1
LT1013/LT1014
10134fc
Quad Precision Op Amp (LT1014)
Dual Precision Op Amp (LT1013)
The LT
®
1014 is the first precision quad operational amplifier
which directly upgrades designs in the industry standard
14-pin DIP LM324/LM348/OP-11/4156 pin configuration.
It is no longer necessary to compromise specifications,
while saving board space and cost, as compared to single
operational amplifiers.
The LT1014’s low offset voltage of 50μV, drift of 0.3μV/°C,
offset current of 0.15nA, gain of 8 million, common mode
rejection of 117dB and power supply rejection of 120dB
qualify it as four truly precision operational amplifiers.
Particularly important is the low offset voltage, since no
offset null terminals are provided in the quad configura-
tion. Although supply current is only 350μA per amplifier,
a new output stage design sources and sinks in excess of
20mA of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in
the 8-pin industry standard configuration, upgrading the
performance of such popular devices as the MC1458/
1558, LM158 and OP-221. The LT1013’s specifications
are similar to (even somewhat better than) the LT1014’s.
Both the LT1013 and LT1014 can be operated off a single
5V power supply: input common mode range includes
ground; the output can also swing to within a few millivolts
of ground. Crossover distortion, so apparent on previous
single-supply designs, is eliminated. A full set of specifi-
cations is provided with ±15V and single 5V supplies.
Single Supply Operation
Input Voltage Range Extends to Ground
Output Swings to Ground while Sinking Current
Pin Compatible to 1458 and 324 with Precision Specs
Guaranteed
Offset Voltage: 150μV Max
Guaranteed
Low Drift: 2μV/°C Max
Guaranteed
Offset Current: 0.8nA Max
Guaranteed
High Gain
5mA Load Current: 1.5 Million Min
17mA Load Current: 0.8 Million Min
Guaranteed
Low Supply Current: 500μA Max
Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p
Low Current Noise—Better than 0P-07, 0.07pA/Hz
Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
Instrumentation Amplifiers
4mA–20mA Current Loop Transmitters
Multiple Limit Threshold Detection
Active Filters
Multiple Gain Blocks
+
LT1014 1
4
11
2
3
+5V
+5V
1M
4k
OUTPUT A
10mV/°C
+
LT1014 7
6
5
1M
OUTPUT B
10mV/°C
4k
1.8k
YSI 44007
5kΩ
AT 25°C
260Ω
1684Ω
299k3k
LT1004
1.2V
14
12
13
+
LT1014
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ±1°C FROM 0°C 60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.
LT1014 Distribution of Offset Voltage
3 Channel Thermocouple Thermometer
INPUT OFFSET VOLTAGE (μV)
300 0 200
200 100 100 300
NUMBER OF UNITS
700
600
500
400
300
200
100
0
VS = ±15V
TA = 25°C
425 LT1014s
(1700 OP AMPS)
TESTED FROM
THREE RUNS
J PACKAGE
1013/14 TA02
FEATURES
TYPICAL APPLICATIO
U
DESCRIPTIO
U
APPLICATIO S
U
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.
2
LT1013/LT1014
10134fc
OBSOLETE PACKAGE
Consider the N or S8 Packages for Alternate Source
Supply Voltage ...................................................... ±22V
Differential Input Voltage ....................................... ±30V
Input Voltage ............... Equal to Positive Supply Voltage
............5V Below Negative Supply Voltage
Output Short-Circuit Duration .......................... Indefinite
Storage Temperature Range
All Grades ......................................... 65°C to 150°C
Lead Temperature (Soldering, 10 sec.)................. 300°C
Operating Temperature Range
LT1013AM/LT1013M/
LT1014AM/LT1014M ...................... 55 °C to 125°C
LT1013AC/LT1013C/LT1013D
LT1014AC/LT1014C/LT1014D................. 0°C to 70°C
LT1013I/ LT1014I............................... 40°C to 85°C
LT1014ACN
LT1014CN
LT1014DN
LT1014IN
ORDER PART
NUMBER
LT1013AMH
LT1013MH
LT1013ACH
LT1013CH
ORDER PART
NUMBER
LT1013ACN8
LT1013CN8
LT1013DN8
LT1013IN8
ORDER PART
NUMBER
1
2
3
4
8
7
6
5
TOP VIEW
OUTPUT A
–IN A
+IN A
V
V
+
OUTPUT B
–IN B
+IN B
N8 PACKAGE
8-LEAD PDIP
J8 PACKAGE
8-LEAD CERDIP
+
A
+
B
+
B
TOP VIEW
OUTPUT B
V
+
OUTPUT A
–IN A –IN B
+IN B
+IN A
V
(CASE)
8
7
6
5
3
2
1
4
H PACKAGE
8-LEAD TO-5 METAL CAN
+
A
1
2
3
4
5
6
7
TOP VIEW
N PACKAGE
14-LEAD PDIP
J PACKAGE
14-LEAD CERDIP
14
13
12
11
10
9
8
OUTPUT A
–IN A
+IN A
V
+
+IN B
–IN B
OUTPUT B
OUTPUT D
–IN D
+IN D
V
+IN C
–IN C
OUTPUT C
+
A
+
D
+B
+
C
1
2
3
4
5
6
7
8
TOP VIEW
SW PACKAGE
16-LEAD PLASTIC SO
16
15
14
13
12
11
10
9
OUTPUT A
–IN A
+IN A
V
+
+IN B
–IN B
OUTPUT B
NC
OUTPUT D
–IN D
+IN D
V
+IN C
–IN C
OUTPUT C
NC
ABSOLUTE AXI U RATI GS
W
WW
U
PACKAGE/ORDER I FOR ATIO
UUW
(Note 1)
LT1013AMJ8
LT1013MJ8
LT1013ACJ8
LT1013CJ8
LT1014AMJ
LT1014MJ
LT1014ACJ
LT1014CJ
ORDER PART
NUMBER
LT1013DS8
LT1013IS8
PART MARKING
1013
1013I
ORDER PART
NUMBER
LT1014DSW
LT1014ISW
PART MARKING
LT1014DSW
LT1014ISW
1
2
3
4
8
7
6
5
TOP VIEW
–INA
OUTA
V+
OUTB
+INA
V
+INB
–INB
S8 PACKAGE
8-LEAD PLASTIC SO
+
+
NOTE: THIS PIN CONFIGURATION DIFFERS FROM
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
Consult LTC Marketing for parts specified with wider operating temperature ranges.
