineValidlow 24 µs
T9 TransferTime 51 µs
T10 PixelStrobeperiod 50 ns
T11 PixelStrobelow 24 ns
T12 DataSetupTime 23 ns
T10
T11
T12
i - 2
Pixel Strobe
Data 29-0 i - 1 i i+1
10 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
AKYLAM202010CL
Figure12.ParallelColorChannelMode,20MHzperChannelVersion:1.0–Date:5/27/02PROM:B05
Figure13.TimingDiagram
NewLine
input
Change of line
internal
ExpCtrl
input
Line Valid
output
Pixel Strobe
output
Data 29-0 N-1 N - - 1 2 3 N-2
T9
T7
T6
T5
T2
T3
T4 T5
T4
T3
T1
T8
N-1 N - - 1 2
N = 2048
Table5.AKYLA2010CL–20MHz
Symbol Parameter Min Nom Max Unit
T1 NewLinelow 0.05 10 µs
T2 Linescanperiod 107 µs
T3 DelaytoChangeofLine 0.76 µs
T4 IntegrationTime 2 µs
T5 DelaytoExpCtrl 2 µs
T6 DelaytoLineValidhigh 1.9 µs
T7 LineValidhightofirstdata 26 µs
T8 LastdatatoLineValidlow 24 µs
T9 TransferTime 102 µs
T10 PixelStrobeperiod 50 ns
T11 PixelStrobelow 24 ns
T12 DataSetupTime 23 ns
T10
T11
T12
i - 2
Pixel Strobe
Data 29-0 i - 1 i i+1
11
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Electrical
Interface AlltheelectricalconnectionsoftheAKYLAcolorlinescancameraaremadeviatherearpanel.
ThetwoCameraLinkconnectorsareusedtointerfacetocommercialCameraLinkframegrab-
berboardsortheusers'ownelectronics.
AllsignalsareavailableonthetwoCameraLinkconnectors.Theinterfaceisdesignedaccord-
ingtospecificationsoutlinedintheCameraLinkstandard(October2000).Pleaserefertothe
standardonsignallevels,cablingetc.
ThestandardRS-232interfaceisusedformodifyingtheparametersofthecamera.Forthe
detailsontheRS-232SUBD9cabling,referto“Communication”onpage26.
FourindicatorLEDs(onthelefthandside)showthestatusofthecamera.
Figure14.RearPanelLayoutforCameraLinkModels
LEDIndicators
Table6.LEDIndicatorDescriptions
LEDIndicators Color Description
PWR Green On:PowerinputOK
RUN Green
On:Normaloperation
Off:1)Thetemperaturelimit(+55°C)hasbeenexceededandcameraoperationhasbeenshut
down.Aftertheexternaltemperaturehasfallenintothespecifiedrange,switchthepower
OFFonceandthenONagain.
2)Thecameradidnotstartupproperly.Checktheinputpowerlines,thePWRLEDandthe
positionoftheinternalPROM(ifyouhavejustupgradedthecamera).
PWRERR Red On:Atleastoneoftheinternalsupplyvoltageshasfailed.
TMPERR Red On:Warningthattheinternaltemperatureistoohigh.Ifthecameracoolsdown,theLEDwillturnoff,
butifthetemperaturerisesfurtherthecamerawillbeshutdownandremainsountilthenext
power-up.
12 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
PowerInput Cameraconnectortype:HiroseHR10A-7R-6PB(male).
Cableconnectortype:HiroseHR10A-7P-6S(female).
Figure15.ReceptacleViewedfromBehindtheCamera
TheAKYLAcamerasoperatefromasinglesupplyvoltageofnominally24Vdcattypically500
to1000mA,dependingonthemodeofoperationandtheexternalterminationsoftheoutput
signals.
Themaximumpowerconsumptionis26W.Forlowfrequencylineripples(lessthan120Hz)
±10%rippleisacceptableaslongasthevoltagelevelstaysbetween20to36Vdc.
SupplyVoltage Nominal:24Vdc
Range:20to36Vdc
SupplyCurrent Typically:500to1000mA
Maximum:1.1A(at24Vdcandatpower-up)
Ripple ±10%(max120Hz):Voltagelevel(=nominal+ripple)muststaybetween20to36V
RS-232Serial
Connector TheRS232connectorcanbefoundontherearpanelofthecamera.Useastandardsocket
type9-pinD-connector(i.e.AMP344643-1)forthecameraside.
Table7.PowerSupplyConnectorPinout
Pin Signal Pin Signal
1PWR4GND
2PWR5GND
3PWR6GND
1
2
3
6
5
4
Table8.RS-232SerialConnectorPinout
CameraSideD9Connector PCSideD9Connector
Signal Pin Pin Signal
TD(TransmitData,output) 3 > 2 RD(ReceiveData,input)
RD(ReceiveData,input) 2 < 3 TD(TransmitData,output)
RTS(RequestToSend,output) 7 > 8 CTS(ClearToSend,input)
CTS(ClearToSend,input) 8 < 7 RTS(RequestToSend,output)
SG(SignalGround) 5 5 SG(SignalGround)
13
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
DataConnector TwoMDR-26connectorshandledatacommunicationsasspecifiedintheCameraLinkspecifi-
cations.TheconnectorsarelabelledCL1andCL2.For24-bitRGBimages,onlythefirst
connectorisrequired.Thesecondconnectorisneededforallotherselectabledataoutput
modes.Onthecameraside,cablescanbesecuredwitheitherscrew-locksorlatches.
Forcabling,refertotheCameraLinkspecifications.
Alltheinputsignalsareinternallyterminatedby100resistors.
Alltheoutputsignalsshouldbeterminatedrespectively(one100resistorconnected
betweenthepositiveandnegativewireofeachsignalpair).
Table9.DataConnectorPinout
Parallel
Base DualBase Medium
24-bit 24-bit+LSB 30-bit 30-bit
A
02200
13311
24422
35533
46644
57755
68866
79977
B
02288
13399
244––
355––
46688
57799
688––
799––
C
02200
13311
24422
35533
46644
57755
68866
79977
14 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Note: Thegreyboxesarebitsthatarenotused,butwhicharepresentduetothehardwarewiringof
thecamera(copiesofoutputpins).
D
0–008
1–119
2–02
3–13
4–044
5–155
6– X 6 6
7– X 7 7
E
0––80
1––91
2––22
3––33
4– 044
5– 155
6– X66
7– X77
F
0– 008
1– 119
2– 02–
3– 13–
4––––
5––––
6––––
7––––
Table9.DataConnectorPinout(Continued)
Parallel
Base DualBase Medium
24-bit 24-bit+LSB 30-bit 30-bit
15
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Mechanical
Structure
Mechanical
Dimensionsand
Mountingofthe
Camera
Themechanicalstructureofthecameraprovidesacompactentitythatmeetstherigid
demandsoftheindustrialenvironment.Thealuminiumcameracaseprovidesanexcellent
electricalprotectionagainstexternalelectromagneticinterference.Whenselectingthecompo-
nents,corrosionresistantpropertieswerealsoconsidered.
