2010 Microchip Technology Inc. DS39951C
PIC24FJ64GA104 Family
Data Sheet
28/44-Pin, 16-Bit General Purpose
Flash Microcontrollers
with nanoWatt XLP Technology
DS39951C-page 2 2010 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN:978-1-60932-440-7
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
2010 Microchip Technology Inc. DS39951C-page 3
PIC24FJ64GA104 FAMILY
Power Management Modes:
Selectable Power Management modes with nanoWatt
XLP Technology for Extremely Low Power:
- Deep Sleep mode allows near total power-down
(20 nA typical and 500 nA with RTCC or WDT),
along with the ability to wake-up on external triggers,
or self-wake on programmable WDT or RTCC alarm
- Extreme low-power DSBOR for Deep Sleep,
LPBOR for all other modes
- Sleep mode shuts down peripherals and core for
substantial power reduction, fast wake-up
- Idle mode shuts down the CPU and peripherals for
significant power reduction, down to 4.5 A typical
- Doze mode enables CPU clock to run slower than
peripherals
- Alternate Clock modes allow on-the-fly switching to
a lower clock speed for selective power reduction
during Run mode, down to 15 A typical
High-Performance CPU:
Modified Harvard Architecture
Up to 16 MIPS Operation @ 32 MHz
8 MHz Internal Oscillator with:
- 4x PLL option
- Multiple divide options
17-Bit x 17-Bit Single-Cycle Hardware
Fractional/integer Multiplier
32-Bit by 16-Bit Hardware Divider
16 x 16-Bit Working Register Array
C Compiler Optimized Instruction Set Architecture:
- 76 base instructions
- Flexible addressing modes
Linear Program Memory Addressing, up to 12 Mbytes
Linear Data Memory Addressing, up to 64 Kbytes
Two Address Generation Units for Separate Read and
Write Addressing of Data Memory
Special Microcontroller Features:
Operating Voltage Range of 2.0V to 3.6V
Self-Reprogrammable under Software Control
5.5V Tolerant Input (digital pins only)
High-Current Sink/Source (18 mA/18 mA) on All I/O pins
Special Microcontroller Features
(continued):
Flash Program Memory:
- 10,000 erase/write cycle endurance (minimum)
- 20-year data retention minimum
- Selectable write protection boundary
Fail-Safe Clock Monitor Operation:
- Detects clock failure and switches to on-chip
FRC Oscillator
On-Chip 2.5V Regulator
Power-on Reset (POR), Power-up Timer (PWRT)
and Oscillator Start-up Timer (OST)
Two Flexible Watchdog Timers (WDT) for Reliable
Operation:
- Standard programmable WDT for normal operation
- Extreme low-power WDT with programmable
period of 2 ms to 26 days for Deep Sleep mode
In-Circuit Serial Programming™ (ICSP™) and
In-Circuit Debug (ICD) via 2 Pins
JTAG Boundary Scan Support
Analog Features:
10-Bit, up to 13-Channel Analog-to-Digital (A/D)
Converter:
- 500 ksps conversion rate
- Conversion available during Sleep and Idle
Three Analog Comparators with Programmable
Input/Output Configuration
Charge Time Measurement Unit (CTMU):
- Supports capacitive touch sensing for touch
screens and capacitive switches
- Provides high-resolution time measurement and
simple temperature sensing
PIC24FJ
Device
Pins
Program Memory
(Bytes)
SRAM
(Bytes)
Remappable Peripherals
I2C™
10-Bit A/D
(ch)
Comparators
PMP/PSP
RTCC
CTMU
Remappable
Pins
Timers
16-Bit
Capture
Input
Compare/PWM
Output
UART w/
IrDA®
SPI
32GA102 28 32K 8K 16 5 5 5 2 2 2 10 3 Y Y Y
64GA102 28 64K 8K 16 5 5 5 2 2 2 10 3 Y Y Y
32GA104 44 32K 8K 26 5 5 5 2 2 2 13 3 Y Y Y
64GA104 44 64K 8K 26 5 5 5 2 2 2 13 3 Y Y Y
28/44-Pin, 16-Bit General Purpose Flash Microcontrollers
with nanoWatt XLP Technology
PIC24FJ64GA104 FAMILY
DS39951C-page 4 2010 Microchip Technology Inc.
Peripheral Features:
Peripheral Pin Select:
- Allows independent I/O mapping of many peripherals
- Up to 26 available pins (44-pin devices)
- Continuous hardware integrity checking and safety
interlocks prevent unintentional configuration changes
8-Bit Parallel Master Port (PMP/PSP):
- Up to 16-bit multiplexed addressing, with up to
11 dedicated address pins on 44-pin devices
- Programmable polarity on control lines
- Supports legacy Parallel Slave Port
Hardware Real-Time Clock/Calendar (RTCC):
- Provides clock, calendar and alarm functions
- Functions even in Deep Sleep mode
Two 3-Wire/4-Wire SPI modules (support 4 Frame
modes) with 8-Level FIFO Buffer
•Two I
2C™ modules support Multi-Master/Slave mode
and 7-Bit/10-Bit Addressing
Two UART modules:
- Supports RS-485, RS-232 and LIN/J2602
- On-chip hardware encoder/decoder for IrDA®
- Auto-wake-up on Start bit
- Auto-Baud Detect (ABD)
- 4-level deep FIFO buffer
Five 16-Bit Timers/Counters with Programmable
Prescaler
Five 16-Bit Capture Inputs, each with a Dedicated Time
Base
Five 16-Bit Compare/PWM Outputs, each with a
Dedicated Time Base
Programmable, 32-Bit Cyclic Redundancy Check (CRC)
Generator
Configurable Open-Drain Outputs on Digital I/O Pins
Up to 3 External Interrupt Sources
Pin Diagrams
PIC24FJXXGA102
MCLR
VSS
VDD
AN0/C3INC/VREF+/CN2/CTED1/RA0
AN1/C3IND/VREF-/CN3/CTED2/RA1
VDD
VSS
PGED1/AN2/C2INB/RP0/CN4/RB0
PGC3/EMUC3/RP6/ASCL1(2)/CN24/PMD6/RB6
SOSCO/SCLKI/T1CK/C2INC/CN0/PMA1/RA4
SOSCI/C2IND/RP4/PMBE/CN1/RB4
DISVREGOSCO/CLKO/PMA0/CN29/RA3
OSCI/CLKI/C1IND/CN30/RA2 VCAP/VDDCORE
RP7/INT0/CN23/PMD5/RB7
TDO/RP9/SDA1/CN21/PMD3/RB9
TCK/RP8/SCL1/CN22/PMD4/RB8
AN5/C1INA/RP3/SCL2/CN7/RB3
AN4/C1INB/RP2/SDA2/CN6/RB2
PGEC1/AN3/C2INA/RP1/CN5/RB1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
AN9/C3INA/RP15/CN11/PMCS1/RB15
AN10/C3INB/CVREF/RTCC/RP14/CN12/PMWR/RB14
AN11/C1INC/RP13/CN13/PMRD/REFO/RB13
AN12/RP12/CN14/PMD0/RB12
PGED2/TDI/RP10/CN16/PMD2/RB10
PGEC2/TMS/RP11/CN15/PMD1/RB11
PGED3/RP5/ASDA1(2)/CN27/PMD7/RB5
28-Pin SPDIP, SOIC, SSOP(1)
Legend: RPn represents remappable peripheral pins.
Note 1: Gray shading indicates 5.5V tolerant input pins.
2: Alternative multiplexing for SDA1 and SCL1 when the I2C1SEL bit is set.
2010 Microchip Technology Inc. DS39951C-page 5
PIC24FJ64GA104 FAMILY
Pin Diagrams
28-Pin QFN(1,3)
Legend: RPn represents remappable peripheral pins.
Note 1: Gray shading indicates 5.5V tolerant input pins.
2: Alternative multiplexing for SDA1 and SCL1 when the I2C1SEL bit is set.
3: The back pad on QFN devices should be connected to VSS.
10 11
2
3
6
1
18
19
20
21
22
12 13 14
15
8
7
16
17
232425262728
9
PIC24FJXXGA102
5
4
MCLR
VSS
VDD
AN0/C3INC/VREF+/CN2/CTED1/RA0
AN1/C3IND/VREF-/CN3/CTED2/RA1
VDD
VSS
PGED1/AN2/C2INB/RP0/CN4/RB0
PGEC3/RP6/ASCL1(2)/CN24/PMD6/RB6
SOSCO/SCLKI/T1CK/C2INC/CN0/PMA1/RA4
SOSCI/C2IND/RP4/PMBE/CN1/RB4
DISVREG
OSCO/CLKO/CN29/PMA0/RA3
OSCI/CLKI/C1IND/CN30/RA2
VCAP/VDDCORE
RP7/INT0/CN23/PMD5/RB7
TDO/RP9/SDA1/CN21/PMD3/RB9
TCK/RP8/SCL1/CN22/PMD4/RB8
AN5/C1INA/SCL2/RP3/CN7/RB3
AN4/C1INB/SDA2/RP2/CN6/RB2
PGEC1/AN3/C2INA/RP1/CN5/RB1
AN9/C3INA/RP15/CN11/PMCS1/RB15
AN10/C3INB/CVREF/RTCC/RP14/CN12/PMWR/RB14
AN11/C1INC/RP13/CN13/PMRD/REFO/RB13
AN12/RP12/CN14/PMD0/RB12
PGED2/TDI/RP10/CN16/PMD2/RB10
PGEC2/TMS/RP11/CN15/PMD1/RB11
PGED3/RP5/ASDA1(2)/CN27/PMD7/RB5
PIC24FJ64GA104 FAMILY
DS39951C-page 6 2010 Microchip Technology Inc.
Pin Diagrams
44-Pin QFN(1,3)
10
11
2
3
4
5
6
1
18
19
20
21
22
12
13
14
15
38
8
7
44
43
42
41
40
39
16
17
29
30
31
32
33
23
24
25
26
27
28
36
34
35
9
37
RP8/SCL1/CN22/PMD4/RB8
RP7/INT0/CN23/PMD5/RB7
PGEC3/RP6/ASCL1(2)/CN24/PMD6/RB6
PGED3/RP5/ASDA1(2)/CN27/PMD7/RB5
VDD
TDI/PMA9/RA9
SOSCO/SCLKI/T1CK/C2INC/CN0/RA4
VSS
RP21/CN26/PMA3/RC5
RP20/CN25/PMA4/RC4
RP19/CN28/PMBE/RC3
PGEC1/AN3/C2INA/RP1/CN5/RB1
PGED1/AN2/C2INB/RP0/CN4/RB0
AN1/C3IND/VREF-/CN3/CTED2/RA1
AN0/C3INC/VREF+/CN2/CTED1/RA0
MCLR
TMS/PMA10/RA10
AVDD
AVSS
AN9/C3INA/RP15/CN11/RB15
AN10/C3INB/CVREF/RTCC/RP14/CN12/PMWR/RB14
AN12/RP12/CN14/PMD0/RB12
PGEC2/RP11/CN15/PMD1/RB11
PGED2/RP10/CN16/PMD2/RB10
VCAP/VDDCORE
DISVREG
RP25/CN19/PMA6/RC9
RP24/CN20/PMA5/RC8
RP23/CN17/PMA0/RC7
RP22/CN18/PMA1/RC6
RP9/SDA1/CN21/PMD3/RB9
AN4/C1INB/RP2/SDA2/CN6/RB2
AN5/C1INA/RP3/SCL2/CN7/RB3
AN6/RP16/CN8/RC0
AN7/RP17/CN9/RC1
AN8/RP18/PMA2/CN10/RC2
SOSCI/C1IND/RP4/CN1/RB4
VDD
VSS
OSCI/CLKI/C1IND/CN30/RA2
OSCO/CLKO/CN29/RA3
TDO/PMA8/RA8
44-PIN TQFP,
AN11/C1INC/RP13/PMRD/REFO/CN13/RB13
TCK/PMA7/RA7TCK/PMA7/RA7
PIC24FJXXGA104
Legend: RPn represents remappable peripheral pins.
Note 1: Gray shading indicates 5.5V tolerant input pins.
2: Alternative multiplexing for SDA1 and SCL1 when the I2C1SEL bit is set.
3: The back pad on QFN devices should be connected to VSS.
2010 Microchip Technology Inc. DS39951C-page 7
PIC24FJ64GA104 FAMILY
Table of Contents
1.0 Device Overview .......................................................................................................................................................................... 9
2.0 Guidelines for Getting Started with 16-bit Microcontrollers ........................................................................................................ 19
3.0 CPU ........................................................................................................................................................................................... 25
4.0 Memory Organization ................................................................................................................................................................. 31
5.0 Flash Program Memory.............................................................................................................................................................. 51
6.0 Resets ........................................................................................................................................................................................ 59
7.0 Interrupt Controller ..................................................................................................................................................................... 65
8.0 Oscillator Configuration ............................................................................................................................................................ 101
9.0 Power-Saving Features............................................................................................................................................................ 111
10.0 I/O Ports ................................................................................................................................................................................... 121
11.0 Timer1 ...................................................................................................................................................................................... 143
12.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 145
13.0 Input Capture with Dedicated Timers ....................................................................................................................................... 151
14.0 Output Compare with Dedicated Timers .................................................................................................................................. 155
15.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 165
16.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................. 175
17.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 183
18.0 Parallel Master Port (PMP)....................................................................................................................................................... 191
19.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 201
20.0 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator ........................................................................................ 213
21.0 10-Bit High-Speed A/D Converter ............................................................................................................................................ 219
22.0 Triple Comparator Module........................................................................................................................................................ 229
23.0 Comparator Voltage Reference................................................................................................................................................ 233
24.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 235
25.0 Special Features ...................................................................................................................................................................... 239
26.0 Development Support............................................................................................................................................................... 251
27.0 Instruction Set Summary .......................................................................................................................................................... 255
28.0 Electrical Characteristics.......................................................................................................................................................... 263
29.0 Packaging Information.............................................................................................................................................................. 283
Appendix A: Revision History............................................................................................................................................................. 297
Index ................................................................................................................................................................................................. 299
The Microchip Web Site..................................................................................................................................................................... 305
Customer Change Notification Service .............................................................................................................................................. 305
Customer Support .............................................................................................................................................................................. 305
Reader Response .............................................................................................................................................................................. 306
Product Identification System ............................................................................................................................................................ 307
PIC24FJ64GA104 FAMILY
DS39951C-page 8 2010 Microchip Technology Inc.
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
Microchip’s Worldwide Web site; http://www.microchip.com
Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
2010 Microchip Technology Inc. DS39951C-page 9
PIC24FJ64GA104 FAMILY
1.0 DEVICE OVERVIEW
This document contains device-specific information for
the following devices:
The PIC24FJ64GA104 family provides an expanded
peripheral feature set and a new option for
high-performance applications which may need more
than an 8-bit platform, but do not require the power of a
digital signal processor.
1.1 Core Features
1.1.1 16-BIT ARCHITECTURE
Central to all PIC24F devices is the 16-bit modified
Harvard architecture, first introduced with Microchip’s
dsPIC® digital signal controllers. The PIC24F CPU core
offers a wide range of enhancements, such as:
16-bit data and 24-bit address paths with the
ability to move information between data and
memory spaces
Linear addressing of up to 12 Mbytes (program
space) and 64 Kbytes (data)
A 16-element working register array with built-in
software stack support
A 17 x 17 hardware multiplier with support for
integer math
Hardware support for 32 by 16-bit division
An instruction set that supports multiple
addressing modes and is optimized for high-level
languages, such as ‘C’
Operational performance up to 16 MIPS
1.1.2 POWER-SAVING TECHNOLOGY
All of the devices in the PIC24FJ64GA104 family
incorporate a range of features that can significantly
reduce power consumption during operation. Key
items include:
On-the-Fly Clock Switching: The device clock
can be changed under software control to the
Timer1 source or the internal, Low-Power Internal
RC Oscillator during operation, allowing the user
to incorporate power-saving ideas into their
software designs.
Doze Mode Operation: When timing-sensitive
applications, such as serial communications,
require the uninterrupted operation of peripherals,
the CPU clock speed can be selectively reduced,
allowing incremental power savings without
missing a beat.
Instruction-Based Power-Saving Modes: There
are three instruction-based power-saving modes:
- Idle Mode – The core is shut down while leaving
the peripherals active.
- Sleep Mode – The core and peripherals that
require the system clock are shut down, leaving
the peripherals active that use their own clock or
the clock from other devices.
- Deep Sleep Mode – The core, peripherals
(except RTCC and DSWDT), Flash and SRAM
are shut down for optimal current savings to
extend battery life for portable applications.
1.1.3 OSCILLATOR OPTIONS AND
FEATURES
All of the devices in the PIC24FJ64GA104 family offer
five different oscillator options, allowing users a range
of choices in developing application hardware. These
include:
Two Crystal modes using crystals or ceramic
resonators.
Two External Clock modes offering the option of a
divide-by-2 clock output.
A Fast Internal Oscillator (FRC) with a nominal
8 MHz output, which can also be divided under
software control to provide clock speeds as low as
31 kHz.
A Phase Lock Loop (PLL) frequency multiplier
available to the external oscillator modes and the
FRC Oscillator, which allows clock speeds of up
to 32 MHz.
A separate Low-Power Internal RC Oscillator
(LPRC) with a fixed 31 kHz output, which pro-
vides a low-power option for timing-insensitive
applications.
The internal oscillator block also provides a stable
reference source for the Fail-Safe Clock Monitor. This
option constantly monitors the main clock source
against a reference signal provided by the internal
oscillator and enables the controller to switch to the
internal oscillator, allowing for continued low-speed
operation or a safe application shutdown.
1.1.4 EASY MIGRATION
Regardless of the memory size, all devices share the
same rich set of peripherals, allowing for a smooth
migration path as applications grow and evolve. The
consistent pinout scheme used throughout the entire
family also aids in migrating from one device to the next
larger device.
The PIC24F family is pin-compatible with devices in the
dsPIC33 family, and shares some compatibility with the
pinout schema for PIC18 and dsPIC30 devices. This
extends the ability of applications to grow from the
relatively simple, to the powerful and complex, yet still
selecting a Microchip device.
PIC24FJ32GA102 PIC24FJ32GA104
PIC24FJ64GA102 PIC24FJ64GA104
PIC24FJ64GA104 FAMILY
DS39951C-page 10 2010 Microchip Technology Inc.
1.2 Other Special Features
Peripheral Pin Select: The Peripheral Pin Select
feature allows most digital peripherals to be
mapped over a fixed set of digital I/O pins. Users
may independently map the input and/or output of
any one of the many digital peripherals to any one
of the I/O pins.
Communications: The PIC24FJ64GA104 family
incorporates a range of serial communication
peripherals to handle a range of application
requirements. There are two independent I2C™
modules that support both Master and Slave
modes of operation. Devices also have, through
the Peripheral Pin Select (PPS) feature, two
independent UARTs with built-in IrDA®
encoder/decoders and two SPI modules.
Analog Features: All members of the
PIC24FJ64GA104 family include a 10-bit A/D
Converter module and a triple comparator
module. The A/D module incorporates program-
mable acquisition time, allowing for a channel to
be selected and a conversion to be initiated
without waiting for a sampling period, as well as
faster sampling speeds. The comparator module
includes three analog comparators that are
configurable for a wide range of operations.
CTMU Interface: This module provides a
convenient method for precision time measure-
ment and pulse generation, and can serve as an
interface for capacitive sensors.
Parallel Master/Enhanced Parallel Slave Port:
One of the general purpose I/O ports can be
reconfigured for enhanced parallel data communi-
cations. In this mode, the port can be configured
for both master and slave operations, and
supports 8-bit and 16-bit data transfers with up to
12 external address lines in Master modes.
Real-Time Clock/Calendar: This module
implements a full-featured clock and calendar with
alarm functions in hardware, freeing up timer
resources and program memory space for the use
of the core application.
1.3 Details on Individual Family
Members
Devices in the PIC24FJ64GA104 family are available
in 28-pin and 44-pin packages. The general block
diagram for all devices is shown in Figure 1-1.
The devices are differentiated from each other in
several ways:
Flash Program Memory:
- PIC24FJ32GA1 devices – 32 Kbytes
- PIC24FJ64GA1 devices – 64 Kbytes
Available I/O Pins and Ports:
- 28-pin devices – 21 pins on two ports
- 44-pin devices – 35 pins on three ports
Available Interrupt-on-Change Notification (ICN)
Inputs:
- 28-pin devices – 21
- 44-pin devices – 31
Available Remappable Pins:
- 28-pin devices – 16 pins
- 44-pin devices – 26 pins
Available PMP Address Pins:
- 28-pin devices – 3 pins
- 44-pin devices – 12 pins
Available A/D Input Channels:
- 28-pin devices – 10 pins
- 44-pin devices – 13 pins
All other features for devices in this family are identical.
These are summarized in Table 1-1.
A list of the pin features available on the
PIC24FJ64GA104 family devices, sorted by function, is
shown in Table 1-2. Note that this table shows the pin
location of individual peripheral features and not how
they are multiplexed on the same pin. This information
is provided in the pinout diagrams in the beginning of
this data sheet. Multiplexed features are sorted by the
priority given to a feature, with the highest priority
peripheral being listed first.
2010 Microchip Technology Inc. DS39951C-page 11
PIC24FJ64GA104 FAMILY
TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJ64GA104 FAMILY
Features PIC24FJ32GA102 PIC24FJ64GA102 PIC24FJ32GA104 PIC24FJ64GA104
Operating Frequency DC – 32 MHz
Program Memory (bytes) 32K 64K 32K 64K
Program Memory (instructions) 11,008 22,016 11,008 22,016
Data Memory (bytes) 8,192
Interrupt Sources (soft vectors/
NMI traps)
45 (41/4)
I/O Ports Ports A and B Ports A, B, C
Total I/O Pins 21 35
Remappable Pins 16 26
Timers:
Total Number (16-bit) 5(1)
32-Bit (from paired 16-bit timers) 2
Input Capture Channels 5(1)
Output Compare/PWM Channels 5(1)
Input Change Notification Interrupt 21 31
Serial Communications:
UART 2(1)
SPI (3-wire/4-wire) 2(1)
I2C™ 2
Parallel Communications (PMP/PSP) Yes
JTAG Boundary Scan Yes
10-Bit Analog-to-Digital Module
(input channels)
10 13
Analog Comparators 3
CTMU Interface Yes
Resets (and delays) POR, BOR, RESET Instruction, MCLR, WDT; Illegal Opcode,
REPEAT Instruction, Hardware Traps, Configuration Word Mismatch
(PWRT, OST, PLL Lock)
Instruction Set 76 Base Instructions, Multiple Addressing Mode Variations
Packages 28-Pin QFN, SOIC, SSOP and SPDIP 44-Pin QFN and TQFP
Note 1: Peripherals are accessible through remappable pins.
PIC24FJ64GA104 FAMILY
DS39951C-page 12 2010 Microchip Technology Inc.
FIGURE 1-1: PIC24FJ64GA104 FAMILY GENERAL BLOCK DIAGRAM
Instruction
Decode &
Control
16
PCH PCL
16
Program Counter
16-Bit ALU
23
24
Data Bus
Inst Register
16
Divide
Support
Inst Latch
16
EA MUX
Read AGU
Write AGU
16
16
8
Interrupt
Controller
PSV & Table
Data Access
Control Block
Stack
Control
Logic
Repeat
Control
Logic
Data Latch
Data RAM
Address
Latch
Address Latch
Program Memory
Data Latch
16
Address Bus
Literal Data
23
Control Signals
16
16
16 x 16
W Reg Array
Multiplier
17 x 17
OSCI/CLKI
OSCO/CLKO
VDD,
Timing
Generation
VSS MCLR
Power-up
Timer
Oscillator
Start-up Timer
Power-on
Reset
Watchdog
Timer
BOR and
Precision
Reference
Band Gap
FRC/LPRC
Oscillators
Regulator
Voltage
VDDCORE/VCAP
DISVREG
PORTA(1)
PORTC(1)
(9 I/O)
(10 I/O)
PORTB
(16 I/O)
Note 1:
Not all I/O pins or features are implemented on all device pinout configurations. See Table 1-2 for specific implementations by pin count
.
2:
BOR functionality is provided when the on-board voltage regulator is enabled.
3:
These peripheral I/Os are only accessible through remappable pins.