T
JMAX
= 150°C, θ
JA
= 100°C/W
T
JMAX
= 150°C, θ
JA
= 100°C/W
OBSOLETE PACKAGE
Consider the N or S8 (not N8) Packages for Alternate Source
T
JMAX
= 150°C, θ
JA
= 130°C/W
T
JMAX
= 150°C, θ
JA
= 100°C/W
T
JMAX
= 150°C, θ
JA
= 130°C/W
T
JMAX
= 150°C, θ
JA
= 190°C/W
T
JMAX
= 150°C, θ
JA
= 150°C/W, θ
JC
= 45°C/W
OBSOLETE PACKAGE
Consider the N or SW Packages for Alternate Source
3
LT1013/LT1014
10134fc
LT1013AM/AC LT1013C/D/I/M
LT1014AM/AC LT1014C/D/I/M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage LT1013 40 150 60 300 μV
LT1014 50 180 60 300 μV
LT1013D/I, LT1014D/I 200 800 μV
Long Term Input Offset Voltage 0.4 0.5 μV/Mo.
Stability
I
SO
Input Offset Current 0.15 0.8 0.2 1.5 nA
I
B
Input Bias Current 12 20 15 30 nA
e
n
Input Noise Voltage 0.1Hz to 10Hz 0.55 0.55 μVp-p
e
n
Input Noise Voltage Density f
O
= 10Hz 24 24 nV/Hz
f
O
= 1000Hz 22 22 nV/Hz
i
n
Input Noise Current Density f
O
= 10Hz 0.07 0.07 pA/Hz
Input Resistance – Differential (Note 2) 100 400 70 300 MΩ
Common Mode 5 4 GΩ
A
VOL
Large Signal Voltage Gain V
O
= ±10V, R
L
= 2k 1.5 8.0 1.2 7.0 V/μV
V
O
= ±10V, R
L
= 600Ω0.8 2.5 0.5 2.0 V/μV
Input Voltage Range +13.5 +13.8 +13.5 +13.8 V
15.0 15.3 15.0 15.3 V
CMRR Common Mode Rejection Ratio V
CM
= +13.5V, –15.0V 100 117 97 114 dB
PSRR Power Supply Rejection Ratio V
S
= ±2V to ±18V 103 120 100 117 dB
Channel Separation V
O
= ±10V, R
L
= 2k 123 140 120 137 dB
V
OUT
Output Voltage Swing R
L
= 2k ±13 ±14 ±12.5 ±14 V
Slew Rate 0.2 0.4 0.2 0.4 V/μs
I
S
Supply Current Per Amplifier 0.35 0.50 0.35 0.55 mA
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
ELECTRICAL CHARACTERISTICS
LT1013AM/AC LT1013C/D/I/M
LT1014AM/AC LT1014C/D/I/M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage LT1013 60 250 90 450 μV
LT1014 70 280 90 450 μV
LT1013D/I, LT1014D/I 250 950 μV
I
OS
Input Offset Current 0.2 1.3 0.3 2.0 nA
I
B
Input Bias Current 15 35 18 50 nA
A
VOL
Large Signal Voltage Gain V
O
= 5mV to 4V, R
L
= 500Ω 1.0 1.0 V/μV
Input Voltage Range +3.5 + 3.8 +3.5 + 3.8 V
0 0.3 0 0.3 V
V
OUT
Output Voltage Swing Output Low, No Load 15 25 15 25 mV
Output Low, 600Ω to Ground 5 10 5 10 mV
Output Low, I
SINK
= 1mA 220 350 220 350 mV
Output High, No Load 4.0 4.4 4.0 4.4 V
Output High, 600Ω to Ground 3.4 4.0 3.4 4.0 V
I
S
Supply Current Per Amplifier 0.31 0.45 0.32 0.50 mA
TA = 25°C. VS+ = + 5V, V S = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted
4
LT1013/LT1014
10134fc
The denotes the specifications which apply over the temperature range
55°C TA 125°C. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AM LT1014AM LT1013M/LT1014M
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 80 300 90 350 110 550 μV
V
S
= +5V, 0V; V
O
= + 1.4V
–55°C T
A
100°C 80 450 90 480 100 750 μV
V
CM
= 0.1V, T
A
= 125°C 120 450 150 480 200 750 μV
V
CM
= 0V, T
A
= 125°C 250 900 300 960 400 1500 μV
Input Offset Voltage Drift (Note 3) 0.4 2.0 0.4 2.0 0.5 2.5 μV/°C
I
OS
Input Offset Current 0.3 2.5 0.3 2.8 0.4 5.0 nA
V
S
= +5V, 0V; V
O
= +1.4V 0.6 6.0 0.7 7.0 0.9 10.0 nA
I
B
Input Bias Current 15 30 15 30 18 45 nA
V
S
= +5V, 0V; V
O
= +1.4V 20 80 25 90 28 120 nA
A
VOL
Large Signal Voltage Gain V
O
= ±10V, R
L
= 2k 0.5 2.0 0.4 2.0 0.25 2.0 V/μV
CMRR Common Mode Rejection V
CM
= +13.0V, –14.9V 97 114 96 114 94 113 dB
PSRR Power Supply Rejection V
S
= ±2V to ±18V 100 117 100 117 97 116 dB
Ratio
V
OUT
Output Voltage Swing R
L
= 2k ±12 ±13.8 ±12 ±13.8 ±11.5 ±13.8 V
V
S
= +5V, 0V
R
L
= 600Ω to Ground
Output Low 6 15— 615— 618 mV
Output High 3.2 3.8 3.2 3.8 3.1 3.8 V
I
S
Supply Current 0.38 0.60 0.38 0.60 0.38 0.7 mA
Per Amplifier V
S
= +5V, 0V; V
O
= +1.4V 0.34 0.55 0.34 0.55 0.34 0.65 mA
ELECTRICAL CHARACTERISTICS
5
LT1013/LT1014
10134fc
The denotes the specifications which apply over the temperature range
40°C TA 85°C for LT1013I, LT1014I, 0°C TA 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless
otherwise noted.