Thecameracanbemountedfromthefrontpanelorfromthesidepanelofthecamera.The
recommendedwaytomountthecameraistousethethreeM5holes,whicharesituated
aroundtheopticsonthefrontpanel.
Figure16.MechanicalBoxDrawingandDimensions
Attachmentfor
Optics ThereisalockinglatchintheNikonbayonet.Theopticsareattachedbyturningit(ca.1/4
rev.)counterclockwise,seenfromthefrontofthecamera,untilthelatchrisesintotheupper
position.Whendetachingtheoptics,firstpushthelatchtowardsthefrontpanelofthecamera
andthenturntheopticsclockwise,againseenfromthefrontofthecamera,untiltheopticsare
releasedfromthebayonet.Theopticsmaythenbepulledawayfromthecamera.
106
147.6
139.6
74
64
2 depth 5
2 pcs
M5 depth 7
4 pcs
64
70
6
53 115
16 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Optical
Considerations
SpectralResponse
oftheBeam
SplitterPRISM
Figure17.SpectralDistributionoftheRGBColorBeamSplitter
ThegraphinFigure17showstheeffectoftheprismitselfateachwavelength.Transmissivity
iswellbalancedbothinthesenseofpeakresponsesaswellastotalamountoflightpassedto
thesensorsateachwavelength(sumofthethreeseparatecurves).Thisallresultsinexcel-
lentcolorseparationcomparedtotrilinearCCDsensors.
Figure18.SpectralResponseofAKYLACameras
Transmission (%)
0400 450 500 550
Wavelength (nm)
blue green red
600 650 700
20
40
60
80
100
Relative spectral response (%)
0
20
40
60
80
100
120
350 400 450 500 550 600 650 700 750
Wavelength (nm)
17
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
ThegraphinFigure18isbasedonspectraltransmissivitymeasurementsofthebeamsplitter
prismandthespectralsensitivityoftheCCDs.
Channelshavebeenmatchedbyselectingthegainsofthechannels.Therangeofthegains
themselvesarerelativelylarge(typically1xto15x).Inaddition,digitalgains(shiftingofbits)
areavailablefor1x,2x,4xand8xgaincoefficients.
Forexample,withequalgainsonallthechannels(athighgains,butnotatmaximum),the
responsesofthechannelsintermsofhowmanyphotonsneedtobereceivedtocauseone
levelhigher10-bitnumbertoappearonthedigitaloutputsforacamerawith10µmsensors:
Red: 13photons/LSB
Green: 20photons/LSB
Blue: 22photons/LSB
SelectionofOptics Thechoiceofopticsaffectsthepicturequalityintermsofresolution,fieldofview,depthoffield
andamountoflightingneeded,justtonameafewfactors.Theselectionofopticscanhavea
dramaticeffectonimagequality.Thisiswhyabasicunderstandingofopticsisrequired.Inthis
sectionafewguidelinesarepresented.Itisuptotheusertomakefinaldecisionsandevalua-
tionsastowhatapplicationspecificrequirementsneedtobefulfilled.
ModulationTransfer
Function Lenssystemscanvaryalotintermsofimagequality.Qualitycanbecharacterizedintermsof
ModulationTransferFunction(MTF).MTFgivesameasurementofhowmuchcontrastisleft
betweentwodetails(usuallyblackandwhitepairsoflinespermm)aftertheyhavebeenpro-
jected.Ingeneralitisdefinedasfidelityoftheimageincomparisontotheobjectbeing
imaged.
MaximumMTFis1.0,butduetoopticalimperfectionsanddiffraction,thisisimpossibleto
reach.MTFatlargeapertures(f1.0-2.8)islimitedbyopticalimperfectionsthatvaryalotfrom
lenstolensandmanufacturer.Atsmallapertures(f11-f32+)lensperformanceislimitedmore
bydiffractionthanopticalquality,sointhiscasethereareminordifferencesbetweenlenses
andmanufacturers.Mostlensesproducebestresultsaroundaperturesizef8.
Figure19showstwosamplegraphsofatypical,fairquality50mmlensattwodifferentaper-
tures.Thegraphsdemonstratevariousaspectsdiscussedinthissection.TheyrepresentMTF
inpercent(y-axis)forthreedifferentlinefrequenciesof10,20and40lp/mmfromtoptobot-
tom(lp=linepairs).Thesolidlinesrepresentsagittal(radial)MTFandthedashedlines
tangential(circular)MTF.Ifthesagittalandtangentiallinepairsdonotcoincide,thisindicates
aberration,suchasastigmatism.Thex-axisrepresentsthedistanceoffromthecentreofthe
imagetotheedgeinmillimeters.
TheeffectofMTFisapplicationdependent.Ifverysmalldetailsaretobeexaminedorfine
colorseparationtobeperformedbytheimageprocessingsystem,MTFmightplayanimpor-
tantroleintheapplication.
18 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Figure19.MTFfora50mmOpticatTwoAperturesandDifferentSpatialLineFrequencies
(Graphskindlyprovidedby©PhotodoAB,Sweden)
Ifthelenshasfieldcurvature,itwillshowupintheMTFplotasMTFdroppingawayfromthe
centreoftheimage.Observingtheplots,itisevidentthatthisistrueofwideraperturesthat
haveasmalldepthoffield.Thisdoesnotnecessarilymeanthatsharpnessisworseatthe
edges.Itmayjustaswellbethatoptimalfocusforobjectsclosetotheedgeiscloserorfurther
awayfromthelens.Normalcameralensesareusuallyusedtophotographthree-dimensional
objectsanddonotexhibitaperfectlyflatfocalfield.Enlargingorreproopticshaveaplanar
focalfieldandareusedtoreproduceflatobjects.
ResolutionandField
ofView Resolutionisprimarilyaffectedbysensordimensionsandthequalityoftheoptics.Theoptical
systemisresponsiblefortheabilitytoproducefinerdetailsatatolerablecontrast.Normally,
accordingtotheNyquistsamplingtheorem,itisrequiredthatadetailspansatleasttwopixels
tobeabletobeidentifiedwithareasonableaccuracybyanimageprocessingsoftware.
BecauseoftheCCD,thefastesttransitionfromblacktowhitecanoccurwithinonepixel.