Comparators(3)
Timer2/3(3)
Timer1 RTCC
IC
ADC
10-Bit
PWM/OC SPI I2C
Timer4/5(3)
PMP/PSP
1-5(3) ICNs(1) UART
LVD(2)
REFO
RP(1)
RP0:RP25
1/2(3) 1/2 1/2(3)
1-5(3) CTMU
2010 Microchip Technology Inc. DS39951C-page 13
PIC24FJ64GA104 FAMILY
TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS
Function
Pin Number
I/O Input
Buffer Description
28-Pin
SPDIP/
SOIC/SSOP
28-Pin
QFN
44-Pin
QFN/
TQFP
AN0 2 27 19 I ANA A/D Analog Inputs.
AN1 3 28 20 I ANA
AN2 4 1 21 I ANA
AN3 5 2 22 I ANA
AN4 6 3 23 I ANA
AN5 7 4 24 I ANA
AN6 25 I ANA
AN7 26 I ANA
AN8 27 I ANA
AN9 26 23 15 I ANA
AN10 25 22 14 I ANA
AN11 24 21 11 I ANA
AN12 23 20 10 I ANA
ASCL1 15 12 42 I/O I2C Alternate I2C1 Synchronous Serial Clock Input/Output.
ASDA1 14 11 41 I/O I2C Alternate I2C1 Synchronous Serial Data Input/Output.
AVDD 17 P Positive Supply for Analog modules.
AVSS 16 P Ground Reference for Analog modules.
C1INA 7 4 24 I ANA Comparator 1 Input A.
C1INB 6 3 23 I ANA Comparator 1 Input B.
C1INC 24 21 11 I ANA Comparator 1 Input C.
C1IND 9 6 30 I ANA Comparator 1 Input D.
C2INA 5 2 22 I ANA Comparator 2 Input A.
C2INB 4 1 21 I ANA Comparator 2 Input B.
C2INC 12 9 34 I ANA Comparator 2 Input C.
C2IND 11 8 33 I ANA Comparator 2 Input D.
C3INA 26 23 15 I ANA Comparator 3 Input A.
C3INB 25 22 14 I ANA Comparator 3 Input B.
C3INC 2 27 19 I ANA Comparator 3 Input C.
C3IND 3 28 20 I ANA Comparator 3 Input D.
CLKI 9 6 30 I ANA Main Clock Input Connection.
CLKO 10 7 31 O System Clock Output.
Legend: TTL = TTL input buffer ST = Schmitt Trigger input buffer
ANA = Analog level input/output I2C™ = I2C/SMBus input buffer
PIC24FJ64GA104 FAMILY
DS39951C-page 14 2010 Microchip Technology Inc.
CN0 12 9 34 I ST Interrupt-on-Change Inputs.
CN1 11 8 33 I ST
CN2 2 27 19 I ST
CN3 3 28 20 I ST
CN4 4 1 21 I ST
CN5 5 2 22 I ST
CN6 6 3 23 I ST
CN7 7 4 24 I ST
CN8 25 I ST
CN9 26 I ST
CN10 27 I ST
CN11 26 23 15 I ST
CN12 25 22 14 I ST
CN13 24 21 11 I ST
CN14 23 20 10 I ST
CN15 22 19 9 I ST
CN16 21 18 8 I ST
CN17 3 I ST
CN18 2 I ST
CN19 5 I ST
CN20 4 I ST
CN21 18 15 1 I ST
CN22 17 14 44 I ST
CN23 16 13 43 I ST
CN24 15 12 42 I ST
CN25 37 I ST
CN26 38 I ST
CN27 14 11 41 I ST
CN28 36 I ST
CN29 10 7 31 I ST
CN30 9 6 30 I ST
CTED1 2 27 19 I ANA CTMU External Edge Input 1.
CTED2 3 28 20 I ANA CTMU External Edge Input 2.
CVREF 25 22 14 O Comparator Voltage Reference Output.
DISVREG 19 16 6 I ST Voltage Regulator Disable.
TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Function
Pin Number
I/O Input
Buffer Description
28-Pin
SPDIP/
SOIC/SSOP
28-Pin
QFN
44-Pin
QFN/
TQFP
Legend: TTL = TTL input buffer ST = Schmitt Trigger input buffer
ANA = Analog level input/output I2C™ = I2C/SMBus input buffer
2010 Microchip Technology Inc. DS39951C-page 15
PIC24FJ64GA104 FAMILY
INT0 16 13 43 I ST External Interrupt Input.
MCLR 1 26 18 I ST Master Clear (device Reset) Input. This line is brought low to
cause a Reset.
OSCI 9 6 30 I ANA Main Oscillator Input Connection.
OSCO 10 7 31 O ANA Main Oscillator Output Connection.
PGEC1 5 2 22 I/O ST In-Circuit Debugger/Emulator/ICSP™ Programming Clock.
PGED1 4 1 21 I/O ST In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC2 22 19 9 I/O ST In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED2 21 18 8 I/O ST In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC3 15 12 42 I/O ST In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED3 14 11 41 I/O ST In-Circuit Debugger/Emulator/ICSP Programming Data.
PMA0 10 7 3 I/O ST Parallel Master Port Address Bit 0 Input (Buffered Slave
modes) and Output (Master modes).
PMA1 12 9 2 I/O ST Parallel Master Port Address Bit 1 Input (Buffered Slave
modes) and Output (Master modes).
PMA2 27 O Parallel Master Port Address (Demultiplexed Master modes).
PMA3 38 O
PMA4 37 O
PMA5 4 O
PMA6 5 O
PMA7 13 O
PMA8 32 O
PMA9 35 O
PMA10 12 O
PMCS1 26 23 15 I/O ST/TTL Parallel Master Port Chip Select 1 Strobe/Address Bit 15.
PMBE 11 8 36 O Parallel Master Port Byte Enable Strobe.
PMD0 23 20 10 I/O ST/TTL Parallel Master Port Data (Demultiplexed Master mode) or
Address/Data (Multiplexed Master modes).
PMD1 22 19 9 I/O ST/TTL
PMD2 21 18 8 I/O ST/TTL
PMD3 18 15 1 I/O ST/TTL
PMD4 17 14 44 I/O ST/TTL
PMD5 16 13 43 I/O ST/TTL
PMD6 15 12 42 I/O ST/TTL
PMD7 14 11 41 I/O ST/TTL
PMRD 24 21 11 O Parallel Master Port Read Strobe.
PMWR 25 22 14 O Parallel Master Port Write Strobe.
TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Function
Pin Number
I/O Input
Buffer Description
28-Pin
SPDIP/
SOIC/SSOP
28-Pin
QFN
44-Pin
QFN/
TQFP
Legend: TTL = TTL input buffer ST = Schmitt Trigger input buffer
ANA = Analog level input/output I2C™ = I2C/SMBus input buffer
PIC24FJ64GA104 FAMILY
DS39951C-page 16 2010 Microchip Technology Inc.
RA0 2 27 19 I/O ST PORTA Digital I/O.
RA1 3 28 20 I/O ST
RA2 9 6 30 I/O ST
RA3 10 7 31 I/O ST
RA4 12 9 34 I/O ST
RA7 13 I/O ST
RA8 32 I/O ST
RA9 35 I/O ST
RA10 12 I/O ST
RB0 4 1 21 I/O ST PORTB Digital I/O.
RB1 5 2 22 I/O ST
RB2 6 3 23 I/O ST
RB3 7 4 24 I/O ST
RB4 11 8 33 I/O ST
RB5 14 11 41 I/O ST
RB6 15 12 42 I/O ST
RB7 16 13 43 I/O ST
RB8 17 14 44 I/O ST
RB9 18151I/OST
RB10 21 18 8 I/O ST
RB11 22 19 9 I/O ST
RB12 23 20 10 I/O ST
RB13 24 21 11 I/O ST
RB14 25 22 14 I/O ST
RB15 26 23 15 I/O ST
RC0 25 I/O ST PORTC Digital I/O.
RC1 26 I/O ST
RC2 27 I/O ST
RC3 36 I/O ST
RC4 37 I/O ST
RC5 38 I/O ST
RC6 2 I/O ST
RC7 3 I/O ST
RC8 4 I/O ST
RC9 5 I/O ST
REFO 24 21 11 O Reference Clock Output.
TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Function
Pin Number
I/O Input
Buffer Description
28-Pin
SPDIP/
SOIC/SSOP
28-Pin
QFN
44-Pin
QFN/
TQFP
Legend: TTL = TTL input buffer ST = Schmitt Trigger input buffer
ANA = Analog level input/output I2C™ = I2C/SMBus input buffer
2010 Microchip Technology Inc. DS39951C-page 17
PIC24FJ64GA104 FAMILY
RP0 4 1 21 I/O ST Remappable Peripheral (input or output).
RP1 5 2 22 I/O ST
RP2 6 3 23 I/O ST
RP3 7 4 24 I/O ST
RP4 11 8 33 I/O ST
RP5 14 11 41 I/O ST
RP6 15 12 42 I/O ST
RP7 16 13 43 I/O ST
RP8 17 14 44 I/O ST
RP9 18151I/OST
RP10 21 18 8 I/O ST
RP11 22 19 9 I/O ST
RP12 23 20 10 I/O ST
RP13 24 21 11 I/O ST
RP14 25 22 14 I/O ST
RP15 26 23 15 I/O ST
RP16 25 I/O ST
RP17 26 I/O ST
RP18 27 I/O ST
RP19 36 I/O ST
RP20 37 I/O ST
RP21 38 I/O ST
RP22 2 I/O ST
RP23 3 I/O ST
RP24 4 I/O ST
RP25 5 I/O ST
RTCC 25 22 14 O Real-Time Clock Alarm/Seconds Pulse Output.
SCL1 17 14 44 I/O I2C I2C1 Synchronous Serial Clock Input/Output.
SCL2 7 4 24 I/O I2C I2C2 Synchronous Serial Clock Input/Output.
SDA1 18 15 1 I/O I2C I2C1 Data Input/Output.
SDA2 6 3 23 I/O I2C I2C2 Data Input/Output.
SOSCI 11 8 33 I ANA Secondary Oscillator/Timer1 Clock Input.
SOSCO 12 9 34 O ANA Secondary Oscillator/Timer1 Clock Output.
T1CK 12 9 34 I ST Timer1 Clock Input.
TCK 17 14 13 I ST JTAG Test Clock Input.
TDI 21 18 35 I ST JTAG Test Data Input.
TDO 18 15 32 O JTAG Test Data Output.
TMS 22 19 12 I ST JTAG Test Mode Select Input.
TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Function
Pin Number
I/O Input
Buffer Description
28-Pin
SPDIP/
SOIC/SSOP
28-Pin
QFN
44-Pin
QFN/
TQFP
Legend: TTL = TTL input buffer ST = Schmitt Trigger input buffer
ANA = Analog level input/output I2C™ = I2C/SMBus input buffer
PIC24FJ64GA104 FAMILY
DS39951C-page 18 2010 Microchip Technology Inc.
VCAP 20 17 7 P External Filter Capacitor Connection (regulator enabled).
VDD 13, 28 10, 25 28, 40 P Positive Supply for Peripheral Digital Logic and I/O Pins.
VDDCORE 20 17 7 P Positive Supply for Microcontroller Core Logic (regulator
disabled).
VREF- 3 28 20 I ANA A/D and Comparator Reference Voltage (low) Input.
VREF+ 2 27 19 I ANA A/D and Comparator Reference Voltage (high) Input.
VSS 8, 27 5, 24 29, 39 P Ground Reference for Logic and I/O Pins.
TABLE 1-2: PIC24FJ64GA104 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
Function
Pin Number
I/O Input
Buffer Description
28-Pin
SPDIP/
SOIC/SSOP
28-Pin
QFN
44-Pin
QFN/
TQFP
Legend: TTL = TTL input buffer ST = Schmitt Trigger input buffer
ANA = Analog level input/output I2C™ = I2C/SMBus input buffer
2010 Microchip Technology Inc. DS39951C-page 19
PIC24FJ64GA104 FAMILY
2.0 GUIDELINES FOR GETTING
STARTED WITH 16-BIT
MICROCONTROLLERS
2.1 Basic Connection Requirements
Getting started with the PIC24FJ64GA104 family of
16-bit microcontrollers requires attention to a minimal
set of device pin connections before proceeding with
development.
The following pins must always be connected:
•All V
DD and VSS pins
(see Section 2.2 “Power Supply Pins”)
•All AV
DD and AVSS pins, regardless of whether or
not the analog device features are used
(see Section 2.2 “Power Supply Pins”)
•M
CLR pin
(see Section 2.3 “Master Clear (MCLR) Pin”)
ENVREG/DISVREG and VCAP/VDDCORE pins
(PIC24FJ devices only)
(see Section 2.4 “Voltage Regulator Pins
(ENVREG/DISVREG and VCAP/VDDCORE)”)
These pins must also be connected if they are being
used in the end application:
PGECx/PGEDx pins used for In-Circuit Serial
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)
OSCI and OSCO pins when an external oscillator
source is used
(see Section 2.6 “External Oscillator Pins”)
Additionally, the following pins may be required:
•V
REF+/VREF- pins used when external voltage
reference for analog modules is implemented
The minimum mandatory connections are shown in
Figure 2-1.
FIGURE 2-1: RECOMMENDED
MINIMUM CONNECTIONS
Note: The AVDD and AVSS pins must always be
connected, regardless of whether any of
the analog modules are being used.
PIC24FXXXX
VDD
VSS
VDD
VSS
VSS
VDD
AVDD
AVSS
VDD
VSS
C1
R1
VDD
MCLR
VCAP/VDDCORE
R2 (EN/DIS)VREG
(1)
C7
C2(2)
C3(2)
C4(2)
C5(2)
C6(2)
Key (all values are recommendations):
C1 through C6: 0.1 F, 20V ceramic
C7: 10 F, 6.3V or greater, tantalum or ceramic
R1: 10 k
R2: 100 to 470
Note 1: See Section 2.4 “Voltage Regulator Pins
(ENVREG/DISVREG and VCAP/VDDCORE)”
for explanation of ENVREG/DISVREG pin
connections.
2: The example shown is for a PIC24F device
with five VDD/VSS and AVDD/AVSS pairs.
Other devices may have more or less pairs;
adjust the number of decoupling capacitors
appropriately.
(1)
PIC24FJ64GA104 FAMILY
DS39951C-page 20 2010 Microchip Technology Inc.
2.2 Power Supply Pins
2.2.1 DECOUPLING CAPACITORS
The use of decoupling capacitors on every pair of
power supply pins, such as VDD, VSS, AVDD and
AVSS is required.
Consider the following criteria when using decoupling
capacitors:
Value and type of capacitor: A 0.1 F (100 nF),
10-20V capacitor is recommended. The capacitor
should be a low-ESR device with a resonance
frequency in the range of 200 MHz and higher.
Ceramic capacitors are recommended.
Placement on the printed circuit board: The
decoupling capacitors should be placed as close
to the pins as possible. It is recommended to
place the capacitors on the same side of the
board as the device. If space is constricted, the
capacitor can be placed on another layer on the
PCB using a via; however, ensure that the trace
length from the pin to the capacitor is no greater
than 0.25 inch (6 mm).
Handling high-frequency noise: If the board is
experiencing high-frequency noise (upward of
tens of MHz), add a second ceramic type capaci-
tor in parallel to the above described decoupling
capacitor. The value of the second capacitor can
be in the range of 0.01 F to 0.001 F. Place this
second capacitor next to each primary decoupling
capacitor. In high-speed circuit designs, consider
implementing a decade pair of capacitances as
close to the power and ground pins as possible
(e.g., 0.1 F in parallel with 0.001 F).
Maximizing performance: On the board layout
from the power supply circuit, run the power and
return traces to the decoupling capacitors first,
and then to the device pins. This ensures that the
decoupling capacitors are first in the power chain.
Equally important is to keep the trace length
between the capacitor and the power pins to a
minimum, thereby reducing PCB trace
inductance.
2.2.2 TANK CAPACITORS
On boards with power traces running longer than six
inches in length, it is suggested to use a tank capacitor
for integrated circuits including microcontrollers to
supply a local power source. The value of the tank
capacitor should be determined based on the trace
resistance that connects the power supply source to
the device, and the maximum current drawn by the
device in the application. In other words, select the tank
capacitor so that it meets the acceptable voltage sag at
the device. Typical values range from 4.7 F to 47 F.
2.3 Master Clear (MCLR) Pin
The MCLR pin provides two specific device
functions: device Reset, and device programming
and debugging. If programming and debugging are
not required in the end application, a direct
connection to VDD may be all that is required. The
addition of other components, to help increase the
application’s resistance to spurious Resets from
voltage sags, may be beneficial. A typical
configuration is shown in Figure 2-1. Other circuit
designs may be implemented, depending on the
application’s requirements.
During programming and debugging, the resistance
and capacitance that can be added to the pin must
be considered. Device programmers and debuggers
drive the MCLR pin. Consequently, specific voltage
levels (VIH and VIL) and fast signal transitions must
not be adversely affected. Therefore, specific values
of R1 and C1 will need to be adjusted based on the
application and PCB requirements. For example, it is
recommended that the capacitor, C1, be isolated
from the MCLR pin during programming and
debugging operations by using a jumper (Figure 2-2).
The jumper is replaced for normal run-time
operations.
Any components associated with the MCLR pin
should be placed within 0.25 inch (6 mm) of the pin.
FIGURE 2-2: EXAMPLE OF MCLR PIN
CONNECTIONS
Note 1: R1 10 k is recommended. A suggested
starting value is 10 k. Ensure that the
MCLR pin VIH and VIL specifications are met.
2: R2 470 will limit any current flowing into
MCLR from the external capacitor, C, in the
event of MCLR pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS). Ensure that the MCLR pin
VIH and VIL specifications are met.
C1
R2
R1
VDD
MCLR
PIC24FXXXX
JP
2010 Microchip Technology Inc. DS39951C-page 21
PIC24FJ64GA104 FAMILY
2.4 Voltage Regulator Pins
(ENVREG/DISVREG and
VCAP/VDDCORE)
The on-chip voltage regulator enable/disable pin
(ENVREG or DISVREG, depending on the device
family) must always be connected directly to either a
supply voltage or to ground. The particular connection
is determined by whether or not the regulator is to be
used:
For ENVREG, tie to VDD to enable the regulator,
or to ground to disable the regulator
For DISVREG, tie to ground to enable the
regulator or to VDD to disable the regulator
Refer to Section 25.2 “On-Chip Voltage Regulator”
for details on connecting and using the on-chip
regulator.
When the regulator is enabled, a low-ESR (<5)
capacitor is required on the VCAP/VDDCORE pin to
stabilize the voltage regulator output voltage. The
VCAP/VDDCORE pin must not be connected to VDD, and
must use a capacitor of 10 F connected to ground. The
type can be ceramic or tantalum. A suitable example is
the Murata GRM21BF50J106ZE01 (10 F, 6.3V) or
equivalent. Designers may use Figure 2-3 to evaluate
ESR equivalence of candidate devices.
The placement of this capacitor should be close to
VCAP/VDDCORE. It is recommended that the trace
length not exceed 0.25 inch (6 mm). Refer to
Section 28.0 “Electrical Characteristics” for
additional information.
When the regulator is disabled, the VCAP/VDDCORE pin
must be tied to a voltage supply at the VDDCORE level.
Refer to Section 28.0 “Electrical Characteristics” for
information on VDD and VDDCORE.
FIGURE 2-3: FREQUENCY vs. ESR
PERFORMANCE FOR
SUGGESTED VCAP
2.5 ICSP Pins
The PGECx and PGEDx pins are used for In-Circuit
Serial Programming (ICSP) and debugging purposes.
It is recommended to keep the trace length between
the ICSP connector and the ICSP pins on the device as
short as possible. If the ICSP connector is expected to
experience an ESD event, a series resistor is recom-
mended, with the value in the range of a few tens of
ohms, not to exceed 100.
Pull-up resistors, series diodes and capacitors on the
PGECx and PGEDx pins are not recommended as they
will interfere with the programmer/debugger communi-
cations to the device. If such discrete components are
an application requirement, they should be removed
from the circuit during programming and debugging.
Alternatively, refer to the AC/DC characteristics and
timing requirements information in the respective
device Flash programming specification for information
on capacitive loading limits and pin input voltage high
(VIH) and input low (VIL) requirements.
For device emulation, ensure that the “Communication
Channel Select” (i.e., PGECx/PGEDx pins) programmed
into the device matches the physical connections for the
ICSP to the Microchip debugger/emulator tool.
For more information on available Microchip
development tools connection requirements, refer to
Section 26.0 “Development Support”.
Note: This section applies only to PIC24FJ
devices with an on-chip voltage regulator.
10
1
0.1
0.01
0.001 0.01 0.1 1 10 100 1000 10,000
Frequency (MHz)
ESR ()
Note: Data for Murata GRM21BF50J106ZE01 shown.
Measurements at 25°C, 0V DC bias.
PIC24FJ64GA104 FAMILY
DS39951C-page 22 2010 Microchip Technology Inc.
2.6 External Oscillator Pins
Many microcontrollers have options for at least two
oscillators: a high-frequency primary oscillator and a
low-frequency Secondary Oscillator (refer to
Section 8.0 “Oscillator Configuration” for details).
The oscillator circuit should be placed on the same
side of the board as the device. Place the oscillator
circuit close to the respective oscillator pins with no
more than 0.5 inch (12 mm) between the circuit
components and the pins. The load capacitors should
be placed next to the oscillator itself, on the same side
of the board.
Use a grounded copper pour around the oscillator cir-
cuit to isolate it from surrounding circuits. The
grounded copper pour should be routed directly to the
MCU ground. Do not run any signal traces or power
traces inside the ground pour. Also, if using a two-sided
board, avoid any traces on the other side of the board
where the crystal is placed.
Layout suggestions are shown in Figure 2-4. In-line
packages may be handled with a single-sided layout
that completely encompasses the oscillator pins. With
fine-pitch packages, it is not always possible to com-
pletely surround the pins and components. A suitable
solution is to tie the broken guard sections to a mirrored
ground layer. In all cases, the guard trace(s) must be
returned to ground.
In planning the application’s routing and I/O assign-
ments, ensure that adjacent port pins and other signals
in close proximity to the oscillator are benign (i.e., free
of high frequencies, short rise and fall times and other
similar noise).
For additional information and design guidance on
oscillator circuits, please refer to these Microchip
Application Notes, available at the corporate web site
(www.microchip.com):
AN826, “Crystal Oscillator Basics and Crystal
Selection for rfPIC™ and PICmicro® Devices”
AN849, “Basic PICmicro® Oscillator Design”
AN943, “Practical PICmicro® Oscillator Analysis
and Design”
AN949, “Making Your Oscillator Work”
FIGURE 2-4: SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT
GND
`
`
`
OSCI
OSCO
SOSCO
SOSC I
Copper Pour Primary Oscillator
Crystal
Secondary
Crystal
DEVICE PINS
Primary
Oscillator
C1
C2
Sec Oscillator: C1 Sec Oscillator: C2
(tied to ground)
GND
OSCO
OSCI
Bottom Layer
Copper Pour
Oscillator
Crystal
Top Layer Copper Pour
C2
C1
DEVICE PINS
(tied to ground)
(tied to ground)
Single-Sided and In-line Layouts:
Fine-Pitch (Dual-Sided) Layouts:
Oscillator
2010 Microchip Technology Inc. DS39951C-page 23
PIC24FJ64GA104 FAMILY
2.7 Configuration of Analog and
Digital Pins During ICSP
Operations
If an ICSP compliant emulator is selected as a debug-
ger, it automatically initializes all of the A/D input pins
(ANx) as “digital” pins. Depending on the particular
device, this is done by setting all bits in the ADnPCFG
register(s), or clearing all bit in the ANSx registers.
All PIC24F devices will have either one or more
ADnPCFG registers or several ANSx registers (one for
each port); no device will have both. Refer to
Section 21.0 “10-Bit High-Speed A/D Converter”)
for more specific information.
The bits in these registers that correspond to the A/D
pins that initialized the emulator must not be changed
by the user application firmware; otherwise,
communication errors will result between the debugger
and the device.
If your application needs to use certain A/D pins as
analog input pins during the debug session, the user
application must modify the appropriate bits during
initialization of the ADC module, as follows:
For devices with an ADnPCFG register, clear the
bits corresponding to the pin(s) to be configured
as analog. Do not change any other bits, particu-
larly those corresponding to the PGECx/PGEDx
pair, at any time.
For devices with ANSx registers, set the bits
corresponding to the pin(s) to be configured as
analog. Do not change any other bits, particularly
those corresponding to the PGECx/PGEDx pair,
at any time.
When a Microchip debugger/emulator is used as a
programmer, the user application firmware must
correctly configure the ADnPCFG or ANSx registers.
Automatic initialization of this register is only done
during debugger operation. Failure to correctly
configure the register(s) will result in all A/D pins being
recognized as analog input pins, resulting in the port
value being read as a logic '0', which may affect user
application functionality.