LT1013C/D/I
LT1013AC LT1014AC LT1014C/D/I
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS
V
OS
Input Offset Voltage 55 240 65 270 80 400 μV
LT1013D/I, LT1014D/I 230 1000 μV
V
S
= +5V, 0V; V
O
= 1.4V 75 350 85 380 110 570 μV
LT1013D/I, LT1014D/I
V
S
= +5V, 0V; V
O
= 1.4V 280 1200 μV
Average Input Offset (Note 3) 0.3 2.0 0.3 2.0 0.4 2.5 μV/°C
Voltage Drift LT1013D/I, LT1014D/I ———————0.75.0μV/°C
I
OS
Input Offset Current 0.2 1.5 0.2 1.7 0.3 2.8 nA
V
S
= +5V, 0V; V
O
= 1.4V 0.4 3.5 0.4 4.0 0.5 6.0 nA
I
B
Input Bias Current 13 25 13 25 16 38 nA
V
S
= +5V, 0V; V
O
= 1.4V 18 55 20 60 24 90 nA
A
VOL
Large Signal Voltage Gain V
O
= ±10V, R
L
= 2k 1.0 5.0 1.0 5.0 0.7 4.0 V/μV
CMRR Common Mode Rejection V
CM
= +13.0V, –15.0V 98 116 98 116 94 113 dB
Ratio
PSRR Power Supply Rejection V
S
= ±2V to ±18V 101 119 101 119 97 116 dB
Ratio
V
OUT
Output Voltage Swing R
L
= 2k ±12.5 ±13.9 ±12.5 ±13.9 ±12.0 ±13.9 V
V
S
= +5V, 0V; R
L
= 600Ω
Output Low — 613— 613— 613 mV
Output High 3.3 3.9 3.3 3.9 3.2 3.9 V
I
S
Supply Current per Amplifier 0.36 0.55 0.36 0.55 0.37 0.60 mA
V
S
= +5V, 0V; V
O
= 1.4V 0.32 0.50 0.32 0.50 0.34 0.55 mA
ELECTRICAL CHARACTERISTICS
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Rating condition for extended periods may affect device reliability
and lifetime.
Note 2: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically
240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.
6
LT1013/LT1014
10134fc
Offset Voltage Drift with
Temperature of Representative
Units
TEMPERATURE (°C)
–50
INPUT OFFSET VOLTAGE (μV)
200
100
0
–100
–200
050 75
–25 25 100 125
VS = ±15V
1013/14 TPC01
TIME AFTER POWER ON (MINUTES)
0
CHANGE IN OFFSET VOLTAGE (μV)
5
4
3
2
1
04
1235
V
S
= ±15V
T
A
= 25°C
LT1013 CERDIP (J) PACKAGE
LT1013 METAL CAN (H) PACKAGE
LT1014
1013/14 TPC03
Warm-Up Drift
BALANCED SOURCE RESISTANCE (Ω)
1k 3k 10k 30k 100k 300k 1M 3M 10M
INPUT OFFSET VOLTAGE (mV)
10
1
0.1
0.01
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C
VS = 5V, 0V, 25°C
VS = ±15V, 0V, 25°C
+
RS
RS
1013/14 TPC02
Offset Voltage vs Balanced
Source Resistance
Common Mode Rejection Ratio
vs Frequency 0.1Hz to 10Hz Noise
Power Supply Rejection Ratio
vs Frequency
FREQUENCY (Hz)
10
COMMON MODE REJECTION RATIO (dB)
120
100
80
60
40
20
0
100 1k 10k 100k 1M
V
S
= 5V, 0V V
S
= ±15V
T
A
= 25°C
1013/14 TPC04
FREQUENCY (Hz)
0.1
POWER SUPPLY REJECTION RATIO (dB)
120
100
80
60
40
20
0100 10k
110 1k 100k 1M
POSITIVE
SUPPLY
NEGATIVE
SUPPLY
V
S
= ±15V + 1V
P-P
SINE WAVE
T
A
= 25°C
1013/14 TPC05
TIME (SECONDS)
0
NOISE VOLTAGE (200nV/DIV)
8
24610
T
A
= 25°C
V
S
= ±2V TO ±18V
1013/14 TPC06
10Hz Voltage Noise
Distribution
Noise Spectrum Supply Current vs Temperature
FREQUENCY (Hz)
1
VOLTAGE NOISE DENSITY (nV/Hz)
CURRENT NOISE DENSITY (fA/Hz)
1000
100
10
300
30
10 100 1k
CURRENT NOISE
VOLTAGE NOISE
1/f CORNER 2Hz
T
A
= 25°C
V
S
= ±2V TO ±18V
1013/14 TPC07
VOLTAGE NOISE DENSITY (nV/Hz)
10
NUMBER OF UNITS
200
180
160
140
120
100
80
60
40
20
050
20 30 40 60
V
S
= ±15V
T
A
= 25°C
328 UNITS TESTED
FROM THREE RUNS
1013/14 TPC08
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (μA)
460
420
380
340
300
260 050 75
–25 25 100 125
VS = ±15V
VS = 5V, 0V
1013/14 TPC09
TYPICAL PERFOR A CE CHARACTERISTICS
UW
7
LT1013/LT1014
10134fc
INPUT BIAS CURRENT (nA)
0
COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V)
5
4
3
2
1
0
–1
COMMON MODE INPUT VOLTAGE, VS = ±15V (V)
15
10
5
0
–5
–10
–15
–5 –10 –15 –20 –25 –30
TA = 25°C
VS = 5V, 0V
VS = ±15V
1013/14 TPC10
Input Bias Current vs
Common Mode Voltage
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
–30
–25
–20
–15
–10
–5
025 75
–25 0 50 100 125
V
CM
= 0V
V
S
= 5V, 0V
V
S
= ±15V
V
S
= ±2.5V
1013/14 TPC12
TEMPERATURE (°C)
–50
INPUT OFFSET CURRENT (nA)
1.0
0.8
0.6
0.4
0.2
0050 75
–25 25 100 125
V
CM
= 0V
V
S
= 5V, 0V
V
S
= ±2.5V
V
S
= ±15V
1013/14 TPC11
Input Bias Current vs
Temperature
Large Signal Transient
Response, VS = ±15V
5V/DIV
A
V
= +1 50μs/DIV 1013/14 TPC15
Large Signal Transient
Response, VS = 5V, 0V
A
V
= +1 10μs/DIV 1013/14 TPC18
NO LOAD
INPUT = 0V TO 4V PULSE
4V
2V
0V
Small Signal Transient
Response, VS = ±15V
20mV/DIV
A
V
= +1 2μs/DIV 1013/14 TPC14
Large Signal Transient
Response, VS = 5V, 0V
A
V
= +1 10μs/DIV 1013/14 TPC17
R
L
= 4.7k TO 5V
INPUT = 0V TO 4V PULSE
4V
2V
0V
Output Saturation vs Sink
