DATA SH EET
Product specification
File under Integrated Circuits, IC06 September 1993
INTEGRATED CIRCUITS
74HCU04
Hex inverter
For a complete data sheet, please also download:
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
September 1993 2
Philips Semiconductors Product specification
Hex inverter 74HCU04
FEATURES
Output capability: standard
ICC category: SSI
GENERAL DESCRIPTION
The 74HCU04 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL).
It is specified in compliance with JEDEC standard no. 7A.
The 74HCU04 is a general purpose hex inverter. Each of the six inverters is a single stage
QUICK REFERENCE DATA
GND = 0 V; Tamb =25°C; tr=t
f=6ns
Note
1. CPD is used to determine the dynamic power dissipation (PD in µW):
PD=C
PD ×VCC2×fi + (CL×VCC2×fO) where:
fi= input frequency in MHz
fo= output frequency in MHz
CL= output load capacitance in pF
VCC = supply voltage in V
(CL×VCC2×fo) = sum of outputs
ORDERING INFORMATION
See
“74HC/HCT/HCU/HCMOS Logic Package Information”
.
FUNCTION TABLE
Note
1. H = HIGH voltage level
L = LOW voltage level
SYMBOL PARAMETER CONDITIONS TYP. UNIT
tPHL/ tPLH propagation delay nA to nY CL= 15 pF; VCC =5V 5 ns
C
Iinput capacitance 3.5 pF
CPD power dissipation capacitance per inverter note 1 10 pF
INPUT OUTPUT
nA nY
L
HH
L
September 1993 3
Philips Semiconductors Product specification
Hex inverter 74HCU04
PIN DESCRIPTION
PIN NO. SYMBOL NAME AND FUNCTION
1, 3, 5, 9, 11, 13 1A to 6A data inputs
2, 4, 6, 8, 10, 12 1Y to 6Y data outputs
7 GND ground (0 V)
14 VCC positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.
Fig.4 Functional diagram. Fig.5 Schematic diagram
(one inverter).
September 1993 4
Philips Semiconductors Product specification
Hex inverter 74HCU04
DC CHARACTERISTICS FOR 74HCU
Voltages are referenced to GND (ground = 0 V)
SYMBOL PARAMETER
Tamb(°C)
UNIT
TEST CONDITIONS
74HCU
VCC
(V) VIOTHER+25 -40 to +85 40 to
+125
min. typ. max. min. max. min. max.
VIH HIGH level input voltage 1.7
3.6
4.8
1.4
2.6
3.4
1.7
3.6
4.8
1.7
3.6
4.8
V 2.0
4.5
6.0
VIL LOW level input voltage 0.6
1.9
2.6
0.3
0.9
1.2
0.3
0.9
1.2
0.3
0.9
1.2
V 2.0
4.5
6.0
VOH HIGH level output
voltage 1.8
4.0
5.5
2.0
4.5
6.0
1.8
4.0
5.5
1.8
4.0
5.5
V 2.0
4.5
6.0
VIH
or
VIL
IO=20µA
I
O=20µA
I
O=20µA
V
OH HIGH level output
voltage 3.98
5.48 4.32
5.81 3.84
5.34 3.7
5.2 V 4.5
6.0 VCC
or
GND
IO= 4.0 mA
IO= 5.2 mA
VOL LOW level output
voltage 0
0
0
0.2
0.5
0.5
0.2
0.5
0.5
0.2
0.5
0.5
V 2.0
4.5
6.0
VIH
or
VIL
IO=20µA
I
O=20µA
I
O=20µA
V
OL LOW level output
voltage 0.15
0.16 0.26
0.26 0.33
0.33 0.4
0.4 V 4.5
6.0 VCC
or
GND
IO= 4.0 mA
IO= 5.2 mA
±IIinput leakage current 0.1 1.0 1.0 µA 6.0 VCC
or
GND
ICC quiescent supply
current 2.0 20.0 40.0 µA 6.0 VCC
or
GND
IO=0
September 1993 5
Philips Semiconductors Product specification
Hex inverter 74HCU04
AC CHARACTERISTICS FOR 74HCU
GND = 0 V; tr=t
f= 6 ns; CL=50pF
SYMBOL PARAMETER
Tamb (°C)
UNIT
TEST CONDITIONS
74HCU VCC
(V) WAVEFORMS+25 -40 to +85 40 to +125
min. typ. max. min. max. min. max.
