Parameter Maximum Units
ID @ TA = 25°C Continuous Drain Current, VGS @ -10V -3.4 A
ID @ TA = 70°C Continuous Drain Current, VGS @ -10V -2.7
IDM Pulsed Drain Current -27
PD @TA = 25°C Power Dissipation 2.0 W
PD @TA = 70°C Power Dissipation 1.3
Linear Derating Factor 16 mW/°C
VGS Gate-to-Source Voltage ± 20 V
dv/dt Peak Diode Recovery dv/dt -5.0 V/ns
TJ, TSTG Junction and Storage Temperature Range -55 to +150 °C
lCo-packaged HEXFET Power
MOSFET and Schottky Diode
lIdeal For Buck Regulator Applications
lP-Channel HEXFET
l Low VF Schottky Rectifier
lSO-8 Footprint
IRF7342D2
03/09/01
FETKY
MOSFET & Schottky Diode
Absolute Maximum Ratings (TA = 25°C Unless Otherwise Noted)
TM
Description
VDSS = -55V
RDS(on) = 105m
Schottky Vf = 0.61V
The FETKYTM family of Co-packaged HEXFETs and
Schottky diodes offer the designer an innovative board
space saving solution for switching regulator and
power management applications. HEXFETs utilize
advanced processing techniques to achieve extremely
low on-resistance per silicon area. Combining this
technology with International Rectifier's low forward
drop Schottky rectifiers results in an extremely efficient
device suitable for use in a wide variety of portable
electronics applications.
The SO-8 has been modified through a customized
leadframe for enhanced thermal characteristics. The
SO-8 package is designed for vapor phase, infrared or
wave soldering techniques.
Top View
8
1
2
3
45
6
7
A
A
S
G
D
D
K
K
Notes:
Repetitive rating pulse width limited by max. junction temperature (see fig. 11)
ISD -3.4A, di/dt -150A/µs, VDD V(BR)DSS, TJ 150°C
Pulse width 400µs duty cycle 2%
Surface mounted on 1 inch square copper board, t 10sec.
SO-8
www.irf.com 1
Symbol Parameter Typ. Max. Units
RθJL Junction-to-Drain Lead, MOSFET ––– 20
RθJA Junction-to-Ambient, MOSFET ––– 62.5 °C/W
Thermal Resistance
RθJA Junction-to-Ambient, SCHOTTKY ––– 62.5
PD- 94101
IRF7342D2
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current(Body Diode) ––– ––– -2.0
ISM Pulsed Source Current (Body Diode) ––– ––– -27
VSD Body Diode Forward Voltage ––– ––– -1.2 V TJ = 25°C, IS = -2.0A, VGS = 0V
trr Reverse Recovery Time (Body Diode) ––– 54 80 ns TJ = 25°C, IF = -2.0A
Qrr Reverse Recovery Charge ––– 85 130 nC di/dt = 100A/µs
A
MOSFET Source-Drain Ratings and Characteristics
Parameter Max. Units Conditions
If (av) Max. Average Forward Current 3.0 50% Duty Cycle. Rectangular Wave, TA = 57°C
See Fig. 21
ISM Max. peak one cycle Non-repetitive 4 90 5µs sine or 3µs Rect. pulse Following any rated
Surge current 70 10ms sine or 6ms Rect. pulse load condition &
with Vrrm applied
A
Schottky Diode Maximum Ratings
A
Schottky Diode Electrical Specifications
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage -55 ––– ––– VV
GS = 0V, ID = -250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– -0.054 ––– V/°C Reference to 25°C, ID = -1mA
––– 95 105 VGS = -10V, ID = -3.4A
––– 150 170 VGS = -4.5V, ID = -2.7A
VGS(th) Gate Threshold Voltage -1.0 ––– ––– VV
DS = VGS, ID = -250µA
gfs Forward Transconductance 3.3 ––– ––– SV
DS = -10V, ID = -3.1A
––– ––– -2.0 VDS = -44V, VGS = 0V
––– ––– -25 VDS = -44V, VGS = 0V, TJ = 70°C
Gate-to-Source Forward Leakage ––– ––– -100 VGS = -20V
Gate-to-Source Reverse Leakage ––– ––– 100 VGS = 20V
QgTotal Gate Charge ––– 26 38 ID = -3.1A
Qgs Gate-to-Source Charge ––– 3.0 4.5 nC VDS = -44V
Qgd Gate-to-Drain ("Miller") Charge ––– 8.4 13 VGS = -10V, See Fig. 6 & 14
td(on) Turn-On Delay Time ––– 14 22 VDD = -28V
trRise Time ––– 10 15 ID = -1.0A
td(off) Turn-Off Delay Time ––– 43 64 RG = 6.0
tfFall Time ––– 22 32 VGS = -10V,
Ciss Input Capacitance ––– 690 ––– VGS = 0V