Current vs Temperature
TEMPERATURE (°C)
50 25 0 25 50 75 100 125
SATURATION VOLTAGE (V)
10
1
0.1
0.01
V
+
= 5V TO 30V
V
= 0V
I
SINK
= 10mA
I
SINK
= 5mA
I
SINK
= 1mA
I
SINK
= 100μA
I
SINK
= 10μA
I
SINK
= 0
1013/14 TPC13
A
V
= +1 20μs/DIV 1013/14 TPC16
R
L
= 600Ω TO GROUND
INPUT = 0V TO 100mV PULSE
Small Signal Transient
Response, VS = 5V, 0V
100mV
50mV
0
Input Offset Current vs
Temperature
TYPICAL PERFOR A CE CHARACTERISTICS
UW
8
LT1013/LT1014
10134fc
Voltage Gain vs Frequency
FREQUENCY (Hz)
0.01 0.1
VOLTAGE GAIN (dB)
1M 10M
110
100 1k 10k 100k
140
120
100
80
60
40
20
0
–20
V
S
= ±15VV
S
= 5V, 0V
T
A
= 25°C
C
L
= 100pF
1013/14 TPC21
LOAD RESISTANCE TO GROUND (Ω)
100
100k
VOLTAGE GAIN (V/V)
1M
10M
1k 10k
VO = 20mV TO 3.5V
WITH VS = 5V, 0V
TA = 25°C, VS = ±15V
TA = –55°C, VS = ±15V
TA = 125°C, VS = ±15V
TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V
TA = 125°C, VS = 5V, 0V
VO = ±10V WITH VS = ±15V
1013/14 TPC20
Output Short-Circuit Current
vs Time
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
0
SHORT-CIRCUIT CURRENT (mA)
SINKING SOURCING
12
40
30
20
10
0
–10
–20
–30
–40 3
–55°C
25°C
25°C
125°C
125°C
–55°CV
S
= ±15V
1013/14 TPC19
Voltage Gain vs Load
Resistance
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply
operation, i.e., when the negative supply is 0V. Input
common mode range includes ground; the output swings
within a few millivolts of ground. Single supply operation,
however, can create special difficulties, both at the input
and at the output. The LT1013/LT1014 have specific
circuitry which addresses these problems.
At the input, the driving signal can fall below 0V— inad-
vertently or on a transient basis. If the input is more than
a few hundred millivolts below ground, two distinct prob-
lems can occur on previous single supply designs, such as
the LM124, LM158, OP-20, OP-21, OP-220, OP-221,
OP-420:
a) When the input is more than a diode drop below ground,
unlimited current will flow from the substrate (V
termi-
nal) to the input. This can destroy the unit. On the LT1013/
LT1014, the 400Ω resistors, in series with the input (see
Schematic Diagram), protect the devices even when the
input is 5V below ground.
Gain, Phase vs Frequency
FREQUENCY (MHz)
0.1 0.3
VOLTAGE GAIN (dB)
20
10
0
–10
PHASE SHIFT (DEGREES)
80
100
120
140
160
180
200
13 10
T
A
= 25°C
V
CM
= 0V
C
L
= 100pF
PHASE
±15V
5V, 0V
±15V
5V, 0V
GAIN
1013/14 TPC22
Channel Separation vs
Frequency
FREQUENCY (Hz)
10
CHANNEL SEPARATION (dB)
160
140
120
100
80
60 100k
100 1k 10k 1M
LIMITED BY
THERMAL
INTERACTION
R
S
= 1kΩ
R
S
= 100Ω
V
S
= ±15V
T
A
= 25°C
V
IN
= 20Vp-p to 5kHz
R
L
= 2k
LIMITED BY
PIN TO PIN
CAPACITANCE
1013/14 TPC23
APPLICATIO S I FOR ATIO
WUUU
TYPICAL PERFOR A CE CHARACTERISTICS
UW
9
LT1013/LT1014
10134fc
b) When the input is more than 400mV below ground (at
25°C), the input stage saturates (transistors Q3 and Q4)
and phase reversal occurs at the output. This can cause
lock-up in servo systems. Due to a unique phase reversal
protection circuitry (Q21, Q22, Q27, Q28), the LT1013/
LT1014’s outputs do not reverse, as illustrated below, even
when the inputs are at –1.5V.
There is one circumstance, however, under which the phase
reversal protection circuitry does not function: when the
other op amp on the LT1013, or one specific amplifier of the
other three on the LT1014, is driven hard into negative
saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s
outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s
outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s
outputs have no effect.
D when A’s output is negative saturation. B’s and C’s
outputs have no effect.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP-20) or
cannot sink more than a few microamperes while swing-
ing to ground (LM124, LM158). The LT1013/LT1014’s
all-NPN output stage maintains its low output resistance
and high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion-free.
Comparator Applications
The single supply operation of the LT1013/LT1014 lends
itself to its use as a precision comparator with TTL
compatible output:
In systems using both op amps and comparators, the
LT1013/LT1014 can perform multiple duties; for example,
on the LT1014, two of the devices can be used as op amps
and the other two as comparators.