2.8 Unused I/Os
Unused I/O pins should be configured as outputs and
driven to a logic low state. Alternatively, connect a 1 k
to 10 k resistor to VSS on unused pins and drive the
output to logic low.
PIC24FJ64GA104 FAMILY
DS39951C-page 24 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 25
PIC24FJ64GA104 FAMILY
3.0 CPU
The PIC24F CPU has a 16-bit (data), modified Harvard
architecture with an enhanced instruction set and a
24-bit instruction word with a variable length opcode
field. The Program Counter (PC) is 23 bits wide and
addresses up to 4M instructions of user program
memory space. A single-cycle instruction prefetch
mechanism is used to help maintain throughput and
provides predictable execution. All instructions execute
in a single cycle, with the exception of instructions that
change the program flow, the double-word move
(MOV.D) instruction and the table instructions.
Overhead-free program loop constructs are supported
using the REPEAT instructions, which are interruptible at
any point.
PIC24F devices have sixteen, 16-bit working registers
in the programmer’s model. Each of the working
registers can act as a data, address or address offset
register. The 16th working register (W15) operates as
a Software Stack Pointer for interrupts and calls.
The upper 32 Kbytes of the data space memory map
can optionally be mapped into program space at any
16K word boundary defined by the 8-bit Program Space
Visibility Page Address (PSVPAG) register. The program
to data space mapping feature lets any instruction
access program space as if it were data space.
The Instruction Set Architecture (ISA) has been
significantly enhanced beyond that of the PIC18, but
maintains an acceptable level of backward compatibility.
All PIC18 instructions and addressing modes are
supported either directly or through simple macros.
Many of the ISA enhancements have been driven by
compiler efficiency needs.
The core supports Inherent (no operand), Relative,
Literal, Memory Direct and three groups of addressing
modes. All modes support Register Direct and various
Register Indirect modes. Each group offers up to seven
addressing modes. Instructions are associated with
predefined addressing modes depending upon their
functional requirements.
For most instructions, the core is capable of executing
a data (or program data) memory read, a working reg-
ister (data) read, a data memory write and a program
(instruction) memory read per instruction cycle. As a
result, three parameter instructions can be supported,
allowing trinary operations (that is, A + B = C) to be
executed in a single cycle.
A high-speed, 17-bit by 17-bit multiplier has been
included to significantly enhance the core arithmetic
capability and throughput. The multiplier supports
Signed, Unsigned and Mixed mode, 16-bit by 16-bit or
8-bit by 8-bit integer multiplication. All multiply
instructions execute in a single cycle.
The 16-bit ALU has been enhanced with integer divide
assist hardware that supports an iterative non-restoring
divide algorithm. It operates in conjunction with the
REPEAT instruction looping mechanism and a selection
of iterative divide instructions to support 32-bit (or
16-bit), divided by 16-bit, integer signed and unsigned
division. All divide operations require 19 cycles to
complete, but are interruptible at any cycle boundary.
The PIC24F has a vectored exception scheme with up
to 8 sources of non-maskable traps and up to 118 inter-
rupt sources. Each interrupt source can be assigned to
one of seven priority levels.
A block diagram of the CPU is shown in Figure 3-1.
3.1 Programmers Model
The programmer’s model for the PIC24F is shown in
Figure 3-2. All registers in the programmer’s model are
memory mapped and can be manipulated directly by
instructions. A description of each register is provided
in Table 3-1. All registers associated with the
programmer’s model are memory mapped.
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 2. “CPU” (DS39703).
PIC24FJ64GA104 FAMILY
DS39951C-page 26 2010 Microchip Technology Inc.
FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM
Instruction
Decode &
Control
PCH PCL
16
Program Counter
16-Bit ALU
23
23
24
23
Data Bus
Instruction Reg
16
16 x 16
W Register Array
Divide
Support
ROM Latch
16
EA MUX
RAGU
WAGU
16
16
8
Interrupt
Controller
PSV & Table
Data Access
Control Block
Stack
Control
Logic
Loop
Control
Logic
Data Latch
Data RAM
Address
Latch
Control Signals
to Various Blocks
Program Memory
Data Latch
Address Bus
16
Literal Data
16 16
Hardware
Multiplier
16
To Peripheral Modules
Address Latch
2010 Microchip Technology Inc. DS39951C-page 27
PIC24FJ64GA104 FAMILY
TABLE 3-1: CPU CORE REGISTERS
FIGURE 3-2: PROGRAMMERS MODEL
Register(s) Name Description
W0 through W15 Working Register Array
PC 23-Bit Program Counter
SR ALU STATUS Register
SPLIM Stack Pointer Limit Value Register
TBLPAG Table Memory Page Address Register
PSVPAG Program Space Visibility Page Address Register
RCOUNT Repeat Loop Counter Register
CORCON CPU Control Register
NOVZ C
TBLPAG
22 0
7 0
015
Program Counter
Table Memory Page
ALU STATUS Register (SR)
Working/Address
Registers
W0 (WREG)
W1
W2
W3
W4
W5
W6
W7
W8
W9
W10
W11
W12
W13
Frame Pointer
Stack Pointer
PSVPAG
7 0 Program Space Visibility
RA
0
RCOUNT
15 0 Repeat Loop Counter
SPLIM Stack Pointer Limit
SRL
Registers or bits shaded for PUSH.S and POP.S instructions.
0
0
Page Address Register
15 0
CPU Control Register (CORCON)
SRH
W14
W15
DC IPL
210
——
IPL3 PSV
————————————
——
PC
Divider Working Registers
Multiplier Registers
15 0
Value Register
Address Register
Register
PIC24FJ64GA104 FAMILY
DS39951C-page 28 2010 Microchip Technology Inc.
3.2 CPU Control Registers
REGISTER 3-1: SR: ALU STATUS REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0
—DC
bit 15 bit 8
R/W-0(1) R/W-0(1) R/W-0(1) R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL2(2) IPL1(2) IPL0(2) RA N OV Z C
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-9 Unimplemented: Read as ‘0
bit 8 DC: ALU Half Carry/Borrow bit
1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)
of the result occurred
0 = No carry out from the 4th or 8th low-order bit of the result has occurred
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)
111 = CPU interrupt priority level is 7 (15); user interrupts disabled
110 = CPU interrupt priority level is 6 (14)
101 = CPU interrupt priority level is 5 (13)
100 = CPU interrupt priority level is 4 (12)
011 = CPU interrupt priority level is 3 (11)
010 = CPU interrupt priority level is 2 (10)
001 = CPU interrupt priority level is 1 (9)
000 = CPU interrupt priority level is 0 (8)
bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress
bit 3 N: ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)
bit 2 OV: ALU Overflow bit
1 = Overflow occurred for signed (2’s complement) arithmetic in this arithmetic operation
0 = No overflow has occurred
bit 1 Z: ALU Zero bit
1 = An operation which effects the Z bit has set it at some time in the past
0 = The most recent operation which effects the Z bit has cleared it (i.e., a non-zero result)
bit 0 C: ALU Carry/Borrow bit
1 = A carry out from the Most Significant bit of the result occurred
0 = No carry out from the Most Significant bit of the result occurred
Note 1: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority
Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.
2010 Microchip Technology Inc. DS39951C-page 29
PIC24FJ64GA104 FAMILY
3.3 Arithmetic Logic Unit (ALU)
The PIC24F ALU is 16 bits wide and is capable of addi-
tion, subtraction, bit shifts and logic operations. Unless
otherwise mentioned, arithmetic operations are 2’s
complement in nature. Depending on the operation, the
ALU may affect the values of the Carry (C), Zero (Z),
Negative (N), Overflow (OV) and Digit Carry (DC)
Status bits in the SR register. The C and DC Status bits
operate as Borrow and Digit Borrow bits, respectively,
for subtraction operations.
The ALU can perform 8-bit or 16-bit operations,
depending on the mode of the instruction that is used.
Data for the ALU operation can come from the W
register array, or data memory, depending on the
addressing mode of the instruction. Likewise, output
data from the ALU can be written to the W register array
or a data memory location.
The PIC24F CPU incorporates hardware support for
both multiplication and division. This includes a
dedicated hardware multiplier and support hardware
for 16-bit divisor division.
3.3.1 MULTIPLIER
The ALU contains a high-speed, 17-bit x 17-bit
multiplier. It supports unsigned, signed or mixed sign
operation in several multiplication modes:
1. 16-bit x 16-bit signed
2. 16-bit x 16-bit unsigned
3. 16-bit signed x 5-bit (literal) unsigned
4. 16-bit unsigned x 16-bit unsigned
5. 16-bit unsigned x 5-bit (literal) unsigned
6. 16-bit unsigned x 16-bit signed
7. 8-bit unsigned x 8-bit unsigned
REGISTER 3-2: CORCON: CPU CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 U-0 R/C-0 R/W-0 U-0 U-0
————IPL3
(1) PSV
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-4 Unimplemented: Read as ‘0
bit 3 IPL3: CPU Interrupt Priority Level Status bit(1)
1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less
bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space
bit 1-0 Unimplemented: Read as ‘0
Note 1: User interrupts are disabled when IPL3 = 1.
PIC24FJ64GA104 FAMILY
DS39951C-page 30 2010 Microchip Technology Inc.
3.3.2 DIVIDER
The divide block supports signed and unsigned integer
divide operations with the following data sizes:
1. 32-bit signed/16-bit signed divide
2. 32-bit unsigned/16-bit unsigned divide
3. 16-bit signed/16-bit signed divide
4. 16-bit unsigned/16-bit unsigned divide
The quotient for all divide instructions ends up in W0
and the remainder in W1. Sixteen-bit signed and
unsigned DIV instructions can specify any W register
for both the 16-bit divisor (Wn), and any W register
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.
The divide algorithm takes one cycle per bit of divisor,
so both 32-bit/16-bit and 16-bit/16-bit instructions take
the same number of cycles to execute.
3.3.3 MULTI-BIT SHIFT SUPPORT
The PIC24F ALU supports both single bit and
single-cycle, multi-bit arithmetic and logic shifts.
Multi-bit shifts are implemented using a shifter block,
capable of performing up to a 15-bit arithmetic right
shift, or up to a 15-bit left shift, in a single cycle. All
multi-bit shift instructions only support Register Direct
Addressing for both the operand source and result
destination.
A full summary of instructions that use the shift
operation is provided below in Table 3-2.
TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION
Instruction Description
ASR Arithmetic shift right source register by one or more bits.
SL Shift left source register by one or more bits.
LSR Logical shift right source register by one or more bits.
2010 Microchip Technology Inc. DS39951C-page 31
PIC24FJ64GA104 FAMILY
4.0 MEMORY ORGANIZATION
As Harvard architecture devices, PIC24F micro-
controllers feature separate program and data memory
spaces and busses. This architecture also allows the
direct access of program memory from the data space
during code execution.
4.1 Program Address Space
The program address memory space of the
PIC24FJ64GA104 family devices is 4M instructions.
The space is addressable by a 24-bit value derived
from either the 23-bit Program Counter (PC) during pro-
gram execution, or from table operation or data space
remapping, as described in Section 4.3 “Interfacing
Program and Data Memory Spaces.
User access to the program memory space is restricted
to the lower half of the address range (000000h to
7FFFFFh). The exception is the use of TBLRD/TBLWT
operations which use TBLPAG<7> to permit access to
the Configuration bits and Device ID sections of the
configuration memory space.
Memory maps for the PIC24FJ64GA104 family of
devices are shown in Figure 4-1.
FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ64GA104 FAMILY DEVICES
000000h
0000FEh
000002h
000100h
F8000Eh
F80010h
FEFFFEh
FFFFFFh
000004h
000200h
0001FEh
000104h
Reset Address
DEVID (2)
GOTO Instruction
Reserved
Alternate Vector Table
Reserved
Interrupt Vector Table
PIC24FJ32GA10X
Configuration Memory Space User Memory Space
Flash Config Words
Note: Memory areas are not shown to scale.
FF0000h
F7FFFEh
F80000h
Device Config Registers
800000h
7FFFFFh
Reserved
00AC00h
00ABFEh
Unimplemented
Read ‘0
Reset Address
Device Config Registers
User Flash
Program Memory
(22K instructions)
DEVID (2)
GOTO Instruction
Reserved
Alternate Vector Table
Reserved
Interrupt Vector Table
PIC24FJ64GA10X
Reserved
Flash Config Words
Unimplemented
Read ‘0
005800h
0057FEh
User Flash
Program Memory
(11K instructions)
PIC24FJ64GA104 FAMILY
DS39951C-page 32 2010 Microchip Technology Inc.
4.1.1 PROGRAM MEMORY
ORGANIZATION
The program memory space is organized in
word-addressable blocks. Although it is treated as
24 bits wide, it is more appropriate to think of each
address of the program memory as a lower and upper
word, with the upper byte of the upper word being
unimplemented. The lower word always has an even
address, while the upper word has an odd address
(Figure 4-2).
Program memory addresses are always word-aligned
on the lower word and addresses are incremented or
decremented by two during code execution. This
arrangement also provides compatibility with data
memory space addressing and makes it possible to
access data in the program memory space.
4.1.2 HARD MEMORY VECTORS
All PIC24F devices reserve the addresses between
00000h and 000200h for hard coded program execu-
tion vectors. A hardware Reset vector is provided to
redirect code execution from the default value of the
PC on device Reset to the actual start of code. A GOTO
instruction is programmed by the user at 000000h with
the actual address for the start of code at 000002h.
PIC24F devices also have two interrupt vector tables,
located from 000004h to 0000FFh and 000100h to
0001FFh. These vector tables allow each of the many
device interrupt sources to be handled by separate
ISRs. A more detailed discussion of the interrupt vector
tables is provided in Section 7.1 “Interrupt Vector
Table.
4.1.3 FLASH CONFIGURATION WORDS
In PIC24FJ64GA104 family devices, the top four words
of on-chip program memory are reserved for configura-
tion information. On device Reset, the configuration
information is copied into the appropriate Configuration
registers. The addresses of the Flash Configuration
Word for devices in the PIC24FJ64GA104 family are
shown in Table 4-1. Their location in the memory map
is shown with the other memory vectors in Figure 4-1.
The Configuration Words in program memory are a
compact format. The actual Configuration bits are
mapped in several different registers in the configuration
memory space. Their order in the Flash Configuration
Words do not reflect a corresponding arrangement in the
configuration space. Additional details on the device
Configuration Words are provided in Section 25.1
“Configuration Bits”.
TABLE 4-1: FLASH CONFIGURATION
WORDS FOR PIC24FJ64GA104
FAMILY DEVICES
FIGURE 4-2: PROGRAM MEMORY ORGANIZATION
Device
Program
Memory
(Words)
Configuration
Word
Addresses
PIC24FJ32GA1 11,008 0057F8h:
0057FEh
PIC24FJ64GA1 22,016 00ABF8h:
00ABFEh
0816
PC Address
000000h
000002h
000004h
000006h
23
00000000
00000000
00000000
00000000
Program Memory
‘Phantom’ Byte
(read as ‘0’)
least significant word
most significant word
Instruction Width
000001h
000003h
000005h
000007h
MSW
Address (LSW Address)
2010 Microchip Technology Inc. DS39951C-page 33
PIC24FJ64GA104 FAMILY
4.2 Data Address Space
The PIC24F core has a separate, 16-bit wide data mem-
ory space, addressable as a single linear range. The
data space is accessed using two Address Generation
Units (AGUs), one each for read and write operations.
The data space memory map is shown in Figure 4-3.
All Effective Addresses (EAs) in the data memory space
are 16 bits wide and point to bytes within the data space.
This gives a data space address range of 64 Kbytes or
32K words. The lower half of the data memory space
(that is, when EA<15> = 0) is used for implemented
memory addresses, while the upper half (EA<15> = 1) is
reserved for the program space visibility area (see
Section 4.3.3 “Reading Data from Program Memory
Using Program Space Visibility”).
PIC24FJ64GA104 family devices implement a total of
16 Kbytes of data memory. Should an EA point to a
location outside of this area, an all zero word or byte will
be returned.
4.2.1 DATA SPACE WIDTH
The data memory space is organized in
byte-addressable, 16-bit wide blocks. Data is aligned
in data memory and registers as 16-bit words, but all
data space EAs resolve to bytes. The Least Significant
Bytes (LSBs) of each word have even addresses, while
the Most Significant Bytes (MSBs) have odd
addresses.
FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24FJ64GA104 FAMILY DEVICES
0000h
07FEh
FFFEh
LSB
Address
LSBMSB
MSB
Address
0001h
07FFh
1FFFh
FFFFh
8001h 8000h
7FFFh
0801h 0800h
2001h
Near
1FFEh
SFR
SFR Space
Data RAM
2000h
7FFFh
Program Space
Visibility Area
Note: Data memory areas are not shown to scale.
27FEh
2800h
27FFh
2801h
Space
Data Space
Implemented
Data RAM
Unimplemented
Read as0
PIC24FJ64GA104 FAMILY
DS39951C-page 34 2010 Microchip Technology Inc.
4.2.2 DATA MEMORY ORGANIZATION
AND ALIGNMENT
To maintain backward compatibility with PIC® devices
and improve data space memory usage efficiency, the
PIC24F instruction set supports both word and byte
operations. As a consequence of byte accessibility, all
Effective Address calculations are internally scaled to
step through word-aligned memory. For example, the
core recognizes that Post-Modified Register Indirect
Addressing mode [Ws++] will result in a value of Ws + 1
for byte operations and Ws + 2 for word operations.
Data byte reads will read the complete word which con-
tains the byte using the LSb of any EA to determine
which byte to select. The selected byte is placed onto
the LSB of the data path. That is, data memory and reg-
isters are organized as two parallel, byte-wide entities
with shared (word) address decode, but separate write
lines. Data byte writes only write to the corresponding
side of the array or register which matches the byte
address.
All word accesses must be aligned to an even address.
Misaligned word data fetches are not supported, so
care must be taken when mixing byte and word
operations or translating from 8-bit MCU code. If a
misaligned read or write is attempted, an address error
trap will be generated. If the error occurred on a read,
the instruction underway is completed; if it occurred on
a write, the instruction will be executed but the write will
not occur. In either case, a trap is then executed, allow-
ing the system and/or user to examine the machine
state prior to execution of the address Fault.
All byte loads into any W register are loaded into the
Least Significant Byte. The Most Significant Byte is not
modified.
A Sign-Extend (SE) instruction is provided to allow
users to translate 8-bit signed data to 16-bit signed
values. Alternatively, for 16-bit unsigned data, users
can clear the MSB of any W register by executing a
Zero-Extend (ZE) instruction on the appropriate
address.
Although most instructions are capable of operating on
word or byte data sizes, it should be noted that some
instructions operate only on words.
4.2.3 NEAR DATA SPACE
The 8-Kbyte area between 0000h and 1FFFh is
referred to as the near data space. Locations in this
space are directly addressable via a 13-bit absolute
address field within all memory direct instructions. The
remainder of the data space is indirectly addressable.
Additionally, the whole data space is addressable using
MOV instructions, which support Memory Direct
Addressing with a 16-bit address field.
4.2.4 SFR SPACE
The first 2 Kbytes of the near data space, from 0000h
to 07FFh, are primarily occupied with Special Function
Registers (SFRs). These are used by the PIC24F core
and peripheral modules for controlling the operation of
the device.
SFRs are distributed among the modules that they
control and are generally grouped together by module.
Much of the SFR space contains unused addresses;
these are read as ‘0’. A diagram of the SFR space,
showing where SFRs are actually implemented, is
shown in Table 4-2. Each implemented area indicates
a 32-byte region where at least one address is
implemented as an SFR. A complete listing of
implemented SFRs, including their addresses, is
shown in Tables 4-3 through 4-26.
TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE
SFR Space Address
xx00 xx20 xx40 xx60 xx80 xxA0 xxC0 xxE0
000h Core ICN Interrupts
100h Timers Capture Compare
200h I2C™ UART SPI I/O
300h A/D A/D/CTMU
400h
500h
600h PMP RTCC CRC/Comp
Comparators
PPS
700h System/DS NVM/PMD
Legend: — = No implemented SFRs in this block
2010 Microchip Technology Inc. DS39951C-page 35
PIC24FJ64GA104 FAMILY
TABLE 4-3: CPU CORE REGISTERS MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
WREG0 0000 Working Register 0 0000
WREG1 0002 Working Register 1 0000
WREG2 0004 Working Register 2 0000
WREG3 0006 Working Register 3 0000
WREG4 0008 Working Register 4 0000
WREG5 000A Working Register 5 0000
WREG6 000C Working Register 6 0000
WREG7 000E Working Register 7 0000
WREG8 0010 Working Register 8 0000
WREG9 0012 Working Register 9 0000
WREG10 0014 Working Register 10 0000
WREG11 0016 Working Register 11 0000
WREG12 0018 Working Register 12 0000
WREG13 001A Working Register 13 0000
WREG14 001C Working Register 14 0000
WREG15 001E Working Register 15 0800
SPLIM 0020 Stack Pointer Limit Value Register xxxx
PCL 002E Program Counter Low Word Register 0000
PCH 0030 ——————— Program Counter Register High Byte 0000
TBLPAG 0032 ——————— Table Memory Page Address Register 0000
PSVPAG 0034 —————— Program Space Visibility Page Address Register 0000
RCOUNT 0036 Repeat Loop Counter Register xxxx
SR 0042 —————— DC IPL2 IPL1 IPL0 RA N OV Z C 0000
CORCON 0044 ——————————— IPL3 PSV 0000
DISICNT 0052 Disable Interrupts Counter Register xxxx
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
PIC24FJ64GA104 FAMILY
DS39951C-page 36 2010 Microchip Technology Inc.
TABLE 4-4: ICN REGISTER MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE
(1)
CN9IE
(1)
CN8IE
(1)
CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE
0000
CNEN2 0062 CN30IE CN29IE CN28IE
(1)
CN27IE CN26IE
(1)
CN25IE
(1)
CN24IE CN23IE CN22IE CN21IE CN20IE
(1)
CN19IE
(1)
CN18IE
(1)
CN17IE
(1)
CN16IE
0000
CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE
(1)
CN9PUE
(1)
CN8PUE
(1)
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE
0000
CNPU2 006A CN30PUE CN29PUE CN28PUE
(1)
CN27PUE CN26PUE
(1)
CN25PUE
(1)
CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE
(1)
CN19PUE
(1)
CN18PUE
(1)
CN17PUE
(1)
CN16PUE
0000
Legend:
— = unimplemented, read as
0
’. Reset values are shown in hexadecimal.
Note 1:
Unimplemented in 28-pin devices; read as ‘
0
’.