Whenusinglargeapertures,largefieldofview,the2ksensoranddependingonthequalityof
thelensused,imagequalitycanbereducedattheedgesduetoopticallimitations.AllAKYLA
camerashavebeendesignedandmadetobeusedwithstandardcommerciallensesatmid-
rangeapertures.
Thefocallengthofopticsrequiredforimagingcanbecalculatedfromthefollowingformula:
F=focallengthofthelens(mm)
d=distancetoobject(mm)
L=lengthoftheCCD:
10.24mmfor1024pixels(10µm)
14.34mmfor1024pixels(14µm)
20.48mmfor2048pixels
FOV=fieldofview;objectsize(mm)
Image center
Sagittal
Tangential 100
90
80
70
60
50
40
30
20
10
0050/1.2 50/8
36912151821 036912151821
100
90
80
70
60
50
40
30
20
10
0
F=dxL
FOV
-------------,where:
19
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Example1:Thedistancetotheobjecttobeimagedis900mm,thewidthofareatobe
imagedis500mm.Whenusing1024pixel10µmsensorthefocallengthofthelensfromthe
equationwillbe~18.4,soa20mmopticwouldbeacceptable,ifthecameraismovedback-
wardtoadistanceof977mm.
Example2:Thesizeofanobjectwithintheimageneedstobecalculatedinpixels.Thiscan
beaccomplishedbyrearrangingtheequationtoyieldL=FOVxF/d.Thusa10mmobject
witha50mmlensatadistanceof900mmwillbeprojectedas0.56mm,whichequals~56
pixelsintheimage(eachpixelontheCCDis0.01mmby0.01mm).
DepthofFieldand
WorkingAperture Optimumsharpnessoftheimageisachievedonlywhentheobjectisinthefocusplane.
Behindandinfrontofthisplanethesharpnessisworse.Depthoffieldisdefinedbyhow
unsharpapointisallowedtobe.Depthoffieldisthusthedistancefromtheplaneoffocus
wheretheunsharpnessstaystolerable.Thereforethedepthoffielddependsonthesmallest
applicationdependentfeaturesizetoberecognized.Depthoffieldconsiderablyincreases
withsmalleraperturesizes.
Depthoffieldisalsoaffectedbythefocallengthused.Alongerfocallengthwithagivenaper-
turewillresultinashorterdepthoffield.Therefore,asaguideline,ifthefocallengthis
increasedtheaperturehastobestoppeddownbythesamefactortoretainthedesireddepth
offield.
Alensimprovesopticallywhenstoppeddown.Atlargeaperturesmostoftheareaofthelens
isused,thisresultsinaslightblurcausedbyunavoidableimperfectionsinthelenses.When
stoppingdown,onlythecentralareaofthelensisused.Theopticalpictureismorecorrect
andresolutionimproves.Consideringthisfact,thelenstobeusedshouldhavealargemaxi-
mumapertureandshouldbeoperatedatamid-rangeaperture.
Inreality,stoppingdowndoesnotimproveopticalqualityindefinitely,sincediffractionstartsto
affectimagequalityatsmallapertures.Accordingtothelawofdiffraction,asharpedgeturns
lightslightlyoff.Theapertureformssuchasharpedgeandlightclosesttotheedgescauses
fuzzinessintheimage.Whenusingwideraperturesthepercentageoflightpassingalongthe
edgesdecreasesinrelationtolightpassingthroughthecentre.Therefore,atsmallapertures
theratiooflightpassingclosetotheedgesincreasesandthussmallaperturesresultinalotof
diffraction.
Sharpnessisthereforelimitednotjustbyimperfectionsinthelens,butalsobydiffraction.
Thus,theuseofmid-rangeapertures(f5.6-11)resultsinoptimumpicturequality.Normallya
lensisatitssharpestataperture8.
AKYLAcamerasareverysensitivetolightandhaveawiderangeofuserprogrammablegain
factors,thusitispossibletousemid-rangeapertureswithoutsignificantlyincreasinglighting
costs.
20 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Lighting Lightingaffectsthequalityofanimagingsituationmuchmorethantheselectionofproper
optics.Properlightingcanincreaseaccuracy,systemreliabilityandresponsetime.Further-
more,failuretoimplementcorrectobjectilluminationwill,inmostcases,leadtolossoftime
andfinancialresources.
Agoodimageforprocessingpurposesisanimagethathasthegreatesttexturecontrastinthe
areasofinterestagainstthebackground.Tobeabletoreliablyprocesstheimagethesecon-
ditionsmustprevailwithcertainaccuracyovertime.
SpectralRadiance
andColor
Temperature
Thespectralradianceofthelightinguseddependsontheapplication,sincecertainwave-
lengthsoflightmightproduceeitheradditionalorthedesiredinformationintheapplication.
Generallyspeakingthespectraldistributionofthelightsourcesshouldbeasevenaspossible
inthevisiblelightspectrum(350to700nm),wheretheAKYLAcamerasareintendedtobe
operated.DuetothetechnologyusedinthecameraandtheCCDsinherentincreasedsensi-
tivitytotheredendofthespectrum,thelightingshouldcontaininitaconsiderableblue
content.
Thecolortemperatureofalightsourceisaprettyaccuratemeasureofthebalanceofspectral
radiance.Reasonableresultscanbeobtainedwhenlightingcolortemperatureisclosetoor
over4000k.Highqualitycolorimagesrequireacolortemperatureofaround6500kormore.
LightingthatgeneratesalotofIRorUVmightaffecttheworkingoftheCCDsensorsand
shouldbefilteredoutorthesourceoflightingmustbechosensothatthecontentofundesired
wavelengthsisminimized.
Uniformityof
Lighting Uniformityoflightingmeansthattherearenegligiblevariationsinlightintensityovertheused
spectrum.Also,changesinambientlightingshouldnotaffecttheimagingsituation.Sucha
lightsourceiscalledalambertiansourceoruniformdiffusedlight.Thislightcanbecollimated
tofurtherimprovestabilityandintensity.
Alambertiansourcewilldoforanimagingsituationwhereshadowsandreflectionsshouldbe
minimized.Therearemanyotherschemesoflightingwhich,ofcourse,dependontheapplica-
tion.Soitisuptotheusertoexperimentwithdifferentlightingschemestofindwhichscheme
bestcontraststhedesiredimagefeature.
Thewaythelightisdrivenalsohasamajorimpactontheevennessoflighting.Normallyeither
highfrequencyballasts(orderoftensofkHz)areusedtodrivecertaintypesoflightingorDC
lightingisused.Somesystemsalsousethreedifferentlampseachdriveninadifferentphase
withasquarewaveinsteadofasinusoidalone.Inanycase,ifDClightingisnotused,thefre-
quencydrivingthelightsshouldbeconsiderablyhigherthanthelinefrequencyusedforthe
application.