4V
LT1013/LT1014
NO PHASE REVERSAL
2V
4V
0V
6Vp-p INPUT, –1.5V TO 4.5V
4V
LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL
V
S
= 5V, 0V 50μs/DIV
4
2
0
100
0
V
S
= 5V, 0V 50μs/DIV
2
0
0
100
INPUT (mV) OUTPUT (V)
INPUT (mV) OUTPUT (V)
Voltage Follower with Input Exceeding the Negative Common Mode Range
Comparator Rise Response Time
10mV, 5mV, 2mV Overdrives
Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
2V2V
0V0V
4
APPLICATIO S I FOR ATIO
WUUU
10
LT1013/LT1014
10134fc
Low Supply Operation
The minimum supply voltage for proper operation of the
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical
supply current at this voltage is 290μA, therefore power
dissipation is only one milliwatt per amplifier.
Noise Testing
For applications information on noise testing and calcula-
tions, please see the LT1007 or LT1008 data sheet.
Test Circuit for Offset Voltage and
Offset Drift with Temperature
+
LT1013
OR LT1014
LT1013/14 F06
+15V
–15V
100Ω*
50k*
50k*
VO
RESISTOR MUST HAVE LOW
THERMOELECTRIC POTENTIAL.
THIS CIRCUIT IS ALSO USED AS THE BURN-IN
CONFIGURATION, WITH SUPPLY VOLTAGES
INCREASED TO ±20V.
VO = 1000VOS
*
**
50MHz Thermal rms to DC Converter
+
+
LT1014
LT1014
8
10
9
7
4
11
6
5
0V–4V
OUTPUT
10k*
10k*10k*
10k*
10k
10k*
20k
FULL-
SCALE
TRIM
+5V
+
LT1014 14
13
12
10k*100k*
0.01
0.01
+
LT1014 1
2
3
100k*
0.01
300Ω*
30k*
1μF
1μF
10k
10k
T1A T1B T2B T2A
BRN RED RED
GRN GRN
BRN
INPUT
300mV–
10VRMS
+5V
2% ACCURACY, DC–50MHz.
100:1 CREST FACTOR CAPABILITY.
0.1% RESISTOR.
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.
ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.
*
30k*
1013/14 TA03
+
1/2 LT1013
8
4
7
5
6
+5V
OUTPUT A
R2
R1
1μF
1μF
5
2
3
15
6
18
+INPUT
INPUT
+
1/2 LT1013 1
3
2
OUTPUT B
R2
R1
1μF
8
11
12
14
7
13
+INPUT
INPUT
1/2 LTC1043
1/2 LTC1043
16
0.01
OFFSET = 150μV
GAIN = + 1.
CMRR = 120dB.
COMMON-MODE RANGE IS 0V TO 5V.
R2
R1
1μF
1013/14 TA04
5V Single Supply Dual Instrumentation Amplifier
TYPICAL APPLICATIO S
U
APPLICATIO S I FOR ATIO
WUUU
11
LT1013/LT1014
10134fc
+
+
A2
LT1014
6
5
7
6.98k*
1k*
5k
FLOW
CALIB
1μF
10M
RESPONSE
TIME
100k
1M*
+
A1
LT1014
2
3
1
1M*
1M*
6.25k**
1M*
T2T1
3.2k*
3.2k**
6.25k**
15Ω
DALE
HL-25
A4
LT1014
12
13
14
4
11
+15V
–15V
300pF
4.7k
+15V
OUTPUT
0Hz 300Hz =
0 300ML/MIN
1N4148
+
A3
LT1014
9
10
8100k
100k
0.1
100k
383k*
2.7k
–15V
LT1004
–1.2
2N4391
15Ω HEATER RESISTOR
FLOWFLOW
PIPE
T1 T2 1% FILM RESISTOR.
SUPPLIED WITH YSI THERMISTOR NETWORK.
T1, T2 YSI THERMISTOR NETWORK = #44201.
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED
FREQUENCY OUTPUT.
*
**
+15V
1013/14 TA06
Hot Wire Anemometer
+
+
+
A4
LT1014
13
14
12
0V–10V =
0–1000 FEET/MINUTE
10M
RESPONSE
TIME
ADJUST
1μF
1μF
100k
A3
LT1014
9
8
10
500k
2M
FULL-
SCALE
FLOW
12k
A2
LT1014
6
7
5
150k*2k
Q4
Q5
Q2
Q3
1000pF
33k
2k
Q2–Q5
CA3046
PIN 3 TO –15V
1k
ZERO
FLOW
3.3k
15V
150k*
+15V
+
A1
LT1014
2
1
3
Q1
2N6533
220
500pF
+15V
15V
4
11
0.01μF
10k*
27Ω
1W
2k*
#328
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
1% RESISTOR.
*
1013/14 TA05
Liquid Flowmeter
TYPICAL APPLICATIO S
U
12
LT1013/LT1014
10134fc
5V Powered Precision Instrumentation Amplifier
+
LT1014
6
5
+
LT1014
2
3
7
1
200k*
200k*
RG (TYP 2k)
+5V
+5V
20k
20k
INPUT
+INPUT
+
LT1014
13
12
14
10k
10k
10k*
10k* 10k*
10k*
OUTPUT
4
11
+5V
+
LT1014
9
10
8
TO
INPUT
CABLE SHIELDS
1% FILM RESISTOR. MATCH 10k's 0.05%
GAIN EQUATION: A = + 1.
FOR HIGH SOURCE IMPEDANCES,
USE 2N2222 AS DIODES.
400,000
RG
*
1μF
1013/14 TA07
9V Battery Powered Strain Gauge Signal Conditioner
+
LT1014
13
12
14
+
LT1014
6
5
7
+
LT1014
9
10
8
100k
100k
499
499
350Ω
STRAIN GAUGE
BRIDGE
TO A/D RATIO
REFERENCE
2N2219
330Ω
0.01
4.7k
47μF
+9V
TO A/D
22M
+
LT1014
2
3
1
1N4148
100k
100k100k
0.068
15k
0.068
0.068
15k
3k
15
14
7
6
13
9
+9V
TO A/D
CONVERT COMMAND
1
5
+9V
4
11
74C221
+9V
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT 650μA.