2010 Microchip Technology Inc. DS39951C-page 37
PIC24FJ64GA104 FAMILY
TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
INTCON1 0080 NSTDIS MATHERR ADDRERR STKERR OSCFAIL 0000
INTCON2 0082 ALTIVT DISI INT2EP INT1EP INT0EP 0000
IFS0 0084 AD1IF U1TXIF U1RXIF SPI1IF SPF1IF T3IF T2IF OC2IF IC2IF T1IF OC1IF IC1IF INT0IF 0000
IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF INT1IF CNIF CMIF MI2C1IF SI2C1IF 0000
IFS2 0088 —PMPIF———OC5IF IC5IF IC4IF IC3IF SPI2IF SPF2IF 0000
IFS3 008A —RTCIF —MI2C2IFSI2C2IF0000
IFS4 008C —CTMUIF——— —LVDIF CRCIF U2ERIF U1ERIF 0000
IEC0 0094 AD1IE U1TXIE U1RXIE SPI1IE SPF1IE T3IE T2IE OC2IE IC2IE T1IE OC1IE IC1IE INT0IE 0000
IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE INT1IE CNIE CMIE MI2C1IE SI2C1IE 0000
IEC2 0098 —PMPIE———OC5IE IC5IE IC4IE IC3IE SPI2IE SPF2IE 0000
IEC3 009A —RTCIE MI2C2IE SI2C2IE 0000
IEC4 009C —CTMUIE——— —LVDIE CRCIE U2ERIE U1ERIE 0000
IPC0 00A4 T1IP2 T1IP1 T1IP0 OC1IP2 OC1IP1 OC1IP0 IC1IP2 IC1IP1 IC1IP0 INT0IP2 INT0IP1 INT0IP0 4444
IPC1 00A6 T2IP2 T2IP1 T2IP0 OC2IP2 OC2IP1 OC2IP0 IC2IP2 IC2IP1 IC2IP0 4440
IPC2 00A8 U1RXIP2 U1RXIP1 U1RXIP0 SPI1IP2 SPI1IP1 SPI1IP0 SPF1IP2 SPF1IP1 SPF1IP0 T3IP2 T3IP1 T3IP0 4444
IPC3 00AA ——————— AD1IP2 AD1IP1 AD1IP0 U1TXIP2 U1TXIP1 U1TXIP0 0044
IPC4 00AC CNIP2 CNIP1 CNIP0 CMIP2 CMIP1 CMIP0 MI2C1IP2 MI2C1IP1 MI2C1IP0 SI2C1IP2 SI2C1IP1 SI2C1IP0 4444
IPC5 00AE INT1IP2 INT1IP1 INT1IP0 0004
IPC6 00B0 T4IP2 T4IP1 T4IP0 OC4IP2 OC4IP1 OC4IP0 OC3IP2 OC3IP1 OC3IP0 4440
IPC7 00B2 U2TXIP2 U2TXIP1 U2TXIP0 U2RXIP2 U2RXIP1 U2RXIP0 INT2IP2 INT2IP1 INT2IP0 T5IP2 T5IP1 T5IP0 4444
IPC8 00B4 ——————— SPI2IP2 SPI2IP1 SPI2IP0 SPF2IP2 SPF2IP1 SPF2IP0 0044
IPC9 00B6 IC5IP2 IC5IP1 IC5IP0 IC4IP2 IC4IP1 IC4IP0 IC3IP2 IC3IP1 IC3IP0 4440
IPC10 00B8 ——————— OC5IP2 OC5IP1 OC5IP0 0040
IPC11 00BA ——————— PMPIP2 PMPIP1 PMPIP0 0040
IPC12 00BC MI2C2IP2 MI2C2IP1 MI2C2IP0 SI2C2IP2 SI2C2IP1 SI2C2IP0 0440
IPC15 00C2 RTCIP2 RTCIP1 RTCIP0 0400
IPC16 00C4 CRCIP2 CRCIP1 CRCIP0 U2ERIP2 U2ERIP1 U2ERIP0 U1ERIP2 U1ERIP1 U1ERIP0 4440
IPC18 00C8 LVDIP2 LVDIP1 LVDIP0 0004
IPC19 00CA ——————— CTMUIP2 CTMUIP1 CTMUIP0 0040
INTTREG 00E0 CPUIRQ —VHOLD ILR3 ILR2 ILR1 ILR0 VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
PIC24FJ64GA104 FAMILY
DS39951C-page 38 2010 Microchip Technology Inc.
TABLE 4-6: TIMER REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
TMR1 0100 Timer1 Register 0000
PR1 0102 Timer1 Period Register FFFF
T1CON 0104 TON —TSIDL————— TGATE TCKPS1 TCKPS0 —TSYNCTCS 0000
TMR2 0106 Timer2 Register 0000
TMR3HLD 0108 Timer3 Holding Register (for 32-bit timer operations only) 0000
TMR3 010A Timer3 Register 0000
PR2 010C Timer2 Period Register FFFF
PR3 010E Timer3 Period Register FFFF
T2CON 0110 TON —TSIDL————— TGATE TCKPS1 TCKPS0 T32 —TCS0000
T3CON 0112 TON —TSIDL————— TGATE TCKPS1 TCKPS0 —TCS0000
TMR4 0114 Timer4 Register 0000
TMR5HLD 0116 Timer5 Holding Register (for 32-bit operations only) 0000
TMR5 0118 Timer5 Register 0000
PR4 011A Timer4 Period Register FFFF
PR5 011C Timer5 Period Register FFFF
T4CON 011E TON —TSIDL————— TGATE TCKPS1 TCKPS0 T32 —TCS0000
T5CON 0120 TON —TSIDL————— TGATE TCKPS1 TCKPS0 —TCS0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
2010 Microchip Technology Inc. DS39951C-page 39
PIC24FJ64GA104 FAMILY
TABLE 4-7: INPUT CAPTURE REGISTER MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
IC1CON1 0140 ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000
IC1CON2 0142 IC32 ICTRIG TRIGSTAT SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
IC1BUF 0144 Input Capture 1 Buffer Register 0000
IC1TMR 0146 Timer Value 1 Register xxxx
IC2CON1 0148 ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000
IC2CON2 014A IC32 ICTRIG TRIGSTAT SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
IC2BUF 014C Input Capture 2 Buffer Register 0000
IC2TMR 014E Timer Value 2 Register xxxx
IC3CON1 0150 ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000
IC3CON2 0152 IC32 ICTRIG TRIGSTAT SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
IC3BUF 0154 Input Capture 3 Buffer Register 0000
IC3TMR 0156 Timer Value 3 Register xxxx
IC4CON1 0158 ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000
IC4CON2 015A IC32 ICTRIG TRIGSTAT SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
IC4BUF 015C Input Capture 4 Buffer Register 0000
IC4TMR 015E Timer Value 4 Register xxxx
IC5CON1 0160 ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000
IC5CON2 0162 IC32 ICTRIG TRIGSTAT SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000D
IC5BUF 0164 Input Capture 5 Buffer Register 0000
IC5TMR 0166 Timer Value 5 Register xxxx
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
PIC24FJ64GA104 FAMILY
DS39951C-page 40 2010 Microchip Technology Inc.
TABLE 4-8: OUTPUT COMPARE REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
OC1CON1 0190 OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM0
0000
OC1CON2 0192 FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
000C
OC1RS 0194 Output Compare 1 Secondary Register
0000
OC1R 0196 Output Compare 1 Register
0000
OC1TMR 0198 Timer Value 1 Register
xxxx
OC2CON1 019A OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM0
0000
OC2CON2 019C FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
000C
OC2RS 019E Output Compare 2 Secondary Register
0000
OC2R 01A0 Output Compare 2 Register
0000
OC2TMR 01A2 Timer Value 2 Register
xxxx
OC3CON1 01A4 OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM0
0000
OC3CON2 01A6 FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
000C
OC3RS 01A8 Output Compare 3 Secondary Register
0000
OC3R 01AA Output Compare 3 Register
0000
OC3TMR 01AC Timer Value 3 Register
xxxx
OC4CON1 01AE OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM0
0000
OC4CON2 01B0 FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
000C
OC4RS 01B2 Output Compare 4 Secondary Register
0000
OC4R 01B4 Output Compare 4 Register
0000
OC4TMR 01B6 Timer Value 4 Register
xxxx
OC5CON1 01B8 OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM0
0000
OC5CON2 01BA FLTMD FLTOUT FLTTRIEN OCINV DCB1 DCB0 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
000C
OC5RS 01BC Output Compare 5 Secondary Register
0000
OC5R 01BE Output Compare 5 Register
0000
OC5TMR 01C0 Timer Value 5 Register
xxxx
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
2010 Microchip Technology Inc. DS39951C-page 41
PIC24FJ64GA104 FAMILY
TABLE 4-9: I2C™ REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
I2C1RCV 0200 Receive Register 0000
I2C1TRN 0202 Transmit Register 00FF
I2C1BRG 0204 Baud Rate Generator Register 0000
I2C1CON 0206 I2CEN I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000
I2C1STAT 0208 ACKSTAT TRSTAT BCL GCSTAT ADD10 IWCOL I2COV D/A PSR/WRBF TBF 0000
I2C1ADD 020A Address Register 0000
I2C1MSK 020C Address Mask Register 0000
I2C2RCV 0210 Receive Register 0000
I2C2TRN 0212 Transmit Register 00FF
I2C2BRG 0214 Baud Rate Generator Register 0000
I2C2CON 0216 I2CEN I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000
I2C2STAT 0218 ACKSTAT TRSTAT BCL GCSTAT ADD10 IWCOL I2COV D/A PSR/WRBF TBF 0000
I2C2ADD 021A Address Register 0000
I2C2MSK 021C Address Mask Register 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
TABLE 4-10: UART REGISTER MAPS
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
U1MODE 0220 UARTEN USIDL IREN RTSMD UEN1 UEN0 WAKE LPBACK ABAUD RXINV BRGH PDSEL1 PDSEL0 STSEL 0000
U1STA 0222 UTXISEL1 UTXINV UTXISEL0 UTXBRK UTXEN UTXBF TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA 0110
U1TXREG 0224 Transmit Register xxxx
U1RXREG 0226 Receive Register 0000
U1BRG 0228 Baud Rate Generator Prescaler Register 0000
U2MODE 0230 UARTEN USIDL IREN RTSMD UEN1 UEN0 WAKE LPBACK ABAUD RXINV BRGH PDSEL1 PDSEL0 STSEL 0000
U2STA 0232 UTXISEL1 UTXINV UTXISEL0 UTXBRK UTXEN UTXBF TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA 0110
U2TXREG 0234 Transmit Register xxxx
U2RXREG 0236 Receive Register 0000
U2BRG 0238 Baud Rate Generator Prescaler Register 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
PIC24FJ64GA104 FAMILY
DS39951C-page 42 2010 Microchip Technology Inc.
TABLE 4-11: SPI REGISTER MAPS
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
SPI1STAT 0240 SPIEN SPISIDL SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF 0000
SPI1CON1 0242 —— DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000
SPI1CON2 0244 FRMEN SPIFSD SPIFPOL —————————— SPIFE SPIBEN 0000
SPI1BUF 0248 Transmit and Receive Buffer 0000
SPI2STAT 0260 SPIEN SPISIDL SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF 0000
SPI2CON1 0262 —— DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000
SPI2CON2 0264 FRMEN SPIFSD SPIFPOL —————————— SPIFE SPIBEN 0000
SPI2BUF 0268 Transmit and Receive Buffer 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
TABLE 4-12: PORTA REGISTER MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10(1) Bit 9(1) Bit 8(1) Bit 7(1) Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0 All
Resets
TRISA 02C0 ———— TRISA10 TRISA9 TRISA8 TRISA7 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 079F
PORTA 02C2 ———— RA10 RA9 RA8 RA7 RA4 RA3 RA2 RA1 RA0 xxxx
LATA 02C4 ———— LATA10 LATA9 LATA8 LATA7 LATA4 LATA3 LATA2 LATA1 LATA0 xxxx
ODCA 02C6 ———— ODA10 ODA9 ODA8 ODA7 ODA4 ODA3 ODA2 ODA1 ODA0 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal. Reset values shown are for 44-pin devices.
Note 1: Bits are unimplemented in 28-pin devices; read as ‘0’.
TABLE 4-13: PORTB REGISTER MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
TRISB 02C8 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 EFBF
PORTB 02CA RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx
LATB 02CC LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx
ODCB 02CE ODB15 ODB14 ODB13 ODB12 ODB11 ODB10 ODB9 ODB8 ODB7 ODB6 ODB5 ODB4 ODB3 ODB2 ODB1 ODB0 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
TABLE 4-14: PORTC REGISTER MAP
File
Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9(1) Bit 8(1) Bit 7(1) Bit 6(1) Bit 5(1) Bit 4(1) Bit 3(1) Bit 2(1) Bit 1(2(1) Bit 0(1) All
Resets
TRISC 02D0 TRISC9 TRISC8 TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 03FF
PORTC 02D2 RC9 RC8 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx
LATC 02D4 LATC9 LATC8 LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 xxxx
ODCC 02D6 ODC9 ODC8 ODC7 ODC6 ODC5 ODC4 ODC3 ODC2 ODC1 ODC0 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal. Reset values shown are for 44-pin devices.
Note 1: Bits are unimplemented in 28-pin devices; read as ‘0’.
2010 Microchip Technology Inc. DS39951C-page 43
PIC24FJ64GA104 FAMILY
TABLE 4-15: PAD CONFIGURATION REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
PADCFG1 02FC RTSECSEL1 RTSECSEL0 PMPTTL 0000
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
TABLE 4-16: ADC REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
ADC1BUF0 0300 ADC Data Buffer 0 xxxx
ADC1BUF1 0302 ADC Data Buffer 1 xxxx
ADC1BUF2 0304 ADC Data Buffer 2 xxxx
ADC1BUF3 0306 ADC Data Buffer 3 xxxx
ADC1BUF4 0308 ADC Data Buffer 4 xxxx
ADC1BUF5 030A ADC Data Buffer 5 xxxx
ADC1BUF6 030C ADC Data Buffer 6 xxxx
ADC1BUF7 030E ADC Data Buffer 7 xxxx
ADC1BUF8 0310 ADC Data Buffer 8 xxxx
ADC1BUF9 0312 ADC Data Buffer 9 xxxx
ADC1BUFA 0314 ADC Data Buffer 10 xxxx
ADC1BUFB 0316 ADC Data Buffer 11 xxxx
ADC1BUFC 0318 ADC Data Buffer 12 xxxx
ADC1BUFD 031A ADC Data Buffer 13 xxxx
ADC1BUFE 031C ADC Data Buffer 14 xxxx
ADC1BUFF 031E ADC Data Buffer 15 xxxx
AD1CON1 0320 ADON —ADSIDL FORM1 FORM0 SSRC2 SSRC1 SSRC0 ASAM SAMP DONE 0000
AD1CON2 0322 VCFG2 VCFG1 VCFG0 r CSCNA —BUFS SMPI3 SMPI2 SMPI1 SMPI0 BUFM ALTS 0000
AD1CON3 0324 ADRC rr SAMC4 SAMC3 SAMC2 SAMC1 SAMC0 ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 0000
AD1CHS 0328 CH0NB CH0SB4 CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA0 0000
AD1PCFG 032C PCFG15 PCFG14 PCFG13 PCFG12(1) PCFG11 PCFG10 PCFG9 PCFG8(1) PCFG7(1) PCFG6(1) PCFG5PCFG4PCFG3PCFG2PCFG1PCFG00000
AD1CSSL 0330 CSSL15 CSSL14 CSSL13 CSSL12(1) CSSL11 CSSL10 CSSL9 CSSL8(1) CSSL7(1) CSSL6(1) CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 0000
Legend: — = unimplemented, read as ‘0’, r = reserved, maintain as0’. Reset values are shown in hexadecimal.
Note 1: Bits are not available on 28-pin devices; read as ‘0’.
TABLE 4-17: CTMU REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
CTMUCON 033C CTMUEN CTMUSIDL TGEN EDGEN EDGSEQEN IDISSEN CTTRIG EDG2POL EDG2SEL1 EDG2SEL0 EDG1POL EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT 0000
CTMUICON 033E ITRIM5 ITRIM4 ITRIM3 ITRIM2 ITRIM1 ITRIM0 IRNG1 IRNG0 0000
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
PIC24FJ64GA104 FAMILY
DS39951C-page 44 2010 Microchip Technology Inc.
TABLE 4-18: PARALLEL MASTER/SLAVE PORT REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
PMCON 0600 PMPEN PSIDL ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN CSF1 CSF0 ALP CS1P BEP WRSP RDSP 0000
PMMODE 0602 BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0 WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0 0000
PMADDR 0604 —CS1 ADDR10(1) ADDR9(1) ADDR8(1) ADDR7(1) ADDR6(1) ADDR5(1) ADDR4(1) ADDR3(1) ADDR2(1) ADDR1 ADDR0 0000
PMDOUT1 Parallel Port Data Out Register 1 (Buffers 0 and 1) 0000
PMDOUT2 0606 Parallel Port Data Out Register 2 (Buffers 2 and 3) 0000
PMDIN1 0608 Parallel Port Data In Register 1 (Buffers 0 and 1) 0000
PMDIN2 060A Parallel Port Data In Register 2 (Buffers 2 and 3) 0000
PMAEN 060C —PTEN14 —PTEN10
(1) PTEN9(1) PTEN8(1) PTEN7(1) PTEN6(1) PTEN5(1) PTEN4(1) PTEN3(1) PTEN2(1) PTEN1 PTEN0 0000
PMSTAT 060E IBF IBOV IB3F IB2F IB1F IB0F OBE OBUF OB3E OB2E OB1E OB0E 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
Note 1: Bits are not available on 28-pin devices; read as 0’.
TABLE 4-19: REAL-TIME CLOCK AND CALENDAR REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
ALRMVAL 0620 Alarm Value Register Window Based on ALRMPTR<1:0> xxxx
ALCFGRPT 0622 ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 0000
RTCVAL 0624 RTCC Value Register Window Based on RTCPTR<1:0> xxxx
RCFGCAL 0626 RTCEN RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 xxxx
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
TABLE 4-20: CRC REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
CRCCON1 0640 CRCEN CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN 0000
CRCCON2 0642 DWIDTH4 DWIDTH3 DWIDTH2 DWIDTH1 DWIDTH0 PLEN4 PLEN3 PLEN2 PLEN1 PLEN0 0000
CRCXORL 0644 X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 0000
CRCXORH 0646 X31 X30 X29 X28 X27 X26 X25 X24 X23 X22 X21 X20 X19 X19 X17 X16 0000
CRCDATL 0648 CRC Data Input Register Low Word xxxx
CRCDATH 064A CRC Data Input Register High Word xxxx
CRCWDATL 064C CRC Result Register Low Word xxxx
CRCWDATH 064E CRC Result Register High Word xxxx
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
2010 Microchip Technology Inc. DS39951C-page 45
PIC24FJ64GA104 FAMILY
TABLE 4-21: COMPARATORS REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
CMSTAT 0650 CMIDL C3EVT C2EVT C1EVT C3OUT C2OUT C1OUT 0000
CVRCON 0652 CVREFP CVREFM1 CVREFM0 CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 0000
CM1CON 0654 CEN COE CPOL CEVT COUT EVPOL1 EVPOL0 CREF CCH1 CCH0 0000
CM2CON 065C CEN COE CPOL CEVT COUT EVPOL1 EVPOL0 CREF CCH1 CCH0 0000
CM3CON 0664 CEN COE CPOL CEVT COUT EVPOL1 EVPOL0 CREF CCH1 CCH0 0000
Legend: — = unimplemented, read as ‘0. Reset values are shown in hexadecimal.
TABLE 4-22: PERIPHERAL PIN SELECT REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
RPINR0 0680 INT1R4 INT1R3 INT1R2 INT1R1 INT1R0 1F00
RPINR1 0682 INT2R4 INT2R3 INT2R2 INT2R1 INT2R0 001F
RPINR3 0686 T3CKR4 T3CKR3 T3CKR2 T3CKR1 T3CKR0 T2CKR4 T2CKR3 T2CKR2 T2CKR1 T2CKR0 1F1F
RPINR4 0688 T5CKR4 T5CKR3 T5CKR2 T5CKR1 T5CKR0 T4CKR4 T4CKR3 T4CKR2 T4CKR1 T4CKR0 1F1F
RPINR7 068E IC2R4 IC2R3 IC2R2 IC2R1 IC2R0 IC1R4 IC1R3 IC1R2 IC1R1 IC1R0 1F1F
RPINR8 0690 IC4R4 IC4R3 IC4R2 IC4R1 IC4R0 IC3R4 IC3R3 IC3R2 IC3R1 IC3R0 1F1F
RPINR9 0692 IC5R4 IC5R3 IC5R2 IC5R1 IC5R0 001F
RPINR11 0696 OCFBR4 OCFBR3 OCFBR2 OCFBR1 OCFBR0 OCFAR4 OCFAR3 OCFAR2 OCFAR1 OCFAR0 1F1F
RPINR18 06A4 U1CTSR4 U1CTSR3 U1CTSR2 U1CTSR1 U1CTSR0 U1RXR4 U1RXR3 U1RXR2 U1RXR1 U1RXR0 1F1F
RPINR19 06A6 U2CTSR4 U2CTSR3 U2CTSR2 U2CTSR1 U2CTSR0 U2RXR4 U2RXR3 U2RXR2 U2RXR1 U2RXR0 1F1F
RPINR20 06A8 SCK1R4 SCK1R3 SCK1R2 SCK1R1 SCK1R0 SDI1R4 SDI1R3 SDI1R2 SDI1R1 SDI1R0 1F1F
RPINR21 06AA SS1R4 SS1R3 SS1R2 SS1R1 SS1R0 001F
RPINR22 06AC SCK2R4 SCK2R3 SCK2R2 SCK2R1 SCK2R0 SDI2R4 SDI2R3 SDI2R2 SDI2R1 SDI2R0 1F1F
RPINR23 06AE SS2R4 SS2R3 SS2R2 SS2R1 SS2R0 001F
RPOR0 06C0 RP1R4 RP1R3 RP1R2 RP1R1 RP1R0 RP0R4 RP0R3 RP0R2 RP0R1 RP0R0 0000
RPOR1 06C2 RP3R4 RP3R3 RP3R2 RP3R1 RP3R0 RP2R4 RP2R3 RP2R2 RP2R1 RP2R0 0000
RPOR2 06C4 RP5R4 RP5R3 RP5R2 RP5R1 RP5R0 RP4R4 RP4R3 RP4R2 RP4R1 RP4R0 0000
RPOR3 06C6 RP7R4 RP7R3 RP7R2 RP7R1 RP7R0 RP6R4 RP6R3 RP6R2 RP6R1 RP6R0 0000
RPOR4 06C8 RP9R4 RP9R3 RP9R2 RP9R1 RP9R0 RP8R4 RP8R3 RP8R2 RP8R1 RP8R0 0000
RPOR5 06CA RP11R4 RP11R3 RP11R2 RP11R1 RP11R0 RP10R4 RP10R3 RP10R2 RP10R1 RP10R0 0000
RPOR6 06CC RP13R4 RP13R3 RP13R2 RP13R1 RP13R0 RP12R4RP12R3RP12R2RP12R1RP12R0 0000
RPOR7 06CE RP15R4 RP15R3 RP15R2 RP15R1 RP15R0 RP14R4 RP14R3 RP14R2 RP14R1 RP14R0 0000
RPOR8(1) 06D0 RP17R4 RP17R3 RP17R2 RP17R1 RP17R0 RP16R4 RP16R3 RP16R2 RP16R1 RP16R0 0000
RPOR9(1) 06D2 RP19R4 RP19R3 RP19R2 RP19R1 RP19R0 RP18R4 RP18R3 RP18R2 RP18R1 RP18R0 0000
RPOR10(1) 06D4 RP21R4 RP21R3 RP21R2 RP21R1 RP21R0 RP20R4 RP20R3 RP20R2 RP20R1 RP20R0 0000
RPOR11(1) 06D6 RP23R4 RP23R3 RP23R2 RP23R1 RP23R0 RP22R4 RP22R3 RP22R2 RP22R1 RP22R0 0000
RPOR12(1) 06D8 RP25R4 RP25R3 RP25R2 RP25R1 RP25R0 RP24R4 RP24R3 RP24R2 RP24R1 RP24R0 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
Note 1: Registers are unimplemented in 28-pin devices; read as ‘0’.
PIC24FJ64GA104 FAMILY
DS39951C-page 46 2010 Microchip Technology Inc.
TABLE 4-23: SYSTEM REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
RCON 0740 TRAPR IOPUWR —— DPSLP CM PMSLP EXTR SWR SWDTEN WDTO SLEEP IDLE BOR POR Note 1
OSCCON 0742 COSC2 COSC1 COSC0 NOSC2 NOSC1 NOSC0 CLKLOCK IOLOCK LOCK CF POSCEN SOSCEN OSWEN Note 2
CLKDIV 0744 ROI DOZE2 DOZE1 DOZE0 DOZEN RCDIV2 RCDIV1 RCDIV0 ———————0100
OSCTUN 0748 TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000
REFOCON 074E ROEN ROSSLP ROSEL RODIV3 RODIV2 RODIV1 RODIV0 ———————0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
Note 1: The Reset value of the RCON register is dependent on the type of Reset event. See Section 6.0 “Resets” for more information.
2: The Reset value of the OSCCON register is dependent on both the type of Reset event and the device configuration. See Section 8.0 “Oscillator Configuration” for more information.
TABLE 4-24: DEEP SLEEP REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets(1)
DSCON 758 DSEN ——————— ———— DSBOR RELEASE 0000
DSWAKE 075A —————— DSINT0 DSFLT DSWDT DSRTC DSMCLR DSPOR 0001
DSGPR0 075C Deep Sleep General Purpose Register 0 0000
DSGPR1 075E Deep Sleep General Purpose Register 1 0000
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note 1: The Deep Sleep registers are only reset on a VDD POR event.
TABLE 4-25: NVM REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
NVMCON 0760 WR WREN WRERR ——————ERASE NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1)
NVMKEY 0766 ——————— NVMKEY Register<7:0> 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.
TABLE 4-26: PMD REGISTER MAP
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All
Resets
PMD1 0770 T5MD T4MD T3MD T2MD T1MD —— I2C1MD U2MD U1MD SPI2MD SPI1MD ADC1MD 0000
PMD2 0772 IC5MD IC4MD IC3MD IC2MD IC1MD —— OC5MD OC4MD OC3MD OC2MD OC1MD 0000
PMD3 0774 CMPMD RTCCMD PMPMD CRCMD —I2C2MD0000
PMD4 0776 REFOMD CTMUMD LVDMD 0000
Legend: — = unimplemented, read as0’. Reset values are shown in hexadecimal.