Agingofthelightsourceshouldalwaysbeconsidered,sincetheremightbechangesininten-
sityandcolortemperature.Ifthereisfinecolorbasedqualificationtobeperformed,thisaspect
shouldbecarefullyconsidered.
Thetemperaturedependencyofthechosenlightsourceshouldbeverified.Forexample,fluo-
rescenttubeshavearelativelyhighrelationbetweentheoperatingtemperatureandboththe
intensityandtheproportionofcoloroutput,whileallAKYLAcamerashavealmostnochanges
intheirperformance.
21
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Technical
Specifications
Notes: 1. LatestUpdate:March7,2002
2. Within10to95%ofthesaturationexposure.Equals±8LSBsof10-bit.Testedonallcamerasbothwiththelowandhigh
gains(factorysettingsinmemorybanks62and63).
Table10.TechnicalSpecifications:AKYLAM201010CLand2010CLwith10µmSensors(1)
Parameter Symbol Min Typical Max Unit Notes
Numberofpixels N
N1024
2048 ––
Pixelsize 10x10 µm 100%fillfactor
DatarateperCCD 20 MHz
Linescanperiod texp 56 µs 1024pixels,max.linerate:~18kHz
Linescanperiod texp 107 µs 2048pixels,max.linerate:~9.4kHz
A/Dconversions 10 bit
Typicalgaincontrol G x1 x24
Linearity 99.2 99.5 % (2)
Photoresponse
nonuniformity,p-to-p PRNU ±2 ±10 %
Saturationlevel 1023 1023 LSB LeastSignificantBit
PeakResponseatGmin R
G
B
10
5.4
4.1
LSB/nJ/cm2G=x1
Signaltonoiserationat
Gmin SNR 48 dB G=x1
Supplyvoltage Vsupp 20 24 36 Vdc ripple:±10%,voltage+ripplemust
staywithin20to36V
Powerconsumption 12–17 26 W
Weight m 2 kg withoutlens
Operatingtemperature Top 5–35 °C41to95F
Storagetemperature Tst -10 55 °C14to131F
Humidity,operation 5 85 % relative,noncondensing
Humidity,storage 5 95 % relative,noncondensing
Saturationequiv.
exposure SEE 102
8 nJ/cm2lowgain
highgain
Noiseequiv.exposure NEE 400
40 pJ/cm2lowgain
highgain
22 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Notes: 1. LatestUpdate:March7,2002
2. Within10to95%ofthesaturationexposure.Equals±8LSBsof10-bit.Testedonallcamerasbothwiththelowandhigh
gains(factorysettingsinmemorybanks62and63).
Table11.TechnicalSpecifications:AKYLAM301010CLand2010CLwith10µmSensors(1)
Parameter Symbol Min Typical Max Unit Notes
Numberofpixels N
N1024
2048 ––
Pixelsize 10x10 µm 100%fillfactor
DatarateperCCD 30 MHz
Linescanperiod texp 37 µs 1024pixels,max.linerate:~18kHz
Linescanperiod texp 71 µs 2048pixels,max.linerate:~9.4kHz
A/Dconversions 10 bit
Typicalgaincontrol G x1 x24
Linearity 99.2 99.5 % (2)
Photoresponse
nonuniformity,p-to-p PRNU ±2 ±10 %
Saturationlevel 1023 1023 LSB LeastSignificantBit
PeakResponseatGmin R
G
B
10
5.4
4.1
LSB/nJ/cm2G=x1
Signaltonoiserationat
Gmin SNR 48 dB G=x1
Supplyvoltage Vsupp 20 24 36 Vdc ripple:±10%,voltage+ripplemust
staywithin20to36V
Powerconsumption 12–17 26 W
Weight m 2 kg withoutlens
Operatingtemperature Top 5–35 °C41to95F
Storagetemperature Tst -10 55 °C14to131F
Humidity,operation 5 85 % relative,noncondensing
Humidity,storage 5 95 % relative,noncondensing
Saturationequiv.
exposure SEE 102
8 nJ/cm2lowgain
highgain
Noiseequiv.exposure NEE 400
40 pJ/cm2lowgain
highgain
23
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Notes: 1. LatestUpdate:March7,2002
2. Within10to95%ofthesaturationexposure.Equals±8LSBsof10-bit.Testedonallcamerasbothwiththelowandhigh
gains(factorysettingsinmemorybanks62and63).
Table12.TechnicalSpecifications:AKYLAM201014CLwith14µmSensors(1)
Parameter Symbol Min Typical Max Unit Notes
Numberofpixels N 1024
Pixelsize 14x14 µm 100%fillfactor
DatarateperCCD 20 MHz
Linescanperiod texp 56 µs 1024pixels,max.linerate:~18kHz
A/Dconversions 10 bit
Typicalgaincontrol G x1 x24
Linearity 99.2 99.5 % (2)
Photoresponse
nonuniformity,p-to-p PRNU ±2 ±10 %
Saturationlevel 1023 1023 LSB LeastSignificantBit
PeakResponseatGmin R
G
B
26
14
10.7
LSB/nJ/cm2G=x1
Signaltonoiserationat
Gmin SNR 48 dB G=x1
Supplyvoltage Vsupp 20 24 36 Vdc ripple:±10%,voltage+ripplemust
staywithin20to36V
Powerconsumption 12–17 26 W
Weight m 2 kg withoutlens
Operatingtemperature Top 5–35 °C41to95F
Storagetemperature Tst -10 55 °C14to131F
Humidity,operation 5 85 % relative,noncondensing
Humidity,storage 5 95 % relative,noncondensing
Saturationequiv.exposure SEE 40
3 nJ/cm2lowgain
highgain
Noiseequiv.exposure NEE 160
16 pJ/cm2lowgain
highgain
24 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Notes: 1. LatestUpdate:March7,2002
2. Within10to95%ofthesaturationexposure.Equals±8LSBsof10-bit.Testedonallcamerasbothwiththelowandhigh
gains(factorysettingsinmemorybanks62and63).