4.7k–0.01μF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO
HIGH ΔV/ΔT STEPS.
1013/14 TA08
TYPICAL APPLICATIO S
U
13
LT1013/LT1014
10134fc
5V Powered Motor Speed Controller
No Tachometer Required
+
A1
1/2 LT1013
2
3
1
6
5
7
100k
0.47
330k
1M
6.8M
2k
0.068
+
A2
1/2 LT1013
5V
8
4
E
IN
0V–3V
2k
3.3M
Q1
2N3904
0.47
0.068
Q2
1N4148
1N4148
2k
82Ω
1k
+5V
Q3
2N5023
+
1N4001
1N4001
47
MOTOR = CANON–FN30–R13N1B.
A1 DUTY CYCLE MODULATES MOTOR.
A2 SAMPLES MOTORS BACK EMF.
1/4 CD4016
1013/14 TA09
+
LT1013
6
5
7
8
4
1k
4.7M
120k
2N2222
OUTPUT
100K*
6.19K
0.005
+
LT1013
2
3
11N4148
LT1004
1.2V
100k 100Ω
10Ω
20k
0.33
0.1
+5V
1N4148
1N4148 1N4148
0.05
2N2222
2N2222
2N2222
4.7k
820
270Ω
820
1N4148
TTL INPUT
1N4148
+5V
MEETS ALL V
PP
PROGRAMMING SPECS WITH NO TRIMS AND
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.
SUITABLE FOR BATTERY POWERED USE (600μA QUIESCENT CURRENT).
1% METAL FILM.
*600μs RC
21V
DALE
#TC-10-04
1013/14 TA10
5V Powered EEPROM Pulse Generator
TYPICAL APPLICATIO S
U
14
LT1013/LT1014
10134fc
Methane Concentration Detector with Linearized Output
+
+
13
12
14
A4
LT1014
74C04
74C04
74C04
470pF
10k
470pF
+5V
–5V 1N4148
OUTPUT
500ppm-10,000ppm
50Hz 1kHz
2k
1N4148 (4)
+
6
5
7
A2
LT1014
Q4
Q3Q2
Q1
150k*2k
1000pF
100k*
+
2
3
1
A1
LT1014
4
+5V
5k
1000ppm
TRIM
12k*
LTC1044
10μF
423
58
+5V
SENSOR
9
10
8
A3
LT1014
11
100k*
390k*
LT1004
1.2V
10μF
+
0.033
14
1
–5V
+5V
CD4016
1% METAL FILM RESISTOR
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
*
–5V
+
CA3046
1
14
2.7k
1013/14 TA11
Low Power 9V to 5V Converter
+
LT1013
1
2
3
330k
+9V
LT1004
1.2V
120k
1%
390k
1%
5V
20mA
2N5434
+
LT1013
7
5
6
HP5082-2811
100μA
8
4
+9V
47k
+
471N4148
L
10k
10k
2N2905
L = DALE TE-3/Q3/TA.
SHORT CIRCUIT CURRENT = 30mA.
75% EFFICIENCY.
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
+9V INPUT
V
D
= 200mV
1013/14 TA12
TYPICAL APPLICATIO S
U
15
LT1013/LT1014
10134fc
5V Powered 4mA20mA Current Loop Transmitter
+
A2
1/2 LT1013
3
2
1
+
A1
1/2 LT1013
6
5
7
100k
4.3k
+5V
8
4
LT1004
1.2V
+5V
10μF
4mA-20mA OUT
FULLY FLOATING
8-BIT ACCURACY.
0.1Ω
68k*
301Ω*
1k
20mA
TRIM
4k*
10k*
2k
4mA
TRIM
INPUT
0V–4V
TO INVERTER
DRIVE
+
T1
1N4002 (4)
1013/14 TA14
Fully Floating Modification to 4mA-20mA Current Loop
+
A2
1/2 LT1013
6
5
7
+
A1
1/2 LT1013
2
3
1
INPUT
0 TO 4V
1k
4mA
TRIM
4k*
10k*
4.3k
+5V
8
4
LT1004
1.2V
2k
Q4
2N2222
100pF
+5V
0.33
100k
10k*
80k*
10k*
20mA
TRIM
10μF
Q1
2N2905
Q2
2N2905
10k 10k
0.002
820Ω
820Ω
10μF
+
100Ω*
4mA-20mA OUT
TO LOAD
2.2kΩ MAXIMUM
68Ω
Q3
2N2905
+5V
12-BIT ACCURACY.
1% FILM.
T1 = PICO-31080.
*
1N4002 (4)
T1
+
74C04
(6)
1013/14 TA13
TYPICAL APPLICATIO S
U
16
LT1013/LT1014
10134fc
5V Powered, Linearized Platinum RTD Signal Conditioner
+
A4
1/4 LT1014
9
10
8OUTPUT
0V–4V =
0°C–400°C
±0.05°C
GAIN TRIM
1k
3.01k
150Ω
+
A2
1/4 LT1014
2
3
1
+
A3
1/4 LT1014
6
5
7
2M
5k
LINEARITY
200k
200k
2M
50k
ZERO
TRIM
8.25k
274k
10k
+
A1
1/4 LT1014
13
12
14
+5V
4
11
250k
2.4k
5%
LT1009
2.5V
+5V
SENSOR
Q2Q1
167Ω499Ω
1.5k
ROSEMOUNT
118MF
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.
RATIO MATCH 2M–200K ± 0.01%.
TRIM SEQUENCE:
SET SENSOR TO 0° VALUE.
ADJUST ZERO FOR 0V OUT.
SET SENSOR TO 100°C VALUE.
ADJUST GAIN FOR 1.000V OUT.
SET SENSOR TO 400°C.
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
2N4250
(2)
1013/14 TA15
Strain Gauge Bridge Signal Conditioner
+
1/2 LT1013
5
6
7
0.047
2k GAIN TRIM
46k*
100Ω*
OUTPUT 0V–3.5V
0psi–350psi
0.33
100k
10k
ZERO
TRIM
A
D
E
C
301k
VREF
220
+5V
1.2VOUT REFERENCE
TO A/D CONVERTER
FOR RATIOMETRIC OPERATION
1mA MAXIMUM LOAD
+
2
3
139k
8
4
+5V
1/2 LT1013
0.1
8
5
2
4
+
100μF
+
100μF
PRESSURE
TRANSDUCER
350Ω
V –V
REF
LTC1044
1% FILM RESISTOR.
PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.
*
LT1004
1.2V
1013/14 TA16
TYPICAL APPLICATIO S
U
17
LT1013/LT1014
10134fc
LVDT Signal Conditioner
+
LT1013 1
3
2
200k
10k
OUT
0V–3V
1μF
100k
14
8
1313
7
12
11
BLK
GRN
BLUE
RD-
BLUE
+
LT1011 7
2
3
1/2 LTC1043
1
8
4
1k
+5V
TO PIN 16, LT1043
100k
7.5k
0.01
100k
PHASE
TRIM
LVDT
YEL-BLK
+
LT1013 7
5
6
+5V
–5V
0.0050.005 30k
30k
10k
4.7k
1.2k
1N914
LT1004
1.2V
+
10μF
2N4338
LVDT = SCHAEVITZ E-100.
FREQUENCY =
1.5kHz
YEL-RD
1013/14 TA17
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
+
1/4 LT1014
9
10
8OUTPUT
+
1/4 LT1014
6
5
7
+
1/4 LT1014
12
13
14
4
11
R3
R2
R2
R1
R
G
R1
+
1/4 LT1014
2
3
1
V
V
+
100k
10pF
2R
10M
R
5M
+INPUT
–INPUT
R3
GAIN = 1 +
()
2R1
R
G
R3
R2
INPUT BIAS CURRENT TYPICALLY <1nA
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN
NEGATIVE COMMON-MODE LIMIT = V
+ I
B
× 2R + 30mV
= 150mV for V
= 0V
I
B
= 12nA
2R
10M
1013/14 TA18
TYPICAL APPLICATIO S
U
18
LT1013/LT1014
10134fc
Voltage Controlled Current Source with Ground Referred Input and Output
+
LT1013
3
2
1
8
4
+
A2
LT1013
6
5
7
1M
LT1004
1.2V
1.2k
1N914
0.01Ω
100k 100Ω
120k
30k
VBATT
6V
0.003μF
5V OUTPUT
50k
OUTPUT ADJUST
10
245
38
LTC1044
100Ω
1N914
+12 OUTPUT
10
2N2219
0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT.
IQUIESCENT = 850μA.
+
+
1013/14 TA19
Low Dropout Regulator for 6V Battery
+
1/2 LT1013
3
2
1
8
4
+5V
0V–2V
1μF
8
11
12
14
7
13
1/2 LTC1043
0.68μF
1k
100Ω
1μF
IOUT = 0mA TO 15mA
IOUT = VIN
100Ω
FOR BIPOLAR OPERATION,
RUN BOTH ICs FROM
A BIPOLAR SUPPLY. 1013/14 TA20
TYPICAL APPLICATIO S
U
19
LT1013/LT1014
10134fc
+
1/2 LT1013 1
8
4
3
2
+
1/2 LT1013 7
6
5
+5V
1M*
5M*
20k
4.22M*
4.22M*
100k
+5V
1M*RT1
3.2k
1M*
RT2
6.25k
RT
YSI 44201
2.16k*
3.4k*
4.3k
TEMPERATURE
COMPENSATION
GENERATOR
LT1009
2.5V
+5V
680Ω
100Ω
100k
560k
MV-209
3.5MHz
XTAL
OSCILLATOR SUPPLY
STABILIZATION
OSCILLATOR
510pF
510pF
3.5MHz OUTPUT
0.03ppm/°C, 0°C–70°C
2N2222
1% FILM
3.5MHz XTAL = AT CUT – 35°20'
MOUNT RT NEAR XTAL
3mA POWER DRAIN
THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO
MINIMIZE OVERALL OSCILLATOR DRIFT
*
1013/14 TA22
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)
+
LT1013
6
5
7
+
LT1013
2
8
4
3
1
1M
1.4M
82k
0.005
2N5114
2N4391
LT1004
1.2V
100k
+6V
+16V
–16V
0.005
10
+15VOUT
15VOUT
200k
VOUT
ADJ
+
15pF
15pF
1μF
10
+
+16V
16V
L1
1MHY
2N3904
2N3906
10k
10k
10k
22k
22k
10k
+V Q1 CLK 2
D1 Q1 Q2D2
CLK 1 Q2
74C74
+
100kHz INPUT
L1 = 24-104 AIE VERNITRON
±5mA OUTPUT
75% EFFICIENCY
+6V
74C00
+6V
= 1N4148
1013/14 TA21
6V to ±15V Regulating Converter
TYPICAL APPLICATIO S
U
20
LT1013/LT1014
10134fc
1/2 LT1013, 1/4 LT1014
9k 9k 1.6k
5k 2k5k
Q5 Q6
1.6k
Q16
Q30
Q14Q13
Q3
Q4
Q1
Q21
400Ω
Q2
Q22
400Ω
Q12
Q11
1.6k
Q15
100Ω
2k
Q9 Q7
Q29
Q17
1.3k
Q20
Q26
10pF
Q8 Q23
Q31
3.9k 21pF
2.5pF
Q32
1k
Q18
Q19
Q25
2.4k 18Ω
100pF
4pF
2k
75pF
Q24
30Ω
42k
14k
Q33
Q34
Q37
Q38
Q40
J1
Q39
Q41
600Ω
800Ω
V
V
+
IN
IN
Q10
OUTPUT
Q35
Q36
Q27
Q28
+
1013/14 SD
SCHE ATIC DIAGRA
WW
21
LT1013/LT1014
10134fc
J8 1298
0.014 – 0.026
(0.360 – 0.660)
0.200
(5.080)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.125
3.175
MIN
0.100
(2.54)
BSC
0.300 BSC
(0.762 BSC)
0.008 – 0.018
(0.203 – 0.457) 0° – 15°
0.005
(0.127)
MIN
0.405
(10.287)
MAX
0.220 – 0.310
(5.588 – 7.874)
1234
87
65
0.025
(0.635)
RAD TYP
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
CORNER LEADS OPTION
(4 PLCS)
0.045 – 0.065
(1.143 – 1.651)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
OBSOLETE PACKAGES
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
J Package
14-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
PACKAGE DESCRIPTIO
U
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)
J14 1298
0.045 – 0.065
(1.143 – 1.651)
0.100
(2.54)
BSC
0.014 – 0.026
(0.360 – 0.660)
0.200