2010 Microchip Technology Inc. DS39951C-page 47
PIC24FJ64GA104 FAMILY
4.2.5 SOFTWARE STACK
In addition to its use as a working register, the W15
register in PIC24F devices is also used as a Software
Stack Pointer. The pointer always points to the first
available free word and grows from lower to higher
addresses. It predecrements for stack pops and
post-increments for stack pushes, as shown in
Figure 4-4. Note that for a PC push during any CALL
instruction, the MSB of the PC is zero-extended before
the push, ensuring that the MSB is always clear.
The Stack Pointer Limit Value (SPLIM) register, associ-
ated with the Stack Pointer, sets an upper address
boundary for the stack. SPLIM is uninitialized at Reset.
As is the case for the Stack Pointer, SPLIM<0> is
forced to ‘0’ because all stack operations must be
word-aligned. Whenever an EA is generated using
W15 as a source or destination pointer, the resulting
address is compared with the value in SPLIM. If the
contents of the Stack Pointer (W15) and the SPLIM
register are equal, and a push operation is performed,
a stack error trap will not occur. The stack error trap will
occur on a subsequent push operation. Thus, for
example, if it is desirable to cause a stack error trap
when the stack grows beyond address 2000h in RAM,
initialize the SPLIM with the value, 1FFEh.
Similarly, a Stack Pointer underflow (stack error) trap is
generated when the Stack Pointer address is found to
be less than 0800h. This prevents the stack from
interfering with the Special Function Register (SFR)
space.
A write to the SPLIM register should not be immediately
followed by an indirect read operation using W15.
FIGURE 4-4: CALL STACK FRAME
4.3 Interfacing Program and Data
Memory Spaces
The PIC24F architecture uses a 24-bit wide program
space and a 16-bit wide data space. The architecture is
also a modified Harvard scheme, meaning that data
can also be present in the program space. To use this
data successfully, it must be accessed in a way that
preserves the alignment of information in both spaces.
Aside from normal execution, the PIC24F architecture
provides two methods by which program space can be
accessed during operation:
Using table instructions to access individual bytes
or words anywhere in the program space
Remapping a portion of the program space into
the data space (program space visibility)
Table instructions allow an application to read or write
to small areas of the program memory. This makes the
method ideal for accessing data tables that need to be
updated from time to time. It also allows access to all
bytes of the program word. The remapping method
allows an application to access a large block of data on
a read-only basis, which is ideal for look-ups from a
large table of static data; it can only access the least
significant word of the program word.
4.3.1 ADDRESSING PROGRAM SPACE
Since the address ranges for the data and program
spaces are 16 and 24 bits, respectively, a method is
needed to create a 23-bit or 24-bit program address
from 16-bit data registers. The solution depends on the
interface method to be used.
For table operations, the 8-bit Table Memory Page
Address (TBLPAG) register is used to define a 32K word
region within the program space. This is concatenated
with a 16-bit EA to arrive at a full 24-bit program space
address. In this format, the Most Significant bit of
TBLPAG is used to determine if the operation occurs in
the user memory (TBLPAG<7> = 0) or the configuration
memory (TBLPAG<7> = 1).
For remapping operations, the 8-bit Program Space
Visibility Page Address (PSVPAG) register is used to
define a 16K word page in the program space. When
the Most Significant bit of the EA is ‘1’, PSVPAG is con-
catenated with the lower 15 bits of the EA to form a
23-bit program space address. Unlike table operations,
this limits remapping operations strictly to the user
memory area.
Table 4-27 and Figure 4-5 show how the program EA is
created for table operations and remapping accesses
from the data EA. Here, P<23:0> refers to a program
space word, whereas D<15:0> refers to a data space
word.
Note: A PC push during exception processing
will concatenate the SRL register to the
MSB of the PC prior to the push.
<Free Word>
PC<15:0>
000000000
015
W15 (before CALL)
W15 (after CALL)
Stack Grows Towards
Higher Address
0000h
PC<22:16>
POP : [--W15]
PUSH : [W15++]
PIC24FJ64GA104 FAMILY
DS39951C-page 48 2010 Microchip Technology Inc.
TABLE 4-27: PROGRAM SPACE ADDRESS CONSTRUCTION
FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION
Access Type Access
Space
Program Space Address
<23> <22:16> <15> <14:1> <0>
Instruction Access
(Code Execution)
User 0PC<22:1> 0
0xx xxxx xxxx xxxx xxxx xxx0
TBLRD/TBLWT
(Byte/Word Read/Write)
User TBLPAG<7:0> Data EA<15:0>
0xxx xxxx xxxx xxxx xxxx xxxx
Configuration TBLPAG<7:0> Data EA<15:0>
1xxx xxxx xxxx xxxx xxxx xxxx
Program Space Visibility
(Block Remap/Read)
User 0PSVPAG<7:0> Data EA<14:0>(1)
0 xxxx xxxx xxx xxxx xxxx xxxx
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of
the address is PSVPAG<0>.
0Program Counter
23 Bits
1
PSVPAG
8 Bits
EA
15 Bits
Program Counter(1)
Select
TBLPAG
8 Bits
EA
16 Bits
Byte Select
0
0
1/0
User/Configuration
Table Operations(2)
Program Space Visibility(1)
Space Select
24 Bits
23 Bits
(Remapping)
1/0
0
Note 1: The LSb of program space addresses is always fixed as 0’ in order to maintain word alignment of
data in the program and data spaces.
2: Table operations are not required to be word-aligned. Table read operations are permitted in the
configuration memory space.
2010 Microchip Technology Inc. DS39951C-page 49
PIC24FJ64GA104 FAMILY
4.3.2 DATA ACCESS FROM PROGRAM
MEMORY USING TABLE
INSTRUCTIONS
The TBLRDL and TBLWTL instructions offer a direct
method of reading or writing the lower word of any
address within the program space without going through
data space. The TBLRDH and TBLWTH instructions are
the only method to read or write the upper 8 bits of a
program space word as data.
The PC is incremented by two for each successive
24-bit program word. This allows program memory
addresses to directly map to data space addresses.
Program memory can thus be regarded as two, 16-bit
word-wide address spaces, residing side by side, each
with the same address range. TBLRDL and TBLWTL
access the space which contains the least significant
data word, and TBLRDH and TBLWTH access the space
which contains the upper data byte.
Two table instructions are provided to move byte or
word-sized (16-bit) data to and from program space.
Both function as either byte or word operations.
1. TBLRDL (Table Read Low): In Word mode, it
maps the lower word of the program space
location (P<15:0>) to a data address (D<15:0>).
In Byte mode, either the upper or lower byte of
the lower program word is mapped to the lower
byte of a data address. The upper byte is
selected when the byte select is ‘1’; the lower
byte is selected when it is ‘0’.
2. TBLRDH (Table Read High): In Word mode, it
maps the entire upper word of a program address
(P<23:16>) to a data address. Note that
D<15:8>, the ‘phantom’ byte, will always be ‘0’.
In Byte mode, it maps the upper or lower byte of
the program word to D<7:0> of the data
address, as above. Note that the data will
always be ‘0’ when the upper ‘phantom’ byte is
selected (byte select = 1).
In a similar fashion, two table instructions, TBLWTH
and TBLWTL, are used to write individual bytes or
words to a program space address. The details of
their operation are explained in Section 5.0 “Flash
Program Memory”.
For all table operations, the area of program memory
space to be accessed is determined by the Table
Memory Page Address register (TBLPAG). TBLPAG
covers the entire program memory space of the
device, including user and configuration spaces. When
TBLPAG<7> = 0, the table page is located in the user
memory space. When TBLPAG<7> = 1, the page is
located in configuration space.
FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS
Note: Only table read operations will execute in
the configuration memory space, and only
then, in implemented areas, such as the
Device ID. Table write operations are not
allowed.
081623
00000000
00000000
00000000
00000000
‘Phantom’ Byte
TBLRDH.B (Wn<0> = 0)
TBLRDL.W
TBLRDL.B (Wn<0> = 1)
TBLRDL.B (Wn<0> = 0)
23 15 0
TBLPAG
02
000000h
800000h
020000h
030000h
Program Space
Data EA<15:0>
The address for the table operation is determined by the data EA
within the page defined by the TBLPAG register.
Only read operations are shown; write operations are also valid in
the user memory area.
PIC24FJ64GA104 FAMILY
DS39951C-page 50 2010 Microchip Technology Inc.
4.3.3 READING DATA FROM PROGRAM
MEMORY USING PROGRAM SPACE
VISIBILITY
The upper 32 Kbytes of data space may optionally be
mapped into any 16K word page of the program space.
This provides transparent access of stored constant
data from the data space without the need to use
special instructions (i.e., TBLRDL/H).
Program space access through the data space occurs if
the Most Significant bit (MSb) of the data space EA is ‘1
and program space visibility is enabled by setting the
PSV bit in the CPU Control register (CORCON<2>). The
location of the program memory space to be mapped
into the data space is determined by the Program Space
Visibility Page Address register (PSVPAG). This 8-bit
register defines any one of 256 possible pages of
16K words in program space. In effect, PSVPAG func-
tions as the upper 8 bits of the program memory
address, with the 15 bits of the EA functioning as the
lower bits. Note that by incrementing the PC by 2 for
each program memory word, the lower 15 bits of data
space addresses directly map to the lower 15 bits in the
corresponding program space addresses.
Data reads to this area add an additional cycle to the
instruction being executed, since two program memory
fetches are required.
Although each data space address, 8000h and higher,
maps directly into a corresponding program memory
address (see Figure 4-7), only the lower 16 bits of the
24-bit program word are used to contain the data. The
upper 8 bits of any program space locations used as
data should be programmed with ‘1111 1111’ or
0000 0000’ to force a NOP. This prevents possible
issues should the area of code ever be accidentally
executed.
For operations that use PSV and are executed outside
a REPEAT loop, the MOV and MOV.D instructions will
require one instruction cycle in addition to the specified
execution time. All other instructions will require two
instruction cycles in addition to the specified execution
time.
For operations that use PSV which are executed inside
a REPEAT loop, there will be some instances that
require two instruction cycles in addition to the
specified execution time of the instruction:
Execution in the first iteration
Execution in the last iteration
Execution prior to exiting the loop due to an
interrupt
Execution upon re-entering the loop after an
interrupt is serviced
Any other iteration of the REPEAT loop will allow the
instruction accessing data, using PSV, to execute in a
single cycle.
FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION
Note: PSV access is temporarily disabled during
table reads/writes.
23 15 0
PSVPAG
Data Space
Program Space
0000h
8000h
FFFFh
02 000000h
800000h
010000h
018000h
When CORCON<2> = 1 and EA<15> = 1:
PSV Area
The data in the page
designated by
PSVPAG is mapped
into the upper half of
the data memory
space....
Data EA<14:0>
...while the lower
15 bits of the EA
specify an exact
address within the
PSV area. This
corresponds exactly to
the same lower 15 bits
of the actual program
space address.
2010 Microchip Technology Inc. DS39951C-page 51
PIC24FJ64GA104 FAMILY
5.0 FLASH PROGRAM MEMORY
The PIC24FJ64GA104 family of devices contains inter-
nal Flash program memory for storing and executing
application code. The memory is readable, writable and
erasable when operating with VDD over 2.35V. (If the
regulator is disabled, VDDCORE must be over 2.25V.)
It can be programmed in four ways:
In-Circuit Serial Programming™ (ICSP™)
Run-Time Self-Programming (RTSP)
Enhanced In-Circuit Serial Programming
(Enhanced ICSP)
ICSP allows a PIC24FJ64GA104 family device to be
serially programmed while in the end application circuit.
This is simply done with two lines for the programming
clock and programming data (which are named PGECx
and PGEDx, respectively), and three other lines for
power (VDD), ground (VSS) and Master Clear (MCLR).
This allows customers to manufacture boards with
unprogrammed devices and then program the micro-
controller just before shipping the product. This also
allows the most recent firmware or a custom firmware
to be programmed.
RTSP is accomplished using TBLRD (table read) and
TBLWT (table write) instructions. With RTSP, the user
may write program memory data in blocks of 64 instruc-
tions (192 bytes) at a time and erase program memory
in blocks of 512 instructions (1536 bytes) at a time.
5.1 Table Instructions and Flash
Programming
Regardless of the method used, all programming of
Flash memory is done with the table read and table
write instructions. These allow direct read and write
access to the program memory space from the data
memory while the device is in normal operating mode.
The 24-bit target address in the program memory is
formed using the TBLPAG<7:0> bits and the Effective
Address (EA) from a W register specified in the table
instruction, as shown in Figure 5-1.
The TBLRDL and the TBLWTL instructions are used to
read or write to bits<15:0> of program memory.
TBLRDL and TBLWTL can access program memory in
both Word and Byte modes.
The TBLRDH and TBLWTH instructions are used to read
or write to bits<23:16> of program memory. TBLRDH
and TBLWTH can also access program memory in Word
or Byte mode.
FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 4. “Program Memory”
(DS39715).
0
Program Counter
24 Bits
Program
TBLPAG Reg
8 Bits
Working Reg EA
16 Bits
Using
Byte
24-Bit EA
0
1/0
Select
Table
Instruction
Counter
Using
User/Configuration
Space Select
PIC24FJ64GA104 FAMILY
DS39951C-page 52 2010 Microchip Technology Inc.
5.2 RTSP Operation
The PIC24F Flash program memory array is organized
into rows of 64 instructions or 192 bytes. RTSP allows
the user to erase blocks of eight rows (512 instructions)
at a time and to program one row at a time. It is also
possible to program single words.
The 8-row erase blocks and single row write blocks are
edge-aligned, from the beginning of program memory, on
boundaries of 1536 bytes and 192 bytes, respectively.
When data is written to program memory using TBLWT
instructions, the data is not written directly to memory.
Instead, data written using table writes is stored in
holding latches until the programming sequence is
executed.
Any number of TBLWT instructions can be executed
and a write will be successfully performed. However,
64 TBLWT instructions are required to write the full row
of memory.
To ensure that no data is corrupted during a write, any
unused addresses should be programmed with
FFFFFFh. This is because the holding latches reset to
an unknown state, so if the addresses are left in the
Reset state, they may overwrite the locations on rows
which were not rewritten.
The basic sequence for RTSP programming is to set up
a Table Pointer, then do a series of TBLWT instructions
to load the buffers. Programming is performed by
setting the control bits in the NVMCON register.
Data can be loaded in any order and the holding
registers can be written to multiple times before
performing a write operation. Subsequent writes,
however, will wipe out any previous writes.
All of the table write operations are single-word writes
(2 instruction cycles), because only the buffers are writ-
ten. A programming cycle is required for programming
each row.
5.3 JTAG Operation
The PIC24F family supports JTAG boundary scan.
Boundary scan can improve the manufacturing
process by verifying pin to PCB connectivity.
5.4 Enhanced In-Circuit Serial
Programming
Enhanced In-Circuit Serial Programming uses an
on-board bootloader, known as the program executive,
to manage the programming process. Using an SPI
data frame format, the program executive can erase,
program and verify program memory. For more
information on Enhanced ICSP, see the device
programming specification.
5.5 Control Registers
There are two SFRs used to read and write the
program Flash memory: NVMCON and NVMKEY.
The NVMCON register (Register 5-1) controls which
blocks are to be erased, which memory type is to be
programmed and when the programming cycle starts.
NVMKEY is a write-only register that is used for write
protection. To start a programming or erase sequence,
the user must consecutively write 55h and AAh to the
NVMKEY register. Refer to Section 5.6 “Programming
Operations” for further details.
5.6 Programming Operations
A complete programming sequence is necessary for
programming or erasing the internal Flash in RTSP
mode. During a programming or erase operation, the
processor stalls (waits) until the operation is finished.
Setting the WR bit (NVMCON<15>) starts the
operation and the WR bit is automatically cleared when
the operation is finished.
Note: Writing to a location multiple times without
erasing is not recommended.
2010 Microchip Technology Inc. DS39951C-page 53
PIC24FJ64GA104 FAMILY
REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER
R/SO-0, HC(1) R/W-0(1) R/W-0, HS(1) U-0 U-0 U-0 U-0 U-0
WR WREN WRERR
bit 15 bit 8
U-0 R/W-0(1) U-0 U-0 R/W-0(1) R/W-0(1) R/W-0(1) R/W-0(1)
ERASE —NVMOP3
(2) NVMOP2(2) NVMOP1(2) NVMOP0(2)
bit 7 bit 0
Legend: SO = Settable Only bit HC = Hardware Clearable bit HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 WR: Write Control bit(1)
1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is
cleared by hardware once the operation is complete.
0 = Program or erase operation is complete and inactive
bit 14 WREN: Write Enable bit(1)
1 = Enable Flash program/erase operations
0 = Inhibit Flash program/erase operations
bit 13 WRERR: Write Sequence Error Flag bit(1)
1 = An improper program or erase sequence attempt, or termination has occurred (bit is set
automatically on any set attempt of the WR bit)
0 = The program or erase operation completed normally
bit 12-7 Unimplemented: Read as ‘0
bit 6 ERASE: Erase/Program Enable bit(1)
1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command
0 = Perform the program operation specified by NVMOP<3:0> on the next WR command
bit 5-4 Unimplemented: Read as ‘0
bit 3-0 NVMOP<3:0>: NVM Operation Select bits(1,2)
1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)(3)
0011 = Memory word program operation (ERASE = 0) or no operation (ERASE = 1)
0010 = Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)
0001 = Memory row program operation (ERASE = 0) or no operation (ERASE = 1)
Note 1: These bits can only be reset on POR.
2: All other combinations of NVMOP<3:0> are unimplemented.
3: Available in ICSP™ mode only. Refer to device programming specification.
PIC24FJ64GA104 FAMILY
DS39951C-page 54 2010 Microchip Technology Inc.
5.6.1 PROGRAMMING ALGORITHM FOR
FLASH PROGRAM MEMORY
The user can program one row of Flash program memory
at a time. To do this, it is necessary to erase the 8-row
erase block containing the desired row. The general
process is as follows:
1. Read eight rows of program memory
(512 instructions) and store in data RAM.
2. Update the program data in RAM with the
desired new data.
3. Erase the block (see Example 5-1):
a) Set the NVMOP bits (NVMCON<3:0>) to
0010’ to configure for block erase. Set the
ERASE (NVMCON<6>) and WREN
(NVMCON<14>) bits.
b) Write the starting address of the block to be
erased into the TBLPAG and W registers.
c) Write 55h to NVMKEY.
d) Write AAh to NVMKEY.
e) Set the WR bit (NVMCON<15>). The erase
cycle begins and the CPU stalls for the dura-
tion of the erase cycle. When the erase is
done, the WR bit is cleared automatically.
4. Write the first 64 instructions from data RAM into
the program memory buffers (see Example 5-1).
5. Write the program block to Flash memory:
a) Set the NVMOP bits to ‘0001’ to configure
for row programming. Clear the ERASE bit
and set the WREN bit.
b) Write 55h to NVMKEY.
c) Write AAh to NVMKEY.
d) Set the WR bit. The programming cycle
begins and the CPU stalls for the duration
of the write cycle. When the write to Flash
memory is done, the WR bit is cleared
automatically.
6. Repeat steps 4 and 5, using the next available
64 instructions from the block in data RAM by
incrementing the value in TBLPAG, until all
512 instructions are written back to Flash
memory.
For protection against accidental operations, the write
initiate sequence for NVMKEY must be used to allow
any erase or program operation to proceed. After the
programming command has been executed, the user
must wait for the programming time until programming
is complete. The two instructions following the start of
the programming sequence should be NOPs, as shown
in Example 5-5.
EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)
; Set up NVMCON for block erase operation
MOV #0x4042, W0 ;
MOV W0, NVMCON ; Initialize NVMCON
; Init pointer to row to be ERASED
MOV #tblpage(PROG_ADDR), W0 ;
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0 ; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0] ; Set base address of erase block
DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions
MOV #0x55, W0
MOV W0, NVMKEY ; Write the 55 key
MOV #0xAA, W1 ;
MOV W1, NVMKEY ; Write the AA key
BSET NVMCON, #WR ; Start the erase sequence
NOP ; Insert two NOPs after the erase
NOP ; command is asserted
2010 Microchip Technology Inc. DS39951C-page 55
PIC24FJ64GA104 FAMILY
EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK (C LANGUAGE CODE)
EXAMPLE 5-3: LOADING THE WRITE BUFFERS (ASSEMBLY LANGUAGE CODE)
// C example using MPLAB C30
unsigned long progAddr = 0xXXXXXX; // Address of row to write
unsigned int offset;
//Set up pointer to the first memory location to be written
TBLPAG = progAddr>>16; // Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF; // Initialize lower word of address
__builtin_tblwtl(offset, 0x0000); // Set base address of erase block
// with dummy latch write
NVMCON = 0x4042; // Initialize NVMCON
asm("DISI #5"); // Block all interrupts with priority <7
// for next 5 instructions
__builtin_write_NVM(); // C30 function to perform unlock
// sequence and set WR
; Set up NVMCON for row programming operations
MOV #0x4001, W0 ;
MOV W0, NVMCON ; Initialize NVMCON
; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled
MOV #0x0000, W0 ;
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR
MOV #0x6000, W0 ; An example program memory address
; Perform the TBLWT instructions to write the latches
; 0th_program_word
MOV #LOW_WORD_0, W2 ;
MOV #HIGH_BYTE_0, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
; 1st_program_word
MOV #LOW_WORD_1, W2 ;
MOV #HIGH_BYTE_1, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
; 2nd_program_word
MOV #LOW_WORD_2, W2 ;
MOV #HIGH_BYTE_2, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
; 63rd_program_word
MOV #LOW_WORD_31, W2 ;
MOV #HIGH_BYTE_31, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0] ; Write PM high byte into program latch
PIC24FJ64GA104 FAMILY
DS39951C-page 56 2010 Microchip Technology Inc.
EXAMPLE 5-4: LOADING THE WRITE BUFFERS (C LANGUAGE CODE)
EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE (ASSEMBLY LANGUAGE CODE)
EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE (C LANGUAGE CODE)
// C example using MPLAB C30
#define NUM_INSTRUCTION_PER_ROW 64
unsigned int offset;
unsigned int i;
unsigned long progAddr = 0xXXXXXX; // Address of row to write
unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; // Buffer of data to write
//Set up NVMCON for row programming
NVMCON = 0x4001; // Initialize NVMCON
//Set up pointer to the first memory location to be written
TBLPAG = progAddr>>16; // Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF; // Initialize lower word of address
//Perform TBLWT instructions to write necessary number of latches
for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)
{__builtin_tblwtl(offset, progData[i++]); // Write to address low word
__builtin_tblwth(offset, progData[i]); // Write to upper byte
offset = offset + 2; // Increment address
}
DISI #5 ; Block all interrupts with priority <7
; for next 5 instructions
MOV #0x55, W0
MOV W0, NVMKEY ; Write the 55 key
MOV #0xAA, W1 ;
MOV W1, NVMKEY ; Write the AA key
BSET NVMCON, #WR ; Start the erase sequence
NOP ;
NOP ;
BTSC NVMCON, #15 ; and wait for it to be
BRA $-2 ; completed
// C example using MPLAB C30
asm("DISI #5"); // Block all interrupts with priority < 7
// for next 5 instructions
__builtin_write_NVM(); // Perform unlock sequence and set WR
2010 Microchip Technology Inc. DS39951C-page 57
PIC24FJ64GA104 FAMILY
5.6.2 PROGRAMMING A SINGLE WORD
OF FLASH PROGRAM MEMORY
If a Flash location has been erased, it can be pro-
grammed using table write instructions to write an
instruction word (24-bit) into the write latch. The
TBLPAG register is loaded with the 8 Most Significant
Bytes of the Flash address. The TBLWTL and TBLWTH
instructions write the desired data into the write latches
and specify the lower 16 bits of the program memory
address to write to. To configure the NVMCON register
for a word write, set the NVMOP bits (NVMCON<3:0>)
to ‘0011’. The write is performed by executing the
unlock sequence and setting the WR bit (see
Example 5-7).