Table13.TechnicalSpecifications:AKYLAM301014CLwith14µmSensors(1)
Parameter Symbol Min Typical Max Unit Notes
Numberofpixels N 1024
Pixelsize 14x14 µm 100%fillfactor
DatarateperCCD 30 MHz
Linescanperiod texp 37 µs 1024pixels,max.linerate:~27kHz
A/Dconversions 10 bit
Typicalgaincontrol G x1 x24
Linearity 99.2 99.5 % (2)
Photoresponse
nonuniformity,p-to-p PRNU ±2 ±10 %
Saturationlevel 1023 1023 LSB LeastSignificantBit
PeakResponseatGmin R
G
B
26
14
10.7
LSB/nJ/cm2G=x1
SignaltonoiserationatGmin SNR 48 dB G=x1
Supplyvoltage Vsupp 20 24 36 Vdc ripple:±10%,voltage+ripplemust
staywithin20to36V
Powerconsumption 12–17 26 W
Weight m 2 kg withoutlens
Operatingtemperature Top 5–35 °C41to95F
Storagetemperature Tst -10 55 °C14to131F
Humidity,operation 5 85 % relative,noncondensing
Humidity,storage 5 95 % relative,noncondensing
Saturationequiv.exposure SEE 40
3 nJ/cm2lowgain
highgain
Noiseequiv.exposure NEE 160
16 pJ/cm2lowgain
highgain
25
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Camera
Configuration
UsingRS-232
Port
Version: 1.3
Date: July28,2002
PROMs: B04,B05
Description TheAKYLAlinescancamerashaveuserprogrammablefeaturesthatareavailablebyusing
theRS-232portandasimpleprotocol.
Thefollowingsectiondescribesingeneraltermsthecommunicationandalltheavailablefunc-
tionsfordevelopingtheusers'ownapplicationsoftware.Alternatively,Windows®softwarewith
sourcecodesanddocumentationisavailablefromAtmel.Thisisanapplication,writtenin
VisualC++®6.0forWindows®95/98/2000andWindowsNT®4.0.
Figure20.CameraConfiguration
26 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Communication Programmingofthecameraisbasedonsixteen8-bitregistersthatcanbeloadedwithnew
valuesanytimeduringtheoperation.Newvaluesaresentassetsoftwobytes,wherethefirst
byteistheaddressoftheregister(command)andthesecondbyteisthedata(newvalue).A
delayof0.1msormoreaftersendingeachbyteisrecommended.
Alltheregistersareautomaticallysettothevaluesofmemorybank0(see“MemoryFunctions
(Addresses80and81)”onpage32fordetails)onpower-up.Thecontentsofthisdefault
memorybankcanbealteredwithmemorycommands.
Thevaluesoftheseregistersformasocalledmemorybank,whichcanbesavedintooneof
theinternalnon-volatilememorybanksforfuturereloading.Twocommandsareavailablefor
selectingthememorybank.
Thecamerarespondstoeachvalidsettingbysendingthesamevaluesback(8-bitaddress
and8-bitdata).Invalidcommandsareacknowledgedwitherrorcodes.
Therearethreeexceptions:
1. TheLoadCommanddoesnotreturntheaddressanddataofthecommanditself.
Instead,thecamerasendsoutthecontentsoftheselectedmemorybank(see“Output
ModeRegister(Address79)onpage31fordetails).
2. TheEscapecodeisthesecondexception.Itcanbeusedinsituations,wherethe2-
bytesequenceis,forsomereason,lost.Ifthecameradetectsthisvalueasthe
address,itwillrespondwiththerespectivefeedbackandreturnstothestate,whereit
assumesthatthenextbytewillbeanaddress.
Note1:Thisvalueisacceptedasdata.ThisiswhytheEscapecommandshouldbesent
twicetoassurethatitwillbedetectedasacommandalso.
Note2:Thiscommand,ofitself,doesnotchangeanyregistervalues;itisonlymeantfor
initializingthe2-bytesequence.Alltheregistersshouldbereprogrammedafterwardsto
assureuseoftheintendedvalues.
Table14.DefaultValue
Address Function DefaultValue(Decimal)
64to75 Programmablegains 128
76 ExposureControlMode 0
77 Programmableoffset 0
78 Programmabledigitalgains 0
79 Outputmoderegister 0
Table15.MemoryBank
Address Function MemoryBankAddresses
80 Loadfrommemory 64to127(decimal)
81 Savetomemory 64to127(decimal)
Table16.EscapeCommand
Function Decimal Hexadecimal Binary
ESCAPE 170 AA 10101010
27
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
3. ThethirdexceptionistheRetrievePROMVersion–command,whichtakesonlyone
datavalueandreturnstheaddressandnumberofthePROMversioncurrentlyinuse
(see“RetrievePROMVersion(Address82)”onpage32formoredetails).
Communication
Parameters SettheRS-232port(ortheCameraLinkserialport)to9600bitspersecond,8databits,no
parityandonestopbit(9600,8,N,1).UseRTS/CTShardwarehandshakingforRS-232.
ErrorCodes
Table17.RetrievePROMVersion
Address Function DATA(Decimal)
82 RetrievePROMVersion 82(noothervaluesaccepted)
Table18.ErrorCodes
Error Decimal Hexadecimal Binary ASCII
STARTand/or
STOPbiterror
101
followedby
49
65
followedby
31
01100101
followedby
00110001 e1
Illegalcommand 101
followedby
50
65
followedby
32
01100101
followedby
00110010 e2
Illegaldata(255) 101
followedby
51
65
followedby
33
01100101
followedby
00110011 e3
Illegaldataforthe
LOADcommand
101
followedby
52
65
followedby
34
01100101
followedby
00110100 e4
Illegaldataforthe
SAVEcommand
101
followedby
53
65
followedby
35
01100101
followedby
00110101 e5
Escape
command 120 78 01111000 x
28 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Programmable
Functions
ProgrammableGains
(Addresses64to75) EachCCDhastwooutputchannelsandeachchannelhasbothcoarseandfinetuninggain
controls.Therangeisfromzero(minimumgain)to254(maximumgain).
Gainsshouldbesetbyfirstusingcoarsetuningonlytoreachtheclosestpossibleresponse.
Allgainsettingsarerelativeandspecificonlytoeachcameraandeachregister.Theresponse
islogarithmic,meaningthatthestepsattheupperendoftherangearebiggerthanwhen
usingsmallvalues.Theabsolutevaluesoftheseregistersarenotsignificant;thesettingofthe
gainsshouldbebasedonthefeedbackfromtheactualimages.
OddChannel:representspixels1,3,5,...,1023(upto2047with2048-pixelcameras)
EvenChannel:representspixels2,4,6,...,1024(upto2048with2048-pixelcameras)
Example:Howtosetthebluechanneltomaximumgain?
1. SettheselectedCOMportofthePCto9600,8,N,1.
2. Settheanaloggainofoddpixelsofthebluechanneltomaximumvaluebyfirstsend-
ingtherespectiveaddress,whichis72.Afterwards,sendthenewsettingvalue254.
3. Theevenpixelsofthebluechannelaresettomaximumbysendingthefollowingtwo
decimalnumbers:73and254.
RefertoDebugging”onpage33fordebuggingthisexample.