tPHL/ tPLH propagation delay
nA to nY 19
7
6
70
14
12
90
18
15
105
21
18
ns 2.0
4.5
6.0
Fig.6
tTHL/ tTLH output transition time 19
7
6
75
15
13
95
19
16
110
22
19
ns 2.0
4.5
6.0
Fig.6
AC WAVEFORMS
Fig.6 Waveforms showing the data input (nA) to data output (nY) propagation delays and the output transition times.
(1) VM= 50%; VI= GND to VCC.
TYPICAL TRANSFER
CHARACTERISTICS
Fig.7 _____ VO;
_ _ _ _ ID(drain current);
IO= 0; VCC = 6.0 V.
Fig.8 ______ VO;
_ _ _ _ ID (drain current);
IO= 0; VCC = 4.5 V.
Fig.9 _____ VO;
_ _ _ _ ID (drain current);
IO= 0; VCC = 2.0 V.
September 1993 6
Philips Semiconductors Product specification
Hex inverter 74HCU04
Fig.10 Test set-up for measuring forward
transconductance gfs =di
o
/dvi at vo is constant
(see also graph Fig.11).
Fig.11 Typical forward transconductance gfs as a
function of the supply voltage VCC at
Tamb =25°C.
APPLICATION INFORMATION
Some applications for the “HCU04” are:
Linear amplifier (see Fig.12)
In crystal oscillator designs (see Fig.13)
Astable multivibrator (see Fig.14)
Fig.12 HCU04 used as a linear amplifier.
ZL>10 k; AOL = 20 (typ.)
VO max (p-p) VCC 2 V centered at 12VCC
3kΩ≤ R1, R2 1 M
Typical unity gain bandwidth product is 5 MHz.
CI (see Fig.15)
AOL = open loop amplification
Au= voltage amplification
AuAOL
1R1
R2
-------- 1A
OL
+()+
--------------------------------------------- ;=
September 1993 7
Philips Semiconductors Product specification
Hex inverter 74HCU04
OPTIMUM VALUE FOR R2
EXTERNAL COMPONENTS FOR RESONATOR
(f <1 MHz)
Note
1. All values given are typical and must be used as an
initial set-up.
FREQUENCY
(MHz) R2
(k)OPTIMUM FOR
32
8minimum required ICC
minimum influence due to
change in VCC
61
4.7 minimum ICC
minimum influence by VCC
10 0.5
2minimum ICC
minimum influence by VCC
14 0.5
1minimum ICC
minimum influence by VCC
>14 replace R2 by C3 with a typical
value of 35 pF
FREQUENCY
(kHz) R1
(M)R2
(k)C1
(pF) C2
(pF)
10 to 15.9 22 220 56 20
16 to 24.9 22 220 56 10
25 to 54.9 22 100 56 10
55 to 129.9 22 100 47 5
130 to 199.9 22 47 47 5
200 to 349.9 10 47 47 5
350 to 600 10 47 47 5
Fig.13 Crystal oscillator configuration.
C1= 47 pF (typ.)
C2= 33 pF (typ.)
R1= 1 to 10 M (typ.)
R2 optimum value depends on the frequency and required
stability against changes in VCC or average minimum ICC
(ICC is typically 5 mA at VCC = 5 V and f = 10 MHz).
Note to Application information
All values given are typical unless otherwise specified.
PACKAGE OUTLINES
See
“74HC/HCT/HCU/HCMOS Logic Package Outlines”
.
Fig.14 HCU04 used as an astable multivibrator
RS2×R.
The average ICC (mA) is approximately
3.5 + 0.05 ×f (MHz) ×C (pF) at VCC = 5.0 V
(for more information refer to
“DESIGNERS GUIDE”
).
f1
T
--- 1
2.2 RC
------------------
=
Fig.15 Typical input capacitance as a function of
input voltage.
(1) VCC = 2.0 V.
(2) VCC = 3.0 V.
(3) VCC = 4.0 V.
(4) VCC = 5.0 V.
(5) VCC = 6.0 V.