EXAMPLE 5-7: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY
(ASSEMBLY LANGUAGE CODE)
EXAMPLE 5-8: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY
(C LANGUAGE CODE)
; Setup a pointer to data Program Memory
MOV #tblpage(PROG_ADDR), W0 ;
MOV W0, TBLPAG ;Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0 ;Initialize a register with program memory address
MOV #LOW_WORD, W2 ;
MOV #HIGH_BYTE, W3 ;
TBLWTL W2, [W0] ; Write PM low word into program latch
TBLWTH W3, [W0++] ; Write PM high byte into program latch
; Setup NVMCON for programming one word to data Program Memory
MOV #0x4003, W0 ;
MOV W0, NVMCON ; Set NVMOP bits to 0011
DISI #5 ; Disable interrupts while the KEY sequence is written
MOV #0x55, W0 ; Write the key sequence
MOV W0, NVMKEY
MOV #0xAA, W0
MOV W0, NVMKEY
BSET NVMCON, #WR ; Start the write cycle
NOP ; Insert two NOPs after the erase
NOP ; Command is asserted
// C example using MPLAB C30
unsigned int offset;
unsigned long progAddr = 0xXXXXXX; // Address of word to program
unsigned int progDataL = 0xXXXX; // Data to program lower word
unsigned char progDataH = 0xXX; // Data to program upper byte
//Set up NVMCON for word programming
NVMCON = 0x4003; // Initialize NVMCON
//Set up pointer to the first memory location to be written
TBLPAG = progAddr>>16; // Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF; // Initialize lower word of address
//Perform TBLWT instructions to write latches
__builtin_tblwtl(offset, progDataL); // Write to address low word
__builtin_tblwth(offset, progDataH); // Write to upper byte
asm(“DISI #5”); // Block interrupts with priority < 7
// for next 5 instructions
__builtin_write_NVM(); // C30 function to perform unlock
// sequence and set WR
PIC24FJ64GA104 FAMILY
DS39951C-page 58 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 59
PIC24FJ64GA104 FAMILY
6.0 RESETS
The Reset module combines all Reset sources and
controls the device Master Reset Signal, SYSRST. The
following is a list of device Reset sources:
POR: Power-on Reset
•MCLR
: Pin Reset
•SWR: RESET Instruction
WDT: Watchdog Timer Reset
BOR: Brown-out Reset
CM: Configuration Mismatch Reset
TRAPR: Trap Conflict Reset
IOPUWR: Illegal Opcode Reset
UWR: Uninitialized W Register Reset
A simplified block diagram of the Reset module is
shown in Figure 6-1.
Any active source of Reset will make the SYSRST
signal active. Many registers associated with the CPU
and peripherals are forced to a known Reset state.
Most registers are unaffected by a Reset; their status is
unknown on POR and unchanged by all other Resets.
All types of device Reset will set a corresponding status
bit in the RCON register to indicate the type of Reset
(see Register 6-1). A Power-on Reset will clear all bits,
except for the BOR and POR bits (RCON<1:0>), which
are set. The user may set or clear any bit at any time
during code execution. The RCON bits only serve as
status bits. Setting a particular Reset status bit in
software will not cause a device Reset to occur.
The RCON register also has other bits associated with
the Watchdog Timer and device power-saving states.
The function of these bits is discussed in other sections
of this data sheet.
FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 7. “Reset” (DS39712).
Note: Refer to the specific peripheral or CPU
section of this manual for register Reset
states.
Note: The status bits in the RCON register
should be cleared after they are read so
that the next RCON register value after a
device Reset will be meaningful.
MCLR
VDD
VDD Rise
Detect
POR
Sleep or Idle
Brown-out
Reset
Enable Voltage Regulator
RESET
Instruction
WDT
Module
Glitch Filter
BOR
Trap Conflict
Illegal Opcode
Uninitialized W Register
SYSRST
Configuration Mismatch
PIC24FJ64GA104 FAMILY
DS39951C-page 60 2010 Microchip Technology Inc.
REGISTER 6-1: RCON: RESET CONTROL REGISTER(1)
R/W-0 R/W-0 U-0 U-0 U-0 R/CO-0, HS R/W-0 R/W-0
TRAPR IOPUWR —— DPSLP CM PMSLP
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0, R/W-0 R/W-1 R/W-1
EXTR SWR SWDTEN(2) WDTO SLEEP IDLE BOR POR
bit 7 bit 0
Legend: CO = Clearable Only bit HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared x = Bit is unknown
bit 15 TRAPR: Trap Reset Flag bit
1 = A Trap Conflict Reset has occurred
0 = A Trap Conflict Reset has not occurred
bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit
1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Address
Pointer caused a Reset
0 = An illegal opcode or uninitialized W Reset has not occurred
bit 13-11 Unimplemented: Read as ‘0
bit 10 DPSLP: Deep Sleep Mode Flag bit
1 = Deep Sleep has occurred
0 = Deep Sleep has not occurred
bit 9 CM: Configuration Word Mismatch Reset Flag bit
1 = A Configuration Word Mismatch Reset has occurred
0 = A Configuration Word Mismatch Reset has not occurred
bit 8 PMSLP: Program Memory Power During Sleep bit
1 = Program memory bias voltage remains powered during Sleep
0 = Program memory bias voltage is powered down during Sleep and voltage regulator enters Standby mode
bit 7 EXTR: External Reset (MCLR) Pin bit
1 = A Master Clear (pin) Reset has occurred
0 = A Master Clear (pin) Reset has not occurred
bit 6 SWR: Software Reset (Instruction) Flag bit
1 = A RESET instruction has been executed
0 = A RESET instruction has not been executed
bit 5 SWDTEN: Software Enable/Disable of WDT bit(2)
1 = WDT is enabled
0 = WDT is disabled
bit 4 WDTO: Watchdog Timer Time-out Flag bit
1 = WDT time-out has occurred
0 = WDT time-out has not occurred
bit 3 SLEEP: Wake From Sleep Flag bit
1 = Device has been in Sleep mode
0 = Device has not been in Sleep mode
bit 2 IDLE: Wake-up From Idle Flag bit
1 = Device has been in Idle mode
0 = Device has not been in Idle mode
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not
cause a device Reset.
2: If the FWDTEN Configuration bit is 1’ (unprogrammed), the WDT is always enabled, regardless of the
SWDTEN bit setting.
2010 Microchip Technology Inc. DS39951C-page 61
PIC24FJ64GA104 FAMILY
TABLE 6-1: RESET FLAG BIT OPERATION
6.1 Clock Source Selection at Reset
If clock switching is enabled, the system clock source at
device Reset is chosen as shown in Table 6-2. If clock
switching is disabled, the system clock source is always
selected according to the oscillator Configuration bits.
Refer to Section 8.0 “Oscillator Configuration” for
further details.
TABLE 6-2: OSCILLATOR SELECTION vs.
TYPE OF RESET (CLOCK
SWITCHING ENABLED)
6.2 Device Reset Times
The Reset times for various types of device Reset are
summarized in Table 6-3. Note that the System Reset
signal, SYSRST, is released after the POR and PWRT
delay times expire.
The time at which the device actually begins to execute
code will also depend on the system oscillator delays,
which include the Oscillator Start-up Timer (OST) and
the PLL lock time. The OST and PLL lock times occur
in parallel with the applicable SYSRST delay times.
The FSCM delay determines the time at which the
FSCM begins to monitor the system clock source after
the SYSRST signal is released.
bit 1 BOR: Brown-out Reset Flag bit
1 = A Brown-out Reset has occurred. Note that BOR is also set after a Power-on Reset.
0 = A Brown-out Reset has not occurred
bit 0 POR: Power-on Reset Flag bit
1 = A Power-on Reset has occurred
0 = A Power-on Reset has not occurred
Flag Bit Setting Event Clearing Event
TRAPR (RCON<15>) Trap Conflict Event POR
IOPUWR (RCON<14>) Illegal Opcode or Uninitialized W Register Access POR
CM (RCON<9>) Configuration Mismatch Reset POR
EXTR (RCON<7>) MCLR Reset POR
SWR (RCON<6>) RESET Instruction POR
WDTO (RCON<4>) WDT Time-out PWRSAV Instruction, POR
SLEEP (RCON<3>) PWRSAV #SLEEP Instruction POR
IDLE (RCON<2>) PWRSAV #IDLE Instruction POR
BOR (RCON<1>) POR, BOR
POR (RCON<0>) POR
DPSLP (RCON<10>) PWRSAV #SLEEP instruction with DSCON <DSEN> set POR
Note: All Reset flag bits may be set or cleared by the user software.
REGISTER 6-1: RCON: RESET CONTROL REGISTER(1) (CONTINUED)
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not
cause a device Reset.
2: If the FWDTEN Configuration bit is 1’ (unprogrammed), the WDT is always enabled, regardless of the
SWDTEN bit setting.
Reset Type Clock Source Determinant
POR FNOSC Configuration bits
(CW2<10:8>)
BOR
MCLR COSC Control bits
(OSCCON<14:12>)
WDTO
SWR
PIC24FJ64GA104 FAMILY
DS39951C-page 62 2010 Microchip Technology Inc.
TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS
Reset Type Clock Source SYSRST Delay System Clock
Delay Notes
POR(6) EC TPOR + TRST + TPWRT 1, 2, 3, 8
FRC, FRCDIV TPOR + TRST + TPWRT TFRC 1, 2, 3, 4, 7, 8
LPRC TPOR + TRST + TPWRT TLPRC 1, 2, 3, 4, 8
ECPLL TPOR + TRST + TPWRT TLOCK 1, 2, 3, 5, 8
FRCPLL TPOR + TRST + TPWRT TFRC + TLOCK 1, 2, 3, 4, 5, 7, 8
XT, HS, SOSC TPOR+ TRST + TPWRT TOST 1, 2, 3, 6, 8
XTPLL, HSPLL TPOR + TRST + TPWRT TOST + TLOCK 1, 2, 3, 5, 6, 8
BOR EC TRST + TPWRT 2, 3, 8
FRC, FRCDIV TRST + TPWRT TFRC 2, 3, 4, 7, 8
LPRC TRST + TPWRT TLPRC 2, 3, 4, 8
ECPLL TRST + TPWRT TLOCK 2, 3, 5, 8
FRCPLL TRST + TPWRT TFRC + TLOCK 2, 3, 4, 5, 7, 8
XT, HS, SOSC TRST + TPWRT TOST 2, 3, 6, 8
XTPLL, HSPLL TRST + TPWRT TFRC + TLOCK 2, 3, 4, 5, 8
All Others Any Clock TRST 2, 8
Note 1: TPOR = Power-on Reset delay.
2: TRST = Internal State Reset time.
3: TPWRT = 64 ms nominal if regulator is disabled (DISVREG tied to VDD).
4: TFRC and TLPRC = RC Oscillator start-up times.
5: TLOCK = PLL lock time.
6: T
OST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the
oscillator clock to the system.
7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with
FRC, and in such cases, FRC start-up time is valid.
8: TRST = Configuration setup time.
Note: For detailed operating frequency and timing specifications, see Section 28.0 “Electrical Characteristics”.
2010 Microchip Technology Inc. DS39951C-page 63
PIC24FJ64GA104 FAMILY
6.2.1 POR AND LONG OSCILLATOR
START-UP TIMES
The oscillator start-up circuitry and its associated delay
timers are not linked to the device Reset delays that
occur at power-up. Some crystal circuits (especially
low-frequency crystals) will have a relatively long
start-up time. Therefore, one or more of the following
conditions is possible after SYSRST is released:
The oscillator circuit has not begun to oscillate.
The Oscillator Start-up Timer has not expired (if a
crystal oscillator is used).
The PLL has not achieved a lock (if PLL is used).
The device will not begin to execute code until a valid
clock source has been released to the system. There-
fore, the oscillator and PLL start-up delays must be
considered when the Reset delay time must be known.
6.2.2 FAIL-SAFE CLOCK MONITOR
(FSCM) AND DEVICE RESETS
If the FSCM is enabled, it will begin to monitor the
system clock source when SYSRST is released. If a
valid clock source is not available at this time, the
device will automatically switch to the FRC Oscillator
and the user can switch to the desired crystal oscillator
in the Trap Service Routine (TSR).
6.3 Special Function Register Reset
States
Most of the Special Function Registers (SFRs) associ-
ated with the PIC24F CPU and peripherals are reset to a
particular value at a device Reset. The SFRs are
grouped by their peripheral or CPU function and their
Reset values are specified in each section of this manual.
The Reset value for each SFR does not depend on the
type of Reset with the exception of four registers. The
Reset value for the Reset Control register, RCON, will
depend on the type of device Reset. The Reset value
for the Oscillator Control register, OSCCON, will
depend on the type of Reset and the programmed
values of the FNOSC bits in Flash Configuration
Word 2 (CW2); see Table 6-2. The RCFGCAL and
NVMCON registers are only affected by a POR.
6.4 Deep Sleep BOR (DSBOR)
Deep Sleep BOR is a very low-power BOR circuitry,
used when the device is in Deep Sleep mode. Due to
low-current consumption, accuracy may vary.
The DSBOR trip point is around 2.0V. DSBOR is
enabled by configuring CW4 (DSBOREN) = 1. DSBOR
will re-arm the POR to ensure the device will reset if VDD
drops below the POR threshold.
PIC24FJ64GA104 FAMILY
DS39951C-page 64 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 65
PIC24FJ64GA104 FAMILY
7.0 INTERRUPT CONTROLLER
The PIC24F interrupt controller reduces the numerous
peripheral interrupt request signals to a single interrupt
request signal to the PIC24F CPU. It has the following
features:
Up to 8 processor exceptions and software traps
7 user-selectable priority levels
Interrupt Vector Table (IVT) with up to 118 vectors
A unique vector for each interrupt or exception
source
Fixed priority within a specified user priority level
Alternate Interrupt Vector Table (AIVT) for debug
support
Fixed interrupt entry and return latencies
7.1 Interrupt Vector Table
The Interrupt Vector Table (IVT) is shown in Figure 7-1.
The IVT resides in program memory, starting at location
000004h. The IVT contains 126 vectors, consisting of
8 non-maskable trap vectors, plus up to 118 sources of
interrupt. In general, each interrupt source has its own
vector. Each interrupt vector contains a 24-bit wide
address. The value programmed into each interrupt
vector location is the starting address of the associated
Interrupt Service Routine (ISR).
Interrupt vectors are prioritized in terms of their natural
priority; this is linked to their position in the vector table.
All other things being equal, lower addresses have a
higher natural priority. For example, the interrupt
associated with vector 0 will take priority over interrupts
at any other vector address.
PIC24FJ64GA104 family devices implement
non-maskable traps and unique interrupts. These are
summarized in Table 7-1 and Table 7-2.
7.1.1 ALTERNATE INTERRUPT VECTOR
TABLE
The Alternate Interrupt Vector Table (AIVT) is located
after the IVT, as shown in Figure 7-1. Access to the
AIVT is provided by the ALTIVT control bit
(INTCON2<15>). If the ALTIVT bit is set, all interrupt
and exception processes will use the alternate vectors
instead of the default vectors. The alternate vectors are
organized in the same manner as the default vectors.
The AIVT supports emulation and debugging efforts by
providing a means to switch between an application
and a support environment without requiring the inter-
rupt vectors to be reprogrammed. This feature also
enables switching between applications for evaluation
of different software algorithms at run time. If the AIVT
is not needed, the AIVT should be programmed with
the same addresses used in the IVT.
7.2 Reset Sequence
A device Reset is not a true exception because the
interrupt controller is not involved in the Reset process.
The PIC24F devices clear their registers in response to
a Reset which forces the PC to zero. The micro-
controller then begins program execution at location
000000h. The user programs a GOTO instruction at the
Reset address, which redirects program execution to
the appropriate start-up routine.
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 8. “Interrupts” (DS39707).
Note: Any unimplemented or unused vector
locations in the IVT and AIVT should be
programmed with the address of a default
interrupt handler routine that contains a
RESET instruction.
PIC24FJ64GA104 FAMILY
DS39951C-page 66 2010 Microchip Technology Inc.
FIGURE 7-1: PIC24F INTERRUPT VECTOR TABLE
TABLE 7-1: TRAP VECTOR DETAILS
Vector Number IVT Address AIVT Address Trap Source
0 000004h 000104h Reserved
1 000006h 000106h Oscillator Failure
2 000008h 000108h Address Error
3 00000Ah 00010Ah Stack Error
4 00000Ch 00010Ch Math Error
5 00000Eh 00010Eh Reserved
6 000010h 000110h Reserved
7 000012h 000112h Reserved
Reset – GOTO Instruction 000000h
Reset – GOTO Address 000002h
Reserved 000004h
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
Reserved
Reserved
Reserved
Interrupt Vector 0 000014h
Interrupt Vector 1
Interrupt Vector 52 00007Ch
Interrupt Vector 53 00007Eh
Interrupt Vector 54 000080h
Interrupt Vector 116 0000FCh
Interrupt Vector 117 0000FEh
Reserved 000100h
Reserved 000102h
Reserved
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
Reserved
Reserved
Reserved
Interrupt Vector 0 000114h
Interrupt Vector 1
Interrupt Vector 52 00017Ch
Interrupt Vector 53 00017Eh
Interrupt Vector 54 000180h
Interrupt Vector 116
Interrupt Vector 117 0001FEh
Start of Code 000200h
Decreasing Natural Order Priority
Interrupt Vector Table (IVT)(1)
Alternate Interrupt Vector Table (AIVT)(1)
Note 1: See Table 7-2 for the interrupt vector list.
2010 Microchip Technology Inc. DS39951C-page 67
PIC24FJ64GA104 FAMILY
TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS
Interrupt Source Vector
Number IVT Address AIVT
Address
Interrupt Bit Locations
Flag Enable Priority
ADC1 Conversion Done 13 00002Eh 00012Eh IFS0<13> IEC0<13> IPC3<6:4>
Comparator Event 18 000038h 000138h IFS1<2> IEC1<2> IPC4<10:8>
CRC Generator 67 00009Ah 00019Ah IFS4<3> IEC4<3> IPC16<14:12>
CTMU Event 77 0000AEh 0001AEh IFS4<13> IEC4<13> IPC19<6:4>
External Interrupt 0 0 000014h 000114h IFS0<0> IEC0<0> IPC0<2:0>
External Interrupt 1 20 00003Ch 00013Ch IFS1<4> IEC1<4> IPC5<2:0>
External Interrupt 2 29 00004Eh 00014Eh IFS1<13> IEC1<13> IPC7<6:4>
I2C1 Master Event 17 000036h 000136h IFS1<1> IEC1<1> IPC4<6:4>
I2C1 Slave Event 16 000034h 000134h IFS1<0> IEC1<0> IPC4<2:0>
I2C2 Master Event 50 000078h 000178h IFS3<2> IEC3<2> IPC12<10:8>
I2C2 Slave Event 49 000076h 000176h IFS3<1> IEC3<1> IPC12<6:4>
Input Capture 1 1 000016h 000116h IFS0<1> IEC0<1> IPC0<6:4>
Input Capture 2 5 00001Eh 00011Eh IFS0<5> IEC0<5> IPC1<6:4>
Input Capture 3 37 00005Eh 00015Eh IFS2<5> IEC2<5> IPC9<6:4>
Input Capture 4 38 000060h 000160h IFS2<6> IEC2<6> IPC9<10:8>
Input Capture 5 39 000062h 000162h IFS2<7> IEC2<7> IPC9<14:12>
Input Change Notification 19 00003Ah 00013Ah IFS1<3> IEC1<3> IPC4<14:12>
LVD Low-Voltage Detect 72 0000A4h 0001A4h IFS4<8> IEC4<8> IPC18<2:0>
Output Compare 1 2 000018h 000118h IFS0<2> IEC0<2> IPC0<10:8>
Output Compare 2 6 000020h 000120h IFS0<6> IEC0<6> IPC1<10:8>
Output Compare 3 25 000046h 000146h IFS1<9> IEC1<9> IPC6<6:4>
Output Compare 4 26 000048h 000148h IFS1<10> IEC1<10> IPC6<10:8>
Output Compare 5 41 000066h 000166h IFS2<9> IEC2<9> IPC10<6:4>
Parallel Master Port 45 00006Eh 00016Eh IFS2<13> IEC2<13> IPC11<6:4>
Real-Time Clock/Calendar 62 000090h 000190h IFS3<14> IEC3<14> IPC15<10:8>
SPI1 Error 9 000026h 000126h IFS0<9> IEC0<9> IPC2<6:4>
SPI1 Event 10 000028h 000128h IFS0<10> IEC0<10> IPC2<10:8>
SPI2 Error 32 000054h 000154h IFS2<0> IEC2<0> IPC8<2:0>
SPI2 Event 33 000056h 000156h IFS2<1> IEC2<1> IPC8<6:4>
Timer1 3 00001Ah 00011Ah IFS0<3> IEC0<3> IPC0<14:12>
Timer2 7 000022h 000122h IFS0<7> IEC0<7> IPC1<14:12>
Timer3 8 000024h 000124h IFS0<8> IEC0<8> IPC2<2:0>
Timer4 27 00004Ah 00014Ah IFS1<11> IEC1<11> IPC6<14:12>
Timer5 28 00004Ch 00014Ch IFS1<12> IEC1<12> IPC7<2:0>
UART1 Error 65 000096h 000196h IFS4<1> IEC4<1> IPC16<6:4>
UART1 Receiver 11 00002Ah 00012Ah IFS0<11> IEC0<11> IPC2<14:12>
UART1 Transmitter 12 00002Ch 00012Ch IFS0<12> IEC0<12> IPC3<2:0>
UART2 Error 66 000098h 000198h IFS4<2> IEC4<2> IPC16<10:8>
UART2 Receiver 30 000050h 000150h IFS1<14> IEC1<14> IPC7<10:8>
UART2 Transmitter 31 000052h 000152h IFS1<15> IEC1<15> IPC7<14:12>
PIC24FJ64GA104 FAMILY
DS39951C-page 68 2010 Microchip Technology Inc.
7.3 Interrupt Control and Status
Registers
The PIC24FJ64GA104 family of devices implements
the following registers for the interrupt controller:
INTCON1
INTCON2
IFS0 through IFS4
IEC0 through IEC4
IPC0 through IPC20 (except IPC13, IPC14 and
IPC17)
•INTTREG
Global interrupt control functions are controlled from
INTCON1 and INTCON2. INTCON1 contains the Inter-
rupt Nesting Disable (NSTDIS) bit, as well as the
control and status flags for the processor trap sources.
The INTCON2 register controls the external interrupt
request signal behavior and the use of the Alternate
Interrupt Vector Table.
The IFSx registers maintain all of the interrupt request
flags. Each source of interrupt has a status bit which is
set by the respective peripherals, or an external signal,
and is cleared via software.
The IECx registers maintain all of the interrupt enable
bits. These control bits are used to individually enable
interrupts from the peripherals or external signals.
The IPCx registers are used to set the interrupt priority
level for each source of interrupt. Each user interrupt
source can be assigned to one of eight priority levels.
The interrupt sources are assigned to the IFSx, IECx
and IPCx registers in the order of their vector numbers,
as shown in Table 7-2. For example, the INT0 (External
Interrupt 0) is shown as having a vector number and a
natural order priority of 0. Thus, the INT0IF status bit is
found in IFS0<0>, the INT0IE enable bit in IEC0<0>
and the INT0IP<2:0> priority bits in the first position of
IPC0 (IPC0<2:0>).
Although they are not specifically part of the interrupt
control hardware, two of the CPU control registers con-
tain bits that control interrupt functionality. The ALU
STATUS Register (SR) contains the IPL<2:0> bits
(SR<7:5>); these indicate the current CPU interrupt
priority level. The user may change the current CPU
priority level by writing to the IPL bits.
The CORCON register contains the IPL3 bit, which,
together with IPL<2:0>, indicates the current CPU
priority level. IPL3 is a read-only bit so that trap events
cannot be masked by the user software.
The interrupt controller has the Interrupt Controller Test
Register (INTTREG) that displays the status of the
interrupt controller. When an interrupt request occurs,
its associated vector number and the new interrupt
priority level are latched into INTTREG.
This information can be used to determine a specific
interrupt source if a generic ISR is used for multiple
vectors – such as when ISR remapping is used in boot-
loader applications. It also could be used to check if
another interrupt is pending while in an ISR.
All interrupt registers are described in Register 7-1
through Register 7-32, on the following pages.
2010 Microchip Technology Inc. DS39951C-page 69
PIC24FJ64GA104 FAMILY
REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R-0
—DC
(1)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL2(2,3) IPL1(2,3) IPL0(2,3) RA(1) N(1) OV(1) Z(1) C(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)
111 = CPU interrupt priority level is 7 (15). User interrupts are disabled.
110 = CPU interrupt priority level is 6 (14)
101 = CPU interrupt priority level is 5 (13)
100 = CPU interrupt priority level is 4 (12)
011 = CPU interrupt priority level is 3 (11)
010 = CPU interrupt priority level is 2 (10)
001 = CPU interrupt priority level is 1 (9)
000 = CPU interrupt priority level is 0 (8)
Note 1: See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control
functions.
2: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level.