Table19.AddressesforCoarseGainControl
Channel Odd/
Even Decimal Hexadecimal Binary ASCII
Red odd 64 40 01000000 @
even 65 41 01000001 A
Green odd 68 44 01000100 D
even 69 45 01000101 E
Blue odd 72 48 01001000 H
even 73 49 01001001 I
Table20.AddressesforFineGainControl
Channel Odd/
Even Decimal Hexadecimal Binary ASCII
Red odd 66 42 01000010 B
even 67 43 01000011 C
Green odd 70 46 01000110 F
even 71 47 01000111 G
Blue odd 74 4A 01001010 J
even 75 4B 01001011 K
29
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
ExposureControl
Mode(Address76) TheExposureControlfunctioncanbeappliedindividuallytoeachCCD.Asdefault,onecom-
moninputsignal(ExpCtrlR/CC2)drivesallthethreeCCDs.Alternatively,eachCCDcanhave
itsdedicatedinputsignalforExposureControl.
Thisfunctionisusedlikethesettingofthegains(seeabove).Thedatabyteconsistsofeight
bits,whicharelabelledasfollows(MSBfirst):
S–R1–R0–G1–G0–B1–B0–X
BitSselectsthesourcefortheExposureControlfunctions:
0=commonExpCtrlsignal(default)
1=individualExpCtrlsignals
Thenext6bitsareusedaspairsforeachcolorchannel(Table22):
Defaultmode:the6bitsareallzeros,andthereisnoneedtochangethem.Theycan,
though,beusedfortestingordebuggingthesystem.
NormalState:ExposureControlsaredrivendirectlyfromtheinputpinsofthecamera(as
setbybitS).TheExposureControlcanbesettobealwaysinactive(respectivechannelis
neverresetbytheExposureControl)ortobealwaysactive(pixelsareresetallthetimeby
theExposureControl;thisresultsinadarkoutputvaluefortheselectedchannel).
TestMode:thepixelsareresetuntiltheendoftheLineValidsignal.Thisisatime
constant.Thustheamountofexposurewilldependonthelinerateonly(seeTiming
Diagramsfordetails).
ThesameappliestopairsofG1andG0aswellasforB1andB0.
BitXcanbeeither1or0=don'tcare.
Examples:
Defaultvalueis00.TheExpCtrlRinputpinsdrivealltheCCDs.
Toreturntothisstatesenda2-byteset76(decimal)and0(or76and1).
Setallthechannelstodarkbysending76followedby84.
Onlyredchannelatfulltimeexposure:76followedby52.
Onlygreenchannelatfulltimeexposure:76followedby76.
Onlybluechannelatfulltimeexposure:76followedby82.
Exposurecontrolfunctionnotinuse:send76followedby42.
Table21.AddressforModifyingtheExposureControlFunction
Function Decimal Hexadecimal Binary ASCII
SelectExpCtrl 76 4C 01001100 L
Table22.ExposureControlFunction
R1 R2 Function
0 0 normaloperation,default,thesourceisdefinedbybit'S'
0 1 alwaysinactive,fullexposure,independentofbit'S'
1 0 alwaysactive,dark,independentofbit'S'
1 1 active(pixelsreset)duringlinetransfer,independentofbit'S'
30 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
ProgrammableOffset
(Address77) Theoffsetcanbedigitallyremovedbysendingavaluetotherespectiveaddress.Thisvalueis
subtractedfromallthepixelvalues,beforesendingthemout.Theoffsetvalueisanynumber
between0and254.Thisissubtractedfromtheoriginal10-bitpixelvalues.
Ifyouareusingonlythe8upperbits(MSBs),pleasenotethattheoffsetvaluestillaffectsthe
original10-bitvalues(range0to1023indigitalunits).
Thelowestoutputislimitedtozero(negativenumbersareroundedupto0).Thesaturation
levelisloweredbythevalueoftheoffset.
Example:
Tosubtract7levelsfromthe8-bitoutputrange,send(asdecimalvalues)76followedby28
(multiplythe“8-bitoffsetvalue”by4).Thedigitalsaturationlevelwillbe248insteadofthe
original255.
ProgrammableDigital
Gain(Address78) TheDigitalGainfunctioncanbeappliedindividuallytoeachcolorchannel.Digitalgainsare
implementedbyshiftingtheoriginal10-bitdataupwards(left)by0,1,2or3positions(corre-
spondingto1x,2x,4xand8xrespectively)andbylimitingtheoverflowofthenew,shifted
value.Theeffectisthattheresponseofthecamerawillbehigher,buttheeffectivenoiselev-
elswillincreaseaccordingly.Pleasenotethataftershifting,thelowestbitswillbereplacedby
zeroes.Forexample,in8-bitapplications(usingthetopmost8bits)andwith8xgains,theLSB
willalwaysbezero.
Thisfunctionisusedlikethesettingofthegains(seeabove).Thedatabyteconsistsofeight
bits,whicharelabelledasfollows(MSBfirst):
X–R1–R0–G1–G0–B1–B0–X
Themiddle6bitsareusedaspairsforeachcolorchannel(seeTable25).Asdefault,these
areallzeros,andthereisnoneedtochangethemduetothesensitivityofthecamera.They
can,though,beusedincaseswherelightingisinsufficientortocompensateforreducing
workingaperturesizetodecreaseblurintheimage.
ThesameappliestopairsofG1andG0aswellasforB1andB0.
BitsmarkedXcanbeeither1or0.
Table23.AddressforModifyingtheOffsetFunction
Function Decimal Hexadecimal Binary ASCII
Offsetvalue 77 4D 01001101 M
Table24.AddressforModifyingtheDigitalGainFunction
Function Decimal Hexadecimal Binary ASCII
SelectDigitalgain 78 4E 01001110 N
Table25.DigitalGainFunction
R1 R2 Function
0 0 1xdigitalgain(initialvalue)
0 1 2xdigitalgain
1 0 4xdigitalgain
1 1 8xdigitalgain
31
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
Examples:
Toremovethedigitalgainssenda2-byteset78(decimal)and0.
Setallthechannelsto4xdigitalgainbysending78followedby84.
Thelightingusedhasasmallportionofblue,alittlemoregreen,andalotofred.Thenormal
gainsettingdoesnotproduceenoughsignal(DU)tobalancethecameratoareasonablesig-
nallevel.Theusersetsthebluechannelto8x,greento4xandredto1xdigitalgainto
compensateforpoorlightingbysending78followedby22.
OutputModeRegister
(Address79) TheoutputmoderegisterisusedtochangetheconfigurationofdataoutputinCameraLink
models.Theoutputmoderegisterwilldefinethepixelclockfrequency,colororderandwhich
portsthedataisroutedto.AllbitsareDon’tCareifcameraisnotwithCameraLinkoutput.