Coss Output Capacitance ––– 210 ––– pF VDS = -25V
Crss Reverse Transfer Capacitance ––– 86 ––– ƒ = 1.0MHz, See Fig. 5
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
IGSS
µA
m
RDS(on) Static Drain-to-Source On-Resistance
IDSS Drain-to-Source Leakage Current
nA
ns
Parameter Max. Units Conditions
Vfm Max. Forward Voltage Drop 0.61 If = 3.0A, Tj = 25°C
0.76 If = 6.0A, Tj = 25°C
0.53 If = 3.0A, Tj = 125°C
0.65 If = 6.0A, Tj = 125°C
Vrrm Max. Working Peak Reverse Voltage 6 0
Irm Max. Reverse Leakage Current 2.0 mA Vr = 60V Tj = 25°C
30 Tj = 125°C
V
V
Ct Max. Junction Capacitance 1 45 pF Vr = 5Vdc ( 100kHz to 1 MHz) 25°C
IRF7342D2
www.irf.com 3
Fig 3. Typical Transfer Characteristics
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 4. Normalized On-Resistance
Vs. Temperature
-
Power Mosfet Characteristics
-60 -40 -20 020 40 60 80 100 120 140 160
0.0
0.5
1.0
1.5
2.0
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
-10V
-3.4 A
0.1 110 100
-VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
-ID, Drain-to-Source Current (A)
-2.5V 20µs PULSE WIDTH
Tj = 25°C
VGS
TOP -15V
-10V
-6.0V
-5.0V
-4.5V
-3.5V
-3.0V
BOTTOM -2.5V
0.1 110 100
-VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
-ID, Drain-to-Source Current (A)
-2.5V
20µs PULSE WIDTH
Tj = 150°C
VGS
TOP -15V
-10V
- 6.0V
-5.5V
-4.5V
-3.5V
-3.0V
BOTTOM - 2.5V
0.1
1
10
100
2.0 3.0 4.0 5.0 6.0 7.0
V = -25V
20µs PULSE WIDTH
DS
-V , Gate-to-Source Voltage (V)
-I , Drain-to-Source Current (A)
GS
D
T = 25 C
J°
T = 150 C
J°
IRF7342D2
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
-
Fig 7. Typical Source-Drain Diode
Forward Voltage
Power Mosfet Characteristics
1 10 100
0
200
400
600
800
1000
-V , Drain-to-Source Volta
g
e (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss
g
s
g
d , ds
rss
g
d
oss ds
g
d
Ciss
Coss
Crss
010 20 30 40
0
4
8
12
16
20
Q , Total Gate Charge (nC)
-V , Gate-to-Source Voltage (V)
G
GS
I =
D-3.1A
V =-12V
DS
V =-30V
DS
V =-48V
DS
0.1
1
10
100
0.2 0.4 0.6 0.8 1.0 1.2 1.4
-V ,Source-to-Drain Voltage (V)
-I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 150 C
J°
0.1
1
10
100
1 10 100
OPERATION IN THIS AREA LIMITED
BY RDS
(
on
)
Sin
g
le Pulse
T
T = 150 C
= 25 C
°°
J
C
-V , Drain-to-Source Voltage (V)
-I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
IRF7342D2
www.irf.com 5
Power Mosfet Characteristics
Fig 9. Maximum Drain Current Vs.
Case Temperature
VDS
VGS
Pulse Width 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
VDD
RGD.U.T.
+
-
V
DS
90%
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 10a. Switching Time Test Circuit
Fig 10b. Switching Time Waveforms
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100
Notes:
1. Dut
y
factor D = t / t
2. Peak T =P x Z + T
1 2
JDM thJA A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(
THERMAL RESPONSE
)
25 50 75 100 125 150
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
T , Case Temperature ( C)
-I , Drain Current (A)
°
C
D
IRF7342D2
6www.irf.com
Fig 13. Typical On-Resistance Vs.
Drain Current
Fig 12. Typical On-Resistance Vs.
Gate Voltage
Fig 14b. Gate Charge Test Circuit
Fig 14a. Basic Gate Charge Waveform
QG
QGS QGD
VG
Charge
D.U.T. VDS
ID
IG
-3mA
VGS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Power Mosfet Characteristics
3.0 5.0 7.0 9.0 11.0 13.0 15.0
-VGS, Gate -to -Source Voltage (V)
0.05
0.10
0.15
0.20
0.25
RDS(on), Drain-to -Source On Resistance (
)
ID = -3.4A
0.0 4.0 8.0 12.0 16.0
-ID , Drain Current ( A )
0.05
0.10
0.15
0.20
0.25
0.30
0.35
RDS ( on ) , Drain-to-Source On Resistance (
)
VGS = -4.5V
VGS = -10V
IRF7342D2
www.irf.com 7
Fig 15. Typical Vgs(th) Vs.