The value in parentheses indicates the interrupt priority level if IPL3 = 1.
3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
REGISTER 7-2: CORCON: CPU CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 U-0 R/C-0 R/W-0 U-0 U-0
—IPL3
(2) PSV(1)
bit 7 bit 0
Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 3 IPL3: CPU Interrupt Priority Level Status bit(2)
1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less
Note 1: See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control
functions.
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
PIC24FJ64GA104 FAMILY
DS39951C-page 70 2010 Microchip Technology Inc.
REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1
R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
NSTDIS
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
MATHERR ADDRERR STKERR OSCFAIL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 NSTDIS: Interrupt Nesting Disable bit
1 = Interrupt nesting is disabled
0 = Interrupt nesting is enabled
bit 14-5 Unimplemented: Read as ‘0
bit 4 MATHERR: Arithmetic Error Trap Status bit
1 = Overflow trap has occurred
0 = Overflow trap has not occurred
bit 3 ADDRERR: Address Error Trap Status bit
1 = Address error trap has occurred
0 = Address error trap has not occurred
bit 2 STKERR: Stack Error Trap Status bit
1 = Stack error trap has occurred
0 = Stack error trap has not occurred
bit 1 OSCFAIL: Oscillator Failure Trap Status bit
1 = Oscillator failure trap has occurred
0 = Oscillator failure trap has not occurred
bit 0 Unimplemented: Read as0
2010 Microchip Technology Inc. DS39951C-page 71
PIC24FJ64GA104 FAMILY
REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2
R/W-0 R-0 U-0 U-0 U-0 U-0 U-0 U-0
ALTIVT DISI
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
INT2EP INT1EP INT0EP
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit
1 = Use Alternate Interrupt Vector Table
0 = Use standard (default) vector table
bit 14 DISI: DISI Instruction Status bit
1 = DISI instruction is active
0 = DISI instruction is not active
bit 13-3 Unimplemented: Read as ‘0
bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit
1 = Interrupt on negative edge
0 = Interrupt on positive edge
PIC24FJ64GA104 FAMILY
DS39951C-page 72 2010 Microchip Technology Inc.
REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AD1IF U1TXIF U1RXIF SPI1IF SPF1IF T3IF
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
T2IF OC2IF IC2IF T1IF OC1IF IC1IF INT0IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 AD1IF: A/D Conversion Complete Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 12 U1TXIF: UART1 Transmitter Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 11 U1RXIF: UART1 Receiver Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 10 SPI1IF: SPI1 Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 9 SPF1IF: SPI1 Fault Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 8 T3IF: Timer3 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 7 T2IF: Timer2 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 6 OC2IF: Output Compare Channel 2 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 5 IC2IF: Input Capture Channel 2 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 4 Unimplemented: Read as0
bit 3 T1IF: Timer1 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 INT0IF: External Interrupt 0 Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
2010 Microchip Technology Inc. DS39951C-page 73
PIC24FJ64GA104 FAMILY
REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
INT1IF CNIF CMIF MI2C1IF SI2C1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 U2TXIF: UART2 Transmitter Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 14 U2RXIF: UART2 Receiver Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 13 INT2IF: External Interrupt 2 Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 12 T5IF: Timer5 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 11 T4IF: Timer4 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 10 OC4IF: Output Compare Channel 4 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 9 OC3IF: Output Compare Channel 3 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 8-5 Unimplemented: Read as ‘0
bit 4 INT1IF: External Interrupt 1 Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 2 CMIF: Comparator Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 1 MI2C1IF: Master I2C1 Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
PIC24FJ64GA104 FAMILY
DS39951C-page 74 2010 Microchip Technology Inc.
REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2
U-0 U-0 R/W-0 U-0 U-0 U-0 R/W-0 U-0
—PMPIF —OC5IF
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0
IC5IF IC4IF IC3IF SPI2IF SPF2IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 PMPIF: Parallel Master Port Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 12-10 Unimplemented: Read as ‘0
bit 9 OC5IF: Output Compare Channel 5 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 8 Unimplemented: Read as0
bit 7 IC5IF: Input Capture Channel 5 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 6 IC4IF: Input Capture Channel 4 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 5 IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 4-2 Unimplemented: Read as ‘0
bit 1 SPI2IF: SPI2 Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 SPF2IF: SPI2 Fault Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
2010 Microchip Technology Inc. DS39951C-page 75
PIC24FJ64GA104 FAMILY
REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3
U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0
—RTCIF
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0, R/W-0 U-0
—MI2C2IFSI2C2IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14 RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 13-3 Unimplemented: Read as ‘0
bit 2 MI2C2IF: Master I2C2 Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 1 SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 Unimplemented: Read as0
PIC24FJ64GA104 FAMILY
DS39951C-page 76 2010 Microchip Technology Inc.
REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4
U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0
—CTMUIF————LVDIF
bit 15 bit 8
U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 U-0
——— CRCIF U2ERIF U1ERIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 CTMUIF: CTMU Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 12-9 Unimplemented: Read as ‘0
bit 8 LVDIF: Low-Voltage Detect Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 7-4 Unimplemented: Read as ‘0
bit 3 CRCIF: CRC Generator Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 2 U2ERIF: UART2 Error Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 1 U1ERIF: UART1 Error Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 Unimplemented: Read as0
2010 Microchip Technology Inc. DS39951C-page 77
PIC24FJ64GA104 FAMILY
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AD1IE U1TXIE U1RXIE SPI1IE SPF1IE T3IE
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
T2IE OC2IE IC2IE T1IE OC1IE IC1IE INT0IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 AD1IE: A/D Conversion Complete Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 12 U1TXIE: UART1 Transmitter Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 11 U1RXIE: UART1 Receiver Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 10 SPI1IE: SPI1 Transfer Complete Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 9 SPF1IE: SPI1 Fault Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 8 T3IE: Timer3 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 7 T2IE: Timer2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 6 OC2IE: Output Compare Channel 2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 5 IC2IE: Input Capture Channel 2 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 4 Unimplemented: Read as0
bit 3 T1IE: Timer1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 INT0IE: External Interrupt 0 Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
PIC24FJ64GA104 FAMILY
DS39951C-page 78 2010 Microchip Technology Inc.
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
U2TXIE U2RXIE INT2IE(1) T5IE T4IE OC4IE OC3IE
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
—INT1IE
(1) CNIE CMIE MI2C1IE SI2C1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 U2TXIE: UART2 Transmitter Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 14 U2RXIE: UART2 Receiver Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 13 INT2IE: External Interrupt 2 Enable bit(1)
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 12 T5IE: Timer5 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 11 T4IE: Timer4 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 10 OC4IE: Output Compare Channel 4 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 9 OC3IE: Output Compare Channel 3 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 8-5 Unimplemented: Read as ‘0
bit 4 INT1IE: External Interrupt 1 Enable bit(1)
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 3 CNIE: Input Change Notification Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 2 CMIE: Comparator Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 1 MI2C1IE: Master I2C1 Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 SI2C1IE: Slave I2C1 Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPn or PRIx
pin. See Section 10.4 “Peripheral Pin Select (PPS)” for more information.
2010 Microchip Technology Inc. DS39951C-page 79
PIC24FJ64GA104 FAMILY
REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2
U-0 U-0 R/W-0 U-0 U-0 U-0 R/W-0 U-0
—PMPIE —OC5IE
bit 15 bit 8
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0
IC5IE IC4IE IC3IE SPI2IE SPF2IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 PMPIE: Parallel Master Port Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 12-10 Unimplemented: Read as ‘0
bit 9 OC5IE: Output Compare Channel 5 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 8 Unimplemented: Read as0
bit 7 IC5IE: Input Capture Channel 5 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 6 IC4IE: Input Capture Channel 4 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 5 IC3IE: Input Capture Channel 3 Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 4-2 Unimplemented: Read as ‘0
bit 1 SPI2IE: SPI2 Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 SPF2IE: SPI2 Fault Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
PIC24FJ64GA104 FAMILY
DS39951C-page 80 2010 Microchip Technology Inc.
REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3
U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0
—RTCIE
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0
—MI2C2IESI2C2IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14 RTCIE: Real-Time Clock/Calendar Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 13-3 Unimplemented: Read as ‘0
bit 2 MI2C2IE: Master I2C2 Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 1 SI2C2IE: Slave I2C2 Event Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 Unimplemented: Read as0
2010 Microchip Technology Inc. DS39951C-page 81
PIC24FJ64GA104 FAMILY
REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4
U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 R/W-0
—CTMUIE————LVDIE
bit 15 bit 8
U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 U-0
——— CRCIE U2ERIE U1ERIE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 CTMUIE: CTMU Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 12-9 Unimplemented: Read as ‘0
bit 8 LVDIE: Low-Voltage Detect Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 7-4 Unimplemented: Read as ‘0
bit 3 CRCIE: CRC Generator Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 2 U2ERIE: UART2 Error Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 1 U1ERIE: UART1 Error Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 0 Unimplemented: Read as0
PIC24FJ64GA104 FAMILY
DS39951C-page 82 2010 Microchip Technology Inc.
REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
T1IP2 T1IP1 T1IP0 OC1IP2 OC1IP1 OC1IP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
IC1IP2 IC1IP1 IC1IP0 INT0IP2 INT0IP1 INT0IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as0
bit 2-0 INT0IP<2:0>: External Interrupt 0 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
2010 Microchip Technology Inc. DS39951C-page 83
PIC24FJ64GA104 FAMILY
REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
T2IP2 T2IP1 T2IP0 OC2IP2 OC2IP1 OC2IP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
IC2IP2 IC2IP1 IC2IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 T2IP<2:0>: Timer2 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
PIC24FJ64GA104 FAMILY
DS39951C-page 84 2010 Microchip Technology Inc.
REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
U1RXIP2 U1RXIP1 U1RXIP0 SPI1IP2 SPI1IP1 SPI1IP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
SPF1IP2 SPF1IP1 SPF1IP0 T3IP2 T3IP1 T3IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 SPI1IP<2:0>: SPI1 Event Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as0
bit 2-0 T3IP<2:0>: Timer3 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
2010 Microchip Technology Inc. DS39951C-page 85
PIC24FJ64GA104 FAMILY
REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
AD1IP2 AD1IP1 AD1IP0 U1TXIP2 U1TXIP1 U1TXIP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as0
bit 2-0 U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
PIC24FJ64GA104 FAMILY
DS39951C-page 86 2010 Microchip Technology Inc.
REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
CNIP2 CNIP1 CNIP0 CMIP2 CMIP1 CMIP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
MI2C1IP2 MI2C1IP1 MI2C1IP0 SI2C1IP2 SI2C1IP1 SI2C1IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 CNIP<2:0>: Input Change Notification Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 CMIP<2:0>: Comparator Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 MI2C1IP<2:0>: Master I2C1 Event Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as0
bit 2-0 SI2C1IP<2:0>: Slave I2C1 Event Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
2010 Microchip Technology Inc. DS39951C-page 87
PIC24FJ64GA104 FAMILY
REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
INT1IP2 INT1IP1 INT1IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-3 Unimplemented: Read as ‘0
bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
PIC24FJ64GA104 FAMILY
DS39951C-page 88 2010 Microchip Technology Inc.
REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
T4IP2 T4IP1 T4IP0 OC4IP2 OC4IP1 OC4IP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
OC3IP2 OC3IP1 OC3IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 T4IP<2:0>: Timer4 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
2010 Microchip Technology Inc. DS39951C-page 89
PIC24FJ64GA104 FAMILY
REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
U2TXIP2 U2TXIP1 U2TXIP0 U2RXIP2 U2RXIP1 U2RXIP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
INT2IP2 INT2IP1 INT2IP0 T5IP2 T5IP1 T5IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 INT2IP<2:0>: External Interrupt 2 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as0
bit 2-0 T5IP<2:0>: Timer5 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
PIC24FJ64GA104 FAMILY
DS39951C-page 90 2010 Microchip Technology Inc.
REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
SPI2IP2 SPI2IP1 SPI2IP0 SPF2IP2 SPF2IP1 SPF2IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 SPI2IP<2:0>: SPI2 Event Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3 Unimplemented: Read as0
bit 2-0 SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
2010 Microchip Technology Inc. DS39951C-page 91
PIC24FJ64GA104 FAMILY
REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
IC5IP2 IC5IP1 IC5IP0 IC4IP2 IC4IP1 IC4IP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
IC3IP2 IC3IP1 IC3IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
PIC24FJ64GA104 FAMILY
DS39951C-page 92 2010 Microchip Technology Inc.
REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
OC5IP2 OC5IP1 OC5IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
2010 Microchip Technology Inc. DS39951C-page 93
PIC24FJ64GA104 FAMILY
REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
PMPIP2 PMPIP1 PMPIP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 PMPIP<2:0>: Parallel Master Port Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
PIC24FJ64GA104 FAMILY
DS39951C-page 94 2010 Microchip Technology Inc.
REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12
U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
MI2C2IP2 MI2C2IP1 MI2C2IP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
SI2C2IP2 SI2C2IP1 SI2C2IP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10-8 MI2C2IP<2:0>: Master I2C2 Event Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 SI2C2IP<2:0>: Slave I2C2 Event Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
2010 Microchip Technology Inc. DS39951C-page 95
PIC24FJ64GA104 FAMILY
REGISTER 7-28: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15
U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
RTCIP2 RTCIP1 RTCIP0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10-8 RTCIP<2:0>: Real-Time Clock/Calendar Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7-0 Unimplemented: Read as ‘0
PIC24FJ64GA104 FAMILY
DS39951C-page 96 2010 Microchip Technology Inc.
REGISTER 7-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16
U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0
CRCIP2 CRCIP1 CRCIP0 U2ERIP2 U2ERIP1 U2ERIP0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
U1ERIP2 U1ERIP1 U1ERIP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 CRCIP<2:0>: CRC Generator Error Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 11 Unimplemented: Read as ‘0
bit 10-8 U2ERIP<2:0>: UART2 Error Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 7 Unimplemented: Read as0
bit 6-4 U1ERIP<2:0>: UART1 Error Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
2010 Microchip Technology Inc. DS39951C-page 97
PIC24FJ64GA104 FAMILY
REGISTER 7-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-0 R/W-0
LVDIP2 LVDIP1 LVDIP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-3 Unimplemented: Read as ‘0
bit 2-0 LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
REGISTER 7-31: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0
CTMUIP2 CTMUIP1 CTMUIP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-7 Unimplemented: Read as ‘0
bit 6-4 CTMUIP<2:0>: CTMU Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled
bit 3-0 Unimplemented: Read as ‘0
PIC24FJ64GA104 FAMILY
DS39951C-page 98 2010 Microchip Technology Inc.
REGISTER 7-32: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER
R-0 U-0 R/W-0 U-0 R-0 R-0 R-0 R-0
CPUIRQ —VHOLD ILR3ILR2ILR1ILR0
bit 15 bit 8
U-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CPUIRQ: Interrupt Request from Interrupt Controller CPU bit
1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens
when the CPU priority is higher than the interrupt priority
0 = No interrupt request is unacknowledged
bit 14 Unimplemented: Read as ‘0
bit 13 VHOLD: Vector Number Capture Configuration bit
1 = The VECNUM bits contain the value of the highest priority pending interrupt
0 = The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that
has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12 Unimplemented: Read as ‘0
bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits
1111 = CPU Interrupt Priority Level is 15
0001 = CPU Interrupt Priority Level is 1
0000 = CPU Interrupt Priority Level is 0
bit 7 Unimplemented: Read as ‘0
bit 6-0 VECNUM<6:0>: Pending Interrupt Vector ID bits (pending vector number is VECNUM + 8)
0111111 = Interrupt Vector pending is number 135
0000001 = Interrupt Vector pending is number 9
0000000 = Interrupt Vector pending is number 8
2010 Microchip Technology Inc. DS39951C-page 99
PIC24FJ64GA104 FAMILY
7.4 Interrupt Setup Procedures
7.4.1 INITIALIZATION
To configure an interrupt source:
1. Set the NSTDIS control bit (INTCON1<15>) if
nested interrupts are not desired.
2. Select the user-assigned priority level for the
interrupt source by writing the control bits in the
appropriate IPCx register. The priority level will
depend on the specific application and type of
interrupt source. If multiple priority levels are not
desired, the IPCx register control bits for all
enabled interrupt sources may be programmed
to the same non-zero value.
3. Clear the interrupt flag status bit associated with
the peripheral in the associated IFSx register.
4. Enable the interrupt source by setting the
interrupt enable control bit associated with the
source in the appropriate IECx register.
7.4.2 INTERRUPT SERVICE ROUTINE
The method that is used to declare an ISR and initialize
the IVT with the correct vector address will depend on
the programming language (i.e., ‘C’ or assembler) and
the language development toolsuite that is used to
develop the application. In general, the user must clear
the interrupt flag in the appropriate IFSx register for the
source of the interrupt that the ISR handles. Otherwise,
the ISR will be re-entered immediately after exiting the
routine. If the ISR is coded in assembly language, it
must be terminated using a RETFIE instruction to
unstack the saved PC value, SRL value and old CPU
priority level.
7.4.3 TRAP SERVICE ROUTINE
A Trap Service Routine (TSR) is coded like an ISR,
except that the appropriate trap status flag in the
INTCON1 register must be cleared to avoid re-entry
into the TSR.
7.4.4 INTERRUPT DISABLE
All user interrupts can be disabled using the following
procedure:
1. Push the current SR value onto the software
stack using the PUSH instruction.
2. Force the CPU to priority level 7 by inclusive
ORing the value OEh with SRL.
To enable user interrupts, the POP instruction may be
used to restore the previous SR value.
Note that only user interrupts with a priority level of 7 or
less can be disabled. Trap sources (level 8-15) cannot
be disabled.
The DISI instruction provides a convenient way to
disable interrupts of priority levels 1-6 for a fixed period
of time. Level 7 interrupt sources are not disabled by
the DISI instruction.
Note: At a device Reset, the IPCx registers are
initialized, such that all user interrupt
sources are assigned to priority level 4.
PIC24FJ64GA104 FAMILY
DS39951C-page 100 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 101
PIC24FJ64GA104 FAMILY
8.0 OSCILLATOR
CONFIGURATION
The oscillator system for PIC24FJ64GA104 family
devices has the following features:
A total of four external and internal oscillator options
as clock sources, providing 11 different clock modes
On-chip 4x PLL to boost internal operating frequency
on select internal and external oscillator sources
Software-controllable switching between various
clock sources
Software-controllable postscaler for selective
clocking of CPU for system power savings
A Fail-Safe Clock Monitor (FSCM) that detects
clock failure and permits safe application recovery
or shutdown
A separate and independently configurable system
clock output for synchronizing external hardware
A simplified diagram of the oscillator system is shown
in Figure 8-1.
FIGURE 8-1: PIC24FJ64GA104 FAMILY CLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
“Section 6. Oscillator” (DS39700).
Secondary Oscillator
SOSCEN
Enable
Oscillator
SOSCO
SOSCI
Clock Source Option
for Other Modules
OSCI
OSCO
Primary Oscillator
XT, HS, EC
Postscaler
CLKDIV<10:8>
WDT, PWRT
8 MHz
FRCDIV
31 kHz (nominal)
FRC
Oscillator
LPRC
Oscillator
SOSC
LPRC
Clock Control Logic
Fail-Safe
Clock
Monitor
FRC
(nominal)
4 x PLL
XTPLL, HSPLL
ECPLL,FRCPLL
8 MHz
4 MHz
CPU
Peripherals
Postscaler
CLKDIV<14:12>
CLKO
Reference Clock
Generator
REFO
REFOCON<15:8>
PIC24FJ64GA104 FAMILY
DS39951C-page 102 2010 Microchip Technology Inc.
8.1 CPU Clocking Scheme
The system clock source can be provided by one of
four sources:
Primary Oscillator (POSC) on the OSCI and
OSCO pins
Secondary Oscillator (SOSC) on the SOSCI and
SOSCO pins
Fast Internal RC (FRC) Oscillator
Low-Power Internal RC (LPRC) Oscillator
The Primary Oscillator and FRC sources have the
option of using the internal 4x PLL. The frequency of
the FRC clock source can optionally be reduced by the
programmable clock divider. The selected clock source
generates the processor and peripheral clock sources.
The processor clock source is divided by two to pro-
duce the internal instruction cycle clock, FCY. In this
document, the instruction cycle clock is also denoted
by FOSC/2. The internal instruction cycle clock, FOSC/2,
can be provided on the OSCO I/O pin for some
operating modes of the Primary Oscillator.
8.2 Initial Configuration on POR
The oscillator source (and operating mode) that is
used at a device Power-on Reset event is selected
using Configuration bit settings. The oscillator Config-
uration bit settings are located in the Configuration
registers in the program memory (refer to
Section 25.1 “Configuration Bits for further details).
The Primary Oscillator Configuration bits,
POSCMD<1:0> (Configuration Word 2<1:0>), and
the Initial Oscillator Select Configuration bits,
FNOSC<2:0> (Configuration Word 2<10:8>), select
the oscillator source that is used at a Power-on Reset.
The FRC Primary Oscillator with postscaler (FRCDIV)
is the default (unprogrammed) selection. The Second-
ary Oscillator, or one of the internal oscillators, may be
chosen by programming these bit locations.
The Configuration bits allow users to choose between
the various clock modes, shown in Table 8-1.
8.2.1 CLOCK SWITCHING MODE
CONFIGURATION BITS
The FCKSM Configuration bits (Configuration
Word 2<7:6>) are used to jointly configure device clock
switching and the Fail-Safe Clock Monitor (FSCM).
Clock switching is enabled only when FCKSM1 is
programmed (‘0’). The FSCM is enabled only when the
FCKSM<1:0> bits are both programmed (‘00’).
TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION
Oscillator Mode Oscillator Source POSCMD<1:0> FNOSC<2:0> Note
Fast RC Oscillator with Postscaler
(FRCDIV)
Internal 11 111 1, 2
(Reserved) Internal xx 110 1
Low-Power RC Oscillator (LPRC) Internal 11 101 1
Secondary (Timer1) Oscillator
(SOSC)
Secondary 11 100 1
Primary Oscillator (XT) with PLL
Module (XTPLL)
Primary 01 011
Primary Oscillator (EC) with PLL
Module (ECPLL)
Primary 00 011
Primary Oscillator (HS) Primary 10 010
Primary Oscillator (XT) Primary 01 010
Primary Oscillator (EC) Primary 00 010
Fast RC Oscillator with PLL Module
(FRCPLL)
Internal 11 001 1
Fast RC Oscillator (FRC) Internal 11 000 1
Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.
2: This is the default oscillator mode for an unprogrammed (erased) device.
2010 Microchip Technology Inc. DS39951C-page 103
PIC24FJ64GA104 FAMILY
8.3 Control Registers
The operation of the oscillator is controlled by three
Special Function Registers:
OSCCON
•CLKDIV
•OSCTUN
The OSCCON register (Register 8-1) is the main con-
trol register for the oscillator. It controls clock source
switching and allows the monitoring of clock sources.
The CLKDIV register (Register 8-2) controls the
features associated with Doze mode, as well as the
postscaler for the FRC Oscillator.
The OSCTUN register (Register 8-3) allows the user to
fine tune the FRC Oscillator over a range of approxi-
mately ±12%. Each bit increment or decrement
changes the factory calibrated frequency of the FRC
Oscillator by a fixed amount.
REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER
U-0 R-0 R-0 R-0 U-0 R/W-x(1) R/W-x(1) R/W-x(1)
COSC2 COSC1 COSC0 NOSC2 NOSC1 NOSC0
bit 15 bit 8
R/SO-0 R/W-0 R-0(3) U-0 R/CO-0 R/W-0 R/W-0 R/W-0
CLKLOCK IOLOCK(2) LOCK CF POSCEN SOSCEN OSWEN
bit 7 bit 0
Legend: CO = Clearable Only bit SO = Settable Only bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 COSC<2:0>: Current Oscillator Selection bits
111 = Fast RC Oscillator with Postscaler (FRCDIV)
110 = Reserved
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
000 = Fast RC Oscillator (FRC)
bit 11 Unimplemented: Read as ‘0
bit 10-8 NOSC<2:0>: New Oscillator Selection bits(1)
111 = Fast RC Oscillator with Postscaler (FRCDIV)
110 = Reserved
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
000 = Fast RC Oscillator (FRC)
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In
addition, if the IOL1WAY Configuration bit is ‘1’, once the IOLOCK bit is set, it cannot be cleared.
3: Also resets to ‘0 during any valid clock switch or whenever a non-PLL clock mode is selected.