Thisfunctionisusedlikethesettingofthegains(seeabove).Thedatabyteconsistsofeight
bits,whicharelabelledasfollows(MSBfirst):
SP–CL–M2–M1M0–X–X–X
BitSPselectsthefrequencyofthepixelclock(STRB):
0=Cameraatfasteroutputmode(default)
1=Cameraatsloweroutputmode
BitSPisdefinedasDon’tCare(X)for30MHzparallelmodecameras,sincethereisnoslower
outputmode.
BitCLselectsthecoloroutputorderformultiplexedmodecameras:
0=RGBcoloroutput(default)
1=BGRcoloroutput
ThisbitisdefinedasDon’tCareforparallelmodecameras.
ThenextthreebitsM2,M1andM0selectwhichportsthedataisoutputto.Thesebitsare
defineddifferentlyformultiplexedandparallelmodecameras.
Note: The“Low-levelCommands”fieldoftheCamConfcanbeusedforsettingthisregister.
Table26.AddressforModifyingtheOutputModeRegisters
Function Decimal Hexadecimal Binary ASCII
SelectOutputMode 79 4F 01001111 O
Table27.OutputModeRegister
M2 M1 M0 ParallelMode Connectors
/Ports MultiplexedMode Connectors
/Ports
0 0 0 24-bitBase(default) 1/ABC 8-bitBase(default) 1/A
0 0 1 24-bitBase+LSBbyte 2/ABCD 10-bitBase 1/AB
0 1 0 30-bitMedium 2/ABCEF Reserved
0 1 1 30-bitDualBase 2/ABCDE Reserved
1 0 0 Reserved Reserved
1 0 1 Reserved Reserved
1 1 0 Reserved Reserved
1 1 1 Reserved Reserved
32 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
MemoryFunctions
(Addresses80and81) Theinternalnon-volatilememoryofthecameraisdividedinto64socalledmemorybanks.
Eachbankcansavethestatusofallsixteenregisters(addresses64to79).Eachregisteris
madeof8bits.Valuescanbeloadedfrommemoryascompletesetsofsixteenregisters
(memorybanks)only.
AKYLAcamerashaveavolatilememorybuffer,whichisupdatedaftereachnewconfiguration
settingtothecamera(commandanddatapair).Acopyofthisbuffercanbesavedtoanyof
theuseraccessiblememorybanksandanyofthememorybankscanbeloadedintothebuffer
(overwritestheoldvalues).
Memorybank0isautomaticallyloaded,whenthecameraispoweredup.Thevaluesarenot
sentoutatthismoment.LOADBank0toread-outthepower-upvalues.Toreadthevalues
thatarecurrentlyinuse(butnotsaved),useoneofthememorybankstofirstSAVEandthen
toLOADthesamevalues.Banknumber59isusedasatemporarystorageplaceforthe
AKYLACamConfsoftware.Banks60to63cannotbewrittento,sincetheycontainfactory
presetvalues.
TheactualdatathatmustbeusedwithLOADorSAVEisMemoryBanknumber64(decimal).
Thus,inordertosavethesettingsofthecameratobeitspowerupvaluessendtheSAVE
command,81,andthensendthedata,whichnowis0+64.Toreloadtheinitialdefaultset-
tingsfromBank63,send80followedby127(decimal).
ThecamerarespondstoSAVEcommandsbysendingbacktheaddressandthedata.
LOADcommandsareacknowledgedbysendingoutthecontentsoftheselectedmemory
bank.Eachofthe16valuesisprecededbytheaddressoftherespectiveregister.Thus,the
responsestartswith(decimal)64,coarse_gain_value_for_odd_pixels_of_red_channel,65,
coarse_gain_value_for_even_pixels_of_red_channel,66andsoonuntilthetotalof32bytes
hasbeensentout.
Please,notethatadelayofatleast10msisrequiredbetweenanytwoconsecutive
SAVEcommands.Datastorageisguaranteedonlyupto100000SAVEcommands.
RetrievePROM
Version(Address82) Usingthisfunction,itispossibletoretrievethenameofthePROMcurrentlyinuseinthecam-
era.IfthePROMisanolderversion,whichdoesn’trecognizethecommand,anerrorcodewill
besentback(e2).InthiscasethePROMlabelshouldbecheckedbyopeningtheaccess
coveroftherearpanel.
Table28.MemoryFunctions
MemoryBank Save Load Notes
0 yes yes Power-upvalues
1to58 yes yes Generalpurpose
59 yes yes UsedbytheAKYLACamConfsoftware
asatemporarystorageplace
60 no yes Reservedforfactorypresetvalues
61 no yes Reservedforfactorypresetvalues
62 no yes High-gainversionofbank63
63 no yes CopyoftheinitialvaluesinBank0
33
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
ThedatabyteforretrievingthePROMversionis82(allotherdatavaluesarereservedfor
futureuse).Allotherdatabyteswillreturntheerrorcodeofillegaldata(codee3).
Example:
ToobtainthePROMversioncurrentlyinuse,sendthe2-byteset82(decimal)and82.
Thecamerareturns82and204,whichmeansthatB04iscurrentlyinuse.
Debugging Ifthecameradoesn'trespondasexpectedgothroughthefollowingchecklist:
1. Isthecablemadecorrectly?
2. AreyouusingthecorrectserialconnectoronthePC?
3. ArethesoftwaresettingsfortheselectedCOMportOK?
4. IstheCOMportactuallybehavingasissetto?Thisisthemostcommonproblem
encountered.Dependingonthecombinationofsoftwareandoperatingsystem,the
actualhardwaremayoperateunderincorrectsettings.Apossiblesolutionis:
Verifytheoperationoftheactualhardwarebymeasuringthewaveformontheinputdata
lineofthecamera(thismayrequiredisassemblingtheconnectorenclosureofthecable).
Thelineislow,whennodatatransferisinprogress.Thetransferalwaysstartswithone
startbit,whichisathigh(1)levelattheconnector.Thedurationofeachbitisabout
104 µs.Thepolarityinthelineisinvertedcomparedtothebitvaluesofthesoftware.
Afterthatthe8databitsfollow.Thelowestbit(LSB)issentoutfirst.Afterthesetherewill
beonestopbit,whichisatalowlevel.Thelineremainsatthisleveluntilthestartofthe
nexttransfer(byte).
Example:Oddpixelsofthebluechannelaresettomaximumbysendingouttwobytes.Firstis
theaddressforthischannel,72asdecimalvalue,andthesecondbyteisthegainvalue,254
(decimal).