(5.080)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.125
(3.175)
MIN
0.300 BSC
(0.762 BSC)
0.008 – 0.018
(0.203 – 0.457) 0° – 15°
1234567
0.220 – 0.310
(5.588 – 7.874)
0.785
(19.939)
MAX
0.005
(0.127)
MIN 14 11 891013 12
0.025
(0.635)
RAD TYP
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
0.050
(1.270)
MAX
0.016 – 0.021**
(0.406 – 0.533)
0.010 – 0.045*
(0.254 – 1.143)
SEATING
PLANE
0.040
(1.016)
MAX 0.165 – 0.185
(4.191 – 4.699)
GAUGE
PLANE
REFERENCE
PLANE
0.500 – 0.750
(12.700 – 19.050)
0.305 – 0.335
(7.747 – 8.509)
0.335 – 0.370
(8.509 – 9.398)
DIA
0.200
(5.080)
TYP
0.027 – 0.045
(0.686 – 1.143)
0.028 – 0.034
(0.711 – 0.864)
0.110 – 0.160
(2.794 – 4.064)
INSULATING
STANDOFF
45°TYP
H8(TO-5) 0.200 PCD 1197
LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND 0.045" BELOW THE REFERENCE PLANE
FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS 0.016 – 0.024
(0.406 – 0.610)
*
**
PIN 1
22
LT1013/LT1014
10134fc
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
PACKAGE DESCRIPTIO
U
N8 1002
.065
(1.651)
TYP
.045 – .065
(1.143 – 1.651)
.130 ± .005
(3.302 ± 0.127)
.020
(0.508)
MIN
.018 ± .003
(0.457 ± 0.076)
.120
(3.048)
MIN
12 34
87 65
.255 ± .015*
(6.477 ± 0.381)
.400*
(10.160)
MAX
.008 – .015
(0.203 – 0.381)
.300 – .325
(7.620 – 8.255)
.325 +.035
–.015
+0.889
–0.381
8.255
()
NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
.100
(2.54)
BSC
N14 1103
.020
(0.508)
MIN
.120
(3.048)
MIN
.130 ± .005
(3.302 ± 0.127)
.045 – .065
(1.143 – 1.651)
.065
(1.651)
TYP
.018 ± .003
(0.457 ± 0.076)
.005
(0.127)
MIN
.255 ± .015*
(6.477 ± 0.381)
.770*
(19.558)
MAX
31 24567
8910
11
1213
14
.008 – .015
(0.203 – 0.381)
.300 – .325
(7.620 – 8.255)
.325 +.035
–.015
+0.889
–0.381
8.255
()
NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
.100
(2.54)
BSC
23
LT1013/LT1014
10134fc
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
SW Package
16-Lead Plastic Small Outline (Wide .300 Inch)
(Reference LTC DWG # 05-08-1620)
PACKAGE DESCRIPTIO
U
SO8 0303
.016 – .050
(0.406 – 1.270)
.010 – .020
(0.254 – 0.508)× 45°
0°– 8° TYP
.008 – .010
(0.203 – 0.254)
.053 – .069
(1.346 – 1.752)
.014 – .019
(0.355 – 0.483)
TYP
.004 – .010
(0.101 – 0.254)
.050
(1.270)
BSC
1234
.150 – .157
(3.810 – 3.988)
NOTE 3
8765
.189 – .197
(4.801 – 5.004)
NOTE 3
.228 – .244
(5.791 – 6.197)
.245
MIN .160 ±.005
RECOMMENDED SOLDER PAD LAYOUT
.045 ±.005
.050 BSC
.030 ±.005
TYP
INCHES
(MILLIMETERS)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
S16 (WIDE) 0502
NOTE 3
.398 – .413
(10.109 – 10.490)
NOTE 4
16 15 14 13 12 11 10 9
1
N
2345678
N/2
.394 – .419
(10.007 – 10.643)
.037 – .045
(0.940 – 1.143)
.004 – .012
(0.102 – 0.305)
.093 – .104
(2.362 – 2.642)
.050
(1.270)
BSC .014 – .019
(0.356 – 0.482)
TYP
0° – 8° TYP
NOTE 3
.009 – .013
(0.229 – 0.330)
.005
(0.127)
RAD MIN
.016 – .050
(0.406 – 1.270)
.291 – .299
(7.391 – 7.595)
NOTE 4
× 45°
.010 – .029
(0.254 – 0.737)
INCHES
(MILLIMETERS)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
.420
MIN
.325 ±.005
RECOMMENDED SOLDER PAD LAYOUT
.045 ±.005
N
1 2 3 N/2
.050 BSC
.030 ±.005
TYP
24
LT1013/LT1014
10134fc
LT 0807 REV C • PRINTED IN USA
© LINEAR TECHNOLOGY CORPORATION 1990
RELATED PARTS
PART NUMBER DESCRIPTION COMMENTS
LT2078/LT2079 Dual/Quad 50μA Single Supply Precision Amplifier 50μA Max I
S
, 70μV Max V
OS
LT2178/LT2179 Dual/Quad 17μA Single Supply Precision Amplifier 17μA Max I
S
, 70μV Max V
OS
Step-Up Switching Regulator for 6V Battery
+
+
LT1013
58
4
6
7
LT1013
3
2
1
0.1
200k
LT1004
1.2V
130k
300Ω
OUTPUT
+15V
50mA
INPUT
+6V
+
100
1N5821
2N5262
L1
1MHY
+
2.2
5.6k
5.6k
220pF
220k1M
22k
2N2222
0.001
LT = AIE–VERNITRON 24–104
78% EFFICIENCY
1013/14 TA23
TYPICAL APPLICATIO
U
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900
FAX: (408) 434-0507
www.linear.com