Junction Temperature
Power Mosfet Characteristics
Fig 16. Typical Power Vs. Time
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.0
1.2
1.4
1.6
1.8
2.0
-VGS(th) ( V )
ID = -250µA
0.001 0.010 0.100 1.000 10.000 100.000
Time (sec)
0
20
40
60
80
100
Power (W)
IRF7342D2
8www.irf.com
Schottky Diode Characteristics
Fig. 18 - Typical Values of
Reverse Current Vs. Reverse Voltage
Fig. 17 - Maximum Forward Voltage Drop
Characteristics
Fig. 19 - Typical Junction Capacitance
Vs. Reverse Voltage
1
10
100
0 0.4 0.8 1.2 1.6 2 2.4 2.8
In s tan tane o u s Forwa rd Cur re nt - I ( A)
Forwa r d Voltag e Drop - V ( V)
T = 150 °C
T = 125 °C
T = 2 5° C
J
J
J
F
FM
0.001
0.01
0.1
1
10
100
0 102030405060
R
R
125°C
100°C
75°C
50°C
25°C
Reverse Voltage - V (V)
Rever se Cu rr ent - I (mA)
T = 150 °C
J
10
100
1000
0 102030405060
T = 25°C
J
R
T
J un c tion Ca pacita n ce - C (p F)
Reverse Volta g e - V (V )
IRF7342D2
www.irf.com 9
Fig.21 - Maximum Allowable Ambient
Temp. Vs. Forward Current
Fig 20. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Schottky Diode Characteristics
Note (4) Formula used: TC = TJ - (Pd + PdREV) x RthJA ;
Pd = Forward Power Loss = IF(AV) x VFM @ (IF(AV) / D) ;
PdREV = Inverse Power Loss = VR1 x IR (1 - D); IR @ VR1 = 80% rated VR
0.1
1
10
100
0.00001 0.0001 0.001 0.01 0.1 1 10 100
Notes:
1. Duty factor D =t / t
2. Peak T =P x Z + T
1 2
JDM thJA A
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJA
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
0123456
Average Forward Current - I
F(AV) (A)
0
20
40
60
80
100
120
140
160
180
Allowable Ambient Temprature - (°C)
Square wave ( D = 0.50)
80 % Rated V
R applied
DC
see note (4)
RthJA = 62.5 °C/W
IRF7342D2
10 www.irf.com
SO-8 Package Details
SO-8 Part Marking
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
0°
.013
.050 BASIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
8°
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
0°
1.27 BASI C
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX MILLIMETERSINCHES MIN MAX
DIM
8°
e
c .0075 .0098 0.19 0.25
.025 BASIC 0.635 BASIC
87
5
65
D B
E
A
e
6X
H
0.25 [.010] A
6
7
K x 4 5°
8X L 8X c
y
0.25 [.010] C A B
e1 A
A1
8X b
C
0.10 [.004]
4312
FOOTPRINT
8X 0. 72 [.02 8]
6.46 [.255]
3X 1. 27 [.05 0]
4. OUT LINE CONFORMS T O JE DEC OUT LINE MS-012AA.
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
5 DIMENSION DOES NOT INCLUD E MOLD PROTRUSIONS.
6 DIMENSION DOES NOT INCLUD E MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
8X 1. 78 [.07 0]
EX AMPLE: THIS IS AN IRF7101 (MOSFET)
INTERNATIONAL
RECTIFIER
LOGO
F7101
YWW
XXXX
PART NUMBER
LOT CODE
WW = WEEK
Y = LAST DIGIT OF THE YEAR
DATE CODE (YWW)
IRF7342D2
www.irf.com 11
330.00
(
12.992
)
MAX.
14.40
(
.5 66
)
12.40
(
.4 88
)
NOTES :
1. CO NTRO LLING DIMEN SIO N : M ILLIMETER.
2. OU TL INE CO N F O RM S TO EIA -481 & EIA -541.
FEED DIRECTIO N
TERM IN AL NU M BER 1
12.3
(
.484
)
11.7
(
.461
)
8.1
(
.318
)
7.9
(
.312
)
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMEN SION S ARE SHOWN IN MILLIM ETERS(INC HES).
3 . OUT LINE C O N F O RMS TO E IA -481 & E IA -541.
SO-8 Tape and Reel
Data and specifications subject to change without notice.
This product has been designed and qualified for the consumer market.
Qualification Standards can be found on IRs Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.03/01