Inthefirstparttheactualwaveformisasfollows(LequalsonebitatlowlevelandHequals
onebitathighlevel):
...LLLLLLLLLLLLLLLLLLHHHHLHHLHLLLLLLLLLLLLLLLLLLLLLLLLLLL...
Table29.AddressforRetrievingthePROMNumberinUse
Function Decimal Hexadecimal Binary ASCII
RetrievePROMversion 82 52 01010010 R
Table30.ReturnedDataValueandPROMVersion
ReturnedDataValue PROMLetter PROMNumber
0–99 F returneddataminus0
100–149 G returneddataminus100
150–199 Z returneddataminus150
200–254 B returneddataminus200
34 AKYLAMD20/301010/1014/2010CL 5303A–IMAGE–03/11/03
Similarly,onthefollowingoscilloscopeplot,theupperwaveform(nr.1)representsthesignal
inthecableandthelowerwaveformisthesamesignalasTTLlevels.Thelowerwaveform
correspondsalsotothevaluesofthesoftware(sendingstartswitha0levelstartbit,followed
bythreezeroes,one1,andtwozeroes,one1,onezeroandastopbit,whichisalways1
(waveformtwoisnotaccessiblefortheusers).
Thegainvaluecanbeseeninthecablerespectively:
2T
T
1
Tek Run: 250 ks/s Hi Res [A...]
Trig?
Ch1 Ch1 -2.2V 11 Mar 1999
10:44:22
: 104 µs
@: 520 µs
Ch2 5.00 V5.00 VM 200 µs
2
T
T
1
Tek Run: 250 ks/s Hi Res [A...]
Trig?
Ch1 Ch1 -2.2V 11 Mar 1999
10:45:12
: 104 µs
@: 520 µs
Ch2 5.00 V5.00 VM 200 µs
35
AKYLAMD20/301010/1014/2010CL
5303A–IMAGE–03/11/03
OrderingCodes
Table31.ModelNumbersandOrderingCodesforAKYLACamera
Product CameraDesignation PartNumber
AKYLAMD20CL1010 AKYLAMD20CL1010FMOUNT AT71-MD20CL1010
AKYLAMD20CL2010 AKYLAMD20CL2010FMOUNT AT71-MD20CL2010
AKYLAMD20CL1014 AKYLAMD20CL1014FMOUNT AT71-MD20CL1014
AKYLAMD20LV1010 AKYLAMD20LV1010FMOUNT AT71-MD20LV1010
AKYLAMD20LV2010 AKYLAMD20LV2010FMOUNT AT71-MD20LV2010
AKYLAMD20LV1014 AKYLAMD20LV1014FMOUNT AT71-MD20LV1014
AKYLAMD30CL1010 AKYLAMD30CL1010FMOUNT AT71-MD30CL1010
AKYLAMD30CL2010 AKYLAMD30CL2010FMOUNT AT71-MD30CL2010
AKYLAMD30CL1014 AKYLAMD30CL1014FMOUNT AT71-MD30CL1014
AKYLAMD30LV1010 AKYLAMD30LV1010FMOUNT AT71-MD30LV1010
AKYLAMD30LV2010 AKYLAMD30LV2010FMOUNT AT71-MD30LV2010
AKYLAMD30LV1014 AKYLAMD30LV1014FMOUNT AT71-MD30LV1014
Printedonrecycledpaper.
5303A–IMAGE–03/11/03 0M
©AtmelCorporation2003.
AtmelCorporationmakesnowarrantyfortheuseofitsproducts,otherthanthoseexpresslycontainedintheCompany’sstandardwarranty
whichisdetailedinAtmel’sTermsandConditionslocatedontheCompany’swebsite.TheCompanyassumesnoresponsibilityforanyerrors
whichmayappearinthisdocument,reservestherighttochangedevicesorspecificationsdetailedhereinatanytimewithoutnotice,anddoes
notmakeanycommitmenttoupdatetheinformationcontainedherein.NolicensestopatentsorotherintellectualpropertyofAtmelaregranted
bytheCompanyinconnectionwiththesaleofAtmelproducts,expresslyorbyimplication.Atmel’sproductsarenotauthorizedforuseascritical
componentsinlifesupportdevicesorsystems.
AtmelHeadquarters AtmelOperations
CorporateHeadquarters
2325OrchardParkway
SanJose,CA95131
TEL1(408)441-0311
FAX1(408)487-2600
Europe
AtmelSarl
RoutedesArsenaux41
CasePostale80
CH-1705Fribourg
Switzerland
TEL(41)26-426-5555
FAX(41)26-426-5500
Asia
Room1219
ChinachemGoldenPlaza
77ModyRoadTsimshatsui
EastKowloon
HongKong
TEL(852)2721-9778
FAX(852)2722-1369
Japan
9F,TonetsuShinkawaBldg.
1-24-8Shinkawa
Chuo-ku,Tokyo104-0033
Japan
TEL(81)3-3523-3551
FAX(81)3-3523-7581
Memory
2325OrchardParkway
SanJose,CA95131
TEL1(408)441-0311
FAX1(408)436-4314
Microcontrollers
2325OrchardParkway
SanJose,CA95131
TEL1(408)441-0311
FAX1(408)436-4314
LaChantrerie
BP70602
44306NantesCedex3,France
TEL(33)2-40-18-18-18
FAX(33)2-40-18-19-60
ASIC/ASSP/SmartCards
ZoneIndustrielle
13106RoussetCedex,France
TEL(33)4-42-53-60-00
FAX(33)4-42-53-60-01
1150EastCheyenneMtn.Blvd.
ColoradoSprings,CO80906
TEL1(719)576-3300
FAX1(719)540-1759
ScottishEnterpriseTechnologyPark
MaxwellBuilding
EastKilbrideG750QR,Scotland
TEL(44)1355-803-000
FAX(44)1355-242-743
RF/Automotive
Theresienstrasse2
Postfach3535
74025Heilbronn,Germany
TEL(49)71-31-67-0
FAX(49)71-31-67-2340
1150EastCheyenneMtn.Blvd.
ColoradoSprings,CO80906
TEL1(719)576-3300
FAX1(719)540-1759
Biometrics/Imaging/Hi-RelMPU/
HighSpeedConverters/RFDatacom
AvenuedeRochepleine
BP123
38521Saint-EgreveCedex,France
TEL(33)4-76-58-30-00
FAX(33)4-76-58-34-80
e-mail
literature@atmel.com
WebSite
http://www.atmel.com
Atmel®istheregisteredtrademarkofAtmel;AKYLA™isthetrademarkofAtmel.
VisualC++®, Windows® 95/98/2000 and Windows NT® 4.0 are the registered trademarks of Microsoft
Corporation.CameraLink™isthetrademarkofPulnix.
Othertermsandproductnamesmaybethetrademarksofothers.