PIC24FJ64GA104 FAMILY
DS39951C-page 104 2010 Microchip Technology Inc.
bit 7 CLKLOCK: Clock Selection Lock Enabled bit
If FSCM is enabled (FCKSM1 = 1):
1 = Clock and PLL selections are locked
0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit
If FSCM is disabled (FCKSM1 = 0):
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6 IOLOCK: I/O Lock Enable bit(2)
1 = I/O lock is active
0 = I/O lock is not active
bit 5 LOCK: PLL Lock Status bit(3)
1 = PLL module is in lock or PLL module start-up timer is satisfied
0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4 Unimplemented: Read as0
bit 3 CF: Clock Fail Detect bit
1 = FSCM has detected a clock failure
0 = No clock failure has been detected
bit 2 POSCEN: Primary Oscillator Sleep Enable bit
1 = Primary Oscillator continues to operate during Sleep mode
0 = Primary Oscillator disabled during Sleep mode
bit 1 SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
1 = Enable Secondary Oscillator
0 = Disable Secondary Oscillator
bit 0 OSWEN: Oscillator Switch Enable bit
1 = Initiate an oscillator switch to clock source specified by NOSC<2:0> bits
0 = Oscillator switch is complete
REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In
addition, if the IOL1WAY Configuration bit is ‘1’, once the IOLOCK bit is set, it cannot be cleared.
3: Also resets to ‘0 during any valid clock switch or whenever a non-PLL clock mode is selected.
2010 Microchip Technology Inc. DS39951C-page 105
PIC24FJ64GA104 FAMILY
REGISTER 8-2: CLKDIV: CLOCK DIVIDER REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1
ROI DOZE2 DOZE1 DOZE0 DOZEN(1) RCDIV2 RCDIV1 RCDIV0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ROI: Recover on Interrupt bit
1 = Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1
0 = Interrupts have no effect on the DOZEN bit
bit 14-12 DOZE<2:0>: CPU Peripheral Clock Ratio Select bits
111 = 1:128
110 = 1:64
101 = 1:32
100 = 1:16
011 = 1:8
010 = 1:4
001 = 1:2
000 = 1:1
bit 11 DOZEN: DOZE Enable bit(1)
1 = DOZE<2:0> bits specify the CPU peripheral clock ratio
0 = CPU peripheral clock ratio set to 1:1
bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits
111 = 31.25 kHz (divide-by-256)
110 = 125 kHz (divide-by-64)
101 = 250 kHz (divide-by-32)
100 = 500 kHz (divide-by-16)
011 = 1 MHz (divide-by-8)
010 = 2 MHz (divide-by-4)
001 = 4 MHz (divide-by-2)
000 = 8 MHz (divide-by-1)
bit 7-0 Unimplemented: Read as ‘0
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.
PIC24FJ64GA104 FAMILY
DS39951C-page 106 2010 Microchip Technology Inc.
8.4 Clock Switching Operation
With few limitations, applications are free to switch
between any of the four clock sources (POSC, SOSC,
FRC and LPRC) under software control and at any
time. To limit the possible side effects that could result
from this flexibility, PIC24F devices have a safeguard
lock built into the switching process.
8.4.1 ENABLING CLOCK SWITCHING
To enable clock switching, the FCKSM Configuration bits
in CW2 must be programmed to ‘00’. (Refer to
Section 25.1 “Configuration Bits” for further details.)
If the FCKSM Configuration bits are unprogrammed
(‘1x’), the clock switching function and Fail-Safe Clock
Monitor function are disabled. This is the default setting.
The NOSCx control bits (OSCCON<10:8>) do not
control the clock selection when clock switching is dis-
abled. However, the COSCx bits (OSCCON<14:12>)
will reflect the clock source selected by the FNOSCx
Configuration bits.
The OSWEN control bit (OSCCON<0>) has no effect
when clock switching is disabled. It is held at ‘0’ at all
times.
REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TUN5(1) TUN4(1) TUN3(1) TUN2(1) TUN1(1) TUN0(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-6 Unimplemented: Read as ‘0
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits(1)
011111 = Maximum frequency deviation
011110 =
000001 =
000000 = Center frequency, oscillator is running at factory calibrated frequency
111111 =
100001 =
100000 = Minimum frequency deviation
Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC
tuning range and may not be monotonic.
Note: The Primary Oscillator mode has three
different submodes (XT, HS and EC)
which are determined by the POSCMDx
Configuration bits. While an application
can switch to and from Primary Oscillator
mode in software, it cannot switch
between the different primary submodes
without reprogramming the device.
2010 Microchip Technology Inc. DS39951C-page 107
PIC24FJ64GA104 FAMILY
8.4.2 OSCILLATOR SWITCHING
SEQUENCE
At a minimum, performing a clock switch requires this
basic sequence:
1. If desired, read the COSCx bits
(OSCCON<14:12>), to determine the current
oscillator source.
2. Perform the unlock sequence to allow a write to
the OSCCON register high byte.
3. Write the appropriate value to the NOSCx bits
(OSCCON<10:8>) for the new oscillator source.
4. Perform the unlock sequence to allow a write to
the OSCCON register low byte.
5. Set the OSWEN bit to initiate the oscillator
switch.
Once the basic sequence is completed, the system
clock hardware responds automatically as follows:
1. The clock switching hardware compares the
COSCx bits with the new value of the NOSCx
bits. If they are the same, then the clock switch
is a redundant operation. In this case, the
OSWEN bit is cleared automatically and the
clock switch is aborted.
2. If a valid clock switch has been initiated, the
LOCK (OSCCON<5>) and CF (OSCCON<3>)
bits are cleared.
3. The new oscillator is turned on by the hardware
if it is not currently running. If a crystal oscillator
must be turned on, the hardware will wait until
the OST expires. If the new source is using the
PLL, then the hardware waits until a PLL lock is
detected (LOCK = 1).
4. The hardware waits for 10 clock cycles from the
new clock source and then performs the clock
switch.
5. The hardware clears the OSWEN bit to indicate a
successful clock transition. In addition, the
NOSCx bit values are transferred to the COSCx
bits.
6. The old clock source is turned off at this time, with
the exception of LPRC (if WDT or FSCM are
enabled) or SOSC (if SOSCEN remains set).
A recommended code sequence for a clock switch
includes the following:
1. Disable interrupts during the OSCCON register
unlock and write sequence.
2. Execute the unlock sequence for the OSCCON
high byte by writing 78h and 9Ah to
OSCCON<15:8> in two back-to-back
instructions.
3. Write new oscillator source to the NOSCx bits in
the instruction immediately following the unlock
sequence.
4. Execute the unlock sequence for the OSCCON
low byte by writing 46h and 57h to
OSCCON<7:0> in two back-to-back instructions.
5. Set the OSWEN bit in the instruction immediately
following the unlock sequence.
6. Continue to execute code that is not clock
sensitive (optional).
7. Invoke an appropriate amount of software delay
(cycle counting) to allow the selected oscillator
and/or PLL to start and stabilize.
8. Check to see if OSWEN is ‘0’. If it is, the switch
was successful. If OSWEN is still set, then
check the LOCK bit to determine the cause of
failure.
The core sequence for unlocking the OSCCON register
and initiating a clock switch is shown in Example 8-1.
EXAMPLE 8-1: BASIC CODE SEQUENCE
FOR CLOCK SWITCHING
Note 1: The processor will continue to execute
code throughout the clock switching
sequence. Timing sensitive code should
not be executed during this time.
2: Direct clock switches between any
Primary Oscillator mode with PLL and
FRCPLL mode are not permitted. This
applies to clock switches in either direc-
tion. In these instances, the application
must switch to FRC mode as a transition
clock source between the two PLL
modes.
;Place the new oscillator selection in W0
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0
PIC24FJ64GA104 FAMILY
DS39951C-page 108 2010 Microchip Technology Inc.
8.5 Secondary Oscillator (SOSC)
8.5.1 BASIC SOSC OPERATION
PIC24FJ64GA104 family devices do not have to set the
SOSCEN bit to use the Secondary Oscillator. Any
module requiring the SOSC (such as RTCC, Timer1 or
DSWDT) will automatically turn on the SOSC when the
clock signal is needed. The SOSC, however, has a long
start-up time. To avoid delays for peripheral start-up, the
SOSC can be manually started using the SOSCEN bit.
To use the Secondary Oscillator, the SOSCSEL<1:0>
bits (CW3<9:8>) must be configured in an oscillator
mode – either ‘11’ or ‘01’. Setting SOSCSEL to ‘00
configures the SOSC pins for Digital mode, enabling
digital I/O functionality on the pins. Digital functionality
will not be available if the SOSC is configured in either
of the oscillator modes.
8.5.2 LOW-POWER SOSC OPERATION
The Secondary Oscillator can operate in two distinct
levels of power consumption based on device configu-
ration. In Low-Power mode, the oscillator operates in a
low drive strength, low-power state. By default, the
oscillator uses a higher drive strength, and therefore,
requires more power. The Secondary Oscillator Mode
Configuration bits, SOSCSEL<1:0> (CW3<9:8>),
determine the oscillator’s power mode. Programming
the SOSCSEL bits to ‘01’ selects low-power operation.
The lower drive strength of this mode makes the SOSC
more sensitive to noise and requires a longer start-up
time. When Low-Power mode is used, care must be
taken in the design and layout of the SOSC circuit to
ensure that the oscillator starts up and oscillates
properly.
8.5.3 EXTERNAL (DIGITAL) CLOCK
MODE (SCLKI)
The SOSC can also be configured to run from an
external 32 kHz clock source, rather than the internal
oscillator. In this mode, also referred to as Digital mode,
the clock source provided on the SCLKI pin is used to
clock any modules that are configured to use the
Secondary Oscillator. In this mode, the crystal driving
circuit is disabled and the SOSCEN bit (OSCCON<1>)
has no effect.
8.5.4 SOSC LAYOUT CONSIDERATIONS
The pinout limitations on low pin count devices, such as
those in the PIC24FJ64GA104 family, may make the
SOSC more susceptible to noise than other PIC24F
devices. Unless proper care is taken in the design and
layout of the SOSC circuit, this external noise may
introduce inaccuracies into the oscillator’s period.
In general, the crystal circuit connections should be as
short as possible. It is also good practice to surround
the crystal circuit with a ground loop or ground plane.
For more information on crystal circuit design, please
refer to Section 6 “Oscillator” (DS39700) of the
PIC24F Family Reference Manual”. Additional infor-
mation is also available in these Microchip Application
Notes:
AN826, Crystal Oscillator Basics and Crystal
Selection for rfPIC® and PICmicro® Devices”
(DS00826)
AN849, “Basic PICmicro® Oscillator Design”
(DS00849).
8.6 Reference Clock Output
In addition to the CLKO output (FOSC/2) available in
certain oscillator modes, the device clock in the
PIC24FJ64GA104 family devices can also be config-
ured to provide a reference clock output signal to a port
pin. This feature is available in all oscillator configura-
tions and allows the user to select a greater range of
clock submultiples to drive external devices in the
application.
This reference clock output is controlled by the
REFOCON register (Register 8-4). Setting the ROEN
bit (REFOCON<15>) makes the clock signal available
on the REFO pin. The RODIV bits (REFOCON<11:8>)
enable the selection of 16 different clock divider
options.
The ROSSLP and ROSEL bits (REFOCON<13:12>)
control the availability of the reference output during
Sleep mode. The ROSEL bit determines if the oscillator
on OSC1 and OSC2, or the current system clock source,
is used for the reference clock output. The ROSSLP bit
determines if the reference source is available on REFO
when the device is in Sleep mode.
To use the reference clock output in Sleep mode, both
the ROSSLP and ROSEL bits must be set. The device
clock must also be configured for one of the primary
modes (EC, HS or XT); otherwise, if the POSCEN bit is
not also set, the oscillator on OSC1 and OSC2 will be
powered down when the device enters Sleep mode.
Clearing the ROSEL bit allows the reference output
frequency to change as the system clock changes
during any clock switches.
2010 Microchip Technology Inc. DS39951C-page 109
PIC24FJ64GA104 FAMILY
REGISTER 8-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER
R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ROEN ROSSLP ROSEL RODIV3 RODIV2 RODIV1 RODIV0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ROEN: Reference Oscillator Output Enable bit
1 = Reference oscillator is enabled on REFO pin
0 = Reference oscillator is disabled
bit 14 Unimplemented: Read as ‘0
bit 13 ROSSLP: Reference Oscillator Output Stop in Sleep bit
1 = Reference oscillator continues to run in Sleep
0 = Reference oscillator is disabled in Sleep
bit 12 ROSEL: Reference Oscillator Source Select bit
1 = Primary Oscillator is used as the base clock. Note that the crystal oscillator must be enabled using
the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.
0 = System clock is used as the base clock; base clock reflects any clock switching of the device
bit 11-8 RODIV<3:0>: Reference Oscillator Divisor Select bits
1111 = Base clock value divided by 32,768
1110 = Base clock value divided by 16,384
1101 = Base clock value divided by 8,192
1100 = Base clock value divided by 4,096
1011 = Base clock value divided by 2,048
1010 = Base clock value divided by 1,024
1001 = Base clock value divided by 512
1000 = Base clock value divided by 256
0111 = Base clock value divided by 128
0110 = Base clock value divided by 64
0101 = Base clock value divided by 32
0100 = Base clock value divided by 16
0011 = Base clock value divided by 8
0010 = Base clock value divided by 4
0001 = Base clock value divided by 2
0000 = Base clock value
bit 7-0 Unimplemented: Read as ‘0
PIC24FJ64GA104 FAMILY
DS39951C-page 110 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 111
PIC24FJ64GA104 FAMILY
9.0 POWER-SAVING FEATURES
The PIC24FJ64GA104 family of devices provides the
ability to manage power consumption by selectively
managing clocking to the CPU and the peripherals. In
general, a lower clock frequency and a reduction in the
number of circuits being clocked constitutes lower
consumed power. All PIC24F devices manage power
consumption in four different ways:
Clock Frequency
Instruction-Based Sleep, Idle and Deep Sleep
modes
Software Controlled Doze mode
Selective Peripheral Control in Software
Combinations of these methods can be used to
selectively tailor an application’s power consumption,
while still maintaining critical application features, such
as timing-sensitive communications.
9.1 Clock Frequency and Clock
Switching
PIC24F devices allow for a wide range of clock
frequencies to be selected under application control. If
the system clock configuration is not locked, users can
choose low-power or high-precision oscillators by simply
changing the NOSC bits. The process of changing a
system clock during operation, as well as limitations to
the process, are discussed in more detail in Section 8.0
“Oscillator Configuration”.
9.2 Instruction-Based Power-Saving
Modes
PIC24F devices have two special power-saving modes
that are entered through the execution of a special
PWRSAV instruction. Sleep mode stops clock operation
and halts all code execution; Idle mode halts the CPU
and code execution, but allows peripheral modules to
continue operation. Deep Sleep mode stops clock
operation, code execution and all peripherals except
RTCC and DSWDT. It also freezes I/O states and
removes power to SRAM and Flash memory.
The assembly syntax of the PWRSAV instruction is
shown in Example 9-1.
Sleep and Idle modes can be exited as a result of an
enabled interrupt, WDT time-out or a device Reset.
When the device exits these modes, it is said to
“wake-up”.
9.2.1 SLEEP MODE
Sleep mode has these features:
The system clock source is shut down. If an
on-chip oscillator is used, it is turned off.
The device current consumption will be reduced
to a minimum provided that no I/O pin is sourcing
current.
The I/O pin directions and states are frozen.
The Fail-Safe Clock Monitor does not operate
during Sleep mode since the system clock source
is disabled.
The LPRC clock will continue to run in Sleep
mode if the WDT or RTCC with LPRC as clock
source is enabled.
The WDT, if enabled, is automatically cleared
prior to entering Sleep mode.
Some device features or peripherals may
continue to operate in Sleep mode. This includes
items, such as the input change notification on the
I/O ports, or peripherals that use an external clock
input. Any peripheral that requires the system
clock source for its operation will be disabled in
Sleep mode.
The device will wake-up from Sleep mode on any of
these events:
On any interrupt source that is individually
enabled
On any form of device Reset
On a WDT time-out
On wake-up from Sleep, the processor will restart with
the same clock source that was active when Sleep
mode was entered.
EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 39. “Power-Saving Features
with Deep Sleep” (DS39727).
Note: SLEEP_MODE and IDLE_MODE are
constants defined in the assembler
include file for the selected device.
PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode
BSET DSCON, #DSEN ; Enable Deep Sleep
PWRSAV #SLEEP_MODE ; Put the device into Deep SLEEP mode
PIC24FJ64GA104 FAMILY
DS39951C-page 112 2010 Microchip Technology Inc.
9.2.2 IDLE MODE
Idle mode has these features:
The CPU will stop executing instructions.
The WDT is automatically cleared.
The system clock source remains active. By
default, all peripheral modules continue to operate
normally from the system clock source, but can
also be selectively disabled (see Section 9.4
“Selective Peripheral Module Control”).
If the WDT or FSCM is enabled, the LPRC will
also remain active.
The device will wake from Idle mode on any of these
events:
Any interrupt that is individually enabled
Any device Reset
A WDT time-out
On wake-up from Idle, the clock is reapplied to the CPU
and instruction execution begins immediately, starting
with the instruction following the PWRSAV instruction or
the first instruction in the ISR.
9.2.3 INTERRUPTS COINCIDENT WITH
POWER SAVE INSTRUCTIONS
Any interrupt that coincides with the execution of a
PWRSAV instruction (except for Deep Sleep) will be held
off until entry into Sleep or Idle mode has completed.
The device will then wake-up from Sleep or Idle mode.
9.2.4 DEEP SLEEP MODE
In PIC24FJ64GA104 family devices, Deep Sleep mode
is intended to provide the lowest levels of power
consumption available, without requiring the use of
external switches to completely remove all power from
the device. Entry into Deep Sleep mode is completely
under software control. Exit from Deep Sleep mode can
be triggered from any of the following events:
POR event
•MCLR
event
RTCC alarm (If the RTCC is present)
External Interrupt 0
Deep Sleep Watchdog Timer (DSWDT) time-out
In Deep Sleep mode, it is possible to keep the device
Real-Time Clock and Calendar (RTCC) running without
the loss of clock cycles.
The device has a dedicated Deep Sleep Brown-out
Reset (DSBOR) and a Deep Sleep Watchdog Timer
Reset (DSWDT) for monitoring voltage and time-out
events. The DSBOR and DSWDT are independent of
the standard BOR and WDT used with other
power-managed modes (Sleep, Idle and Doze).
9.2.4.1 Entering Deep Sleep Mode
Deep Sleep mode is entered by setting the DSEN bit in
the DSCON register, and then executing a SLEEP
instruction (PWRSAV #SLEEP_MODE) within one to three
instruction cycles to minimize the chance that Deep
Sleep will be spuriously entered.
If the PWRSAV command is not given within three
instruction cycles, the DSEN bit will be cleared by the
hardware and must be set again by the software before
entering Deep Sleep mode. The DSEN bit is also
automatically cleared when exiting the Deep Sleep
mode.
The sequence to enter Deep Sleep mode is:
1. If the application requires the Deep Sleep WDT,
enable it and configure its clock source (see
Section 9.2.4.7 “Deep Sleep WDT for
details).
2. If the application requires Deep Sleep BOR,
enable it by programming the DSBOREN
Configuration bit (CW4<6>).
3. If the application requires wake-up from Deep
Sleep on RTCC alarm, enable and configure the
RTCC module (see Section 19.0 “Real-Time
Clock and Calendar (RTCC)” for more
information).
4. If needed, save any critical application context
data by writing it to the DSGPR0 and DSGPR1
registers (optional).
5. Enable Deep Sleep mode by setting the DSEN
bit (DSCON<15>).
6. Enter Deep Sleep mode by immediately issuing
a PWRSAV #0 instruction.
Any time the DSEN bit is set, all bits in the DSWAKE
register will be automatically cleared.
Note: Since Deep Sleep mode powers down the
microcontroller by turning off the on-chip
VDDCORE voltage regulator, Deep Sleep
capability is available only when operating
with the internal regulator enabled.
Note: To re-enter Deep Sleep after a Deep Sleep
wake-up, allow a delay of at least 3 TCY
after clearing the RELEASE bit.
2010 Microchip Technology Inc. DS39951C-page 113
PIC24FJ64GA104 FAMILY
9.2.4.2 Special Cases when Entering Deep
Sleep Mode
When entering Deep Sleep mode, there are certain
circumstances that require a delay between setting the
DSEN bit and executing the PWRSAV instruction. These
can be generally reduced to three scenarios:
1. Scenario (1): use an external wake-up source
(INT0) or the RTCC is used
2. Scenario (2): with application-level interrupts
that can be temporarily disabled
3. Scenario (3): with interrupts that must be
monitored
In the first scenario, the application requires a wake-up
from Deep Sleep on the assertion of the INT0 pin or the
RTCC interrupt. In this case, three NOP instructions
must be inserted to properly synchronize the detection
of an asynchronous INT0 interrupt after the device
enters Deep Sleep mode. If the application does not
use wake-up on INT0 or RTCC, the NOP instructions
are optional.
In the second scenario, the application also uses
interrupts which can be briefly ignored. With these
applications, an interrupt event during the execution of
the NOP instructions may cause an ISR to be executed.
This means that more than three instruction cycles will
elapse before returning to the code and that the DSEN
bit will be cleared. To prevent the missed entry into
Deep Sleep, temporarily disable interrupts prior to
entering Deep Sleep mode. Invoking the DISI instruc-
tion for four cycles is sufficient to prevent interrupts
from disrupting Deep Sleep entry.
In the third scenario, interrupts cannot be ignored even
briefly; constant interrupt detection is required, even
during the interval between setting DSEN and
executing the PWRSAV instruction. For these cases, it is
possible to disable interrupts and test for an interrupt
condition, skipping the PWRSAV instruction if necessary.
Testing for interrupts can be accomplished by checking
the status of the CPUIRQ bit (INTTREG<15>). If an
unserviced interrupt is pending, this bit will be set. If
CPUIRQ is set prior to executing the PWRSAV instruc-
tion, the instruction is skipped. At this point, the DISI
instruction has expired (being more than 4 instructions
from when it was executed) and the application vectors
to the appropriate ISR. When the application returns, it
can either attempt to re-enter Deep Sleep mode or per-
form some other system function. In either case, the
application must have some functional code located,
following the PWRSAV instruction, in the event that the
PWRSAV instruction is skipped and the device does not
enter Deep Sleep mode.
Examples for implementing these cases are shown in
Example 9-2. It is recommended that an assembler, or
in-line C routine be used in these cases, to ensure that
the code executes in the number of cycles required.
EXAMPLE 9-2: IMPLEMENTING THE
SPECIAL CASES FOR
ENTERING DEEP SLEEP
// Case 1: simplest delay scenario
//
asm("bset DSCON, #15");
asm("nop");
asm("nop");
asm("nop");
asm("pwrsav #0");
//
// Case 2: interrupts disabled
//
asm("disi #4");
asm("bset DSCON, #15");
asm("nop");
asm("nop");
asm("nop");
asm("pwrsav #0");
//
// Case 3: interrupts disabled with
// interrupt testing
//
asm("disi #4");
asm("bset DSCON, #15");
asm("nop");
asm("nop");
asm("btss INTTREG, #15");
asm("pwrsav #0");
// continue with application code here
//
PIC24FJ64GA104 FAMILY
DS39951C-page 114 2010 Microchip Technology Inc.
9.2.4.3 Exiting Deep Sleep Mode
Deep Sleep mode exits on any one of the following events:
POR event on VDD supply. If there is no DSBOR
circuit to re-arm the VDD supply POR circuit, the
external VDD supply must be lowered to the
natural arming voltage of the POR circuit.
DSWDT time-out. When the DSWDT timer times
out, the device exits Deep Sleep.
RTCC alarm (if RTCEN = 1).
Assertion (‘0’) of the MCLR pin.
Assertion of the INT0 pin (if the interrupt was
enabled before Deep Sleep mode was entered).
The polarity configuration is used to determine the
assertion level (‘0’ or1) of the pin that will cause
an exit from Deep Sleep mode. Exiting from Deep
Sleep mode requires a change on the INT0 pin
while in Deep Sleep mode.
Exiting Deep Sleep mode generally does not retain the
state of the device and is equivalent to a Power-on
Reset (POR) of the device. Exceptions to this include
the RTCC (if present), which remains operational
through the wake-up, the DSGPRx registers and the
DSWDT bit.
Wake-up events that occur from the time Deep Sleep
exits, until the time that the POR sequence completes,
are ignored, and are not captured in the DSWAKE
register.
The sequence for exiting Deep Sleep mode is:
1. After a wake-up event, the device exits Deep
Sleep and performs a POR. The DSEN bit is
cleared automatically. Code execution resumes
at the Reset vector.
2. To determine if the device exited Deep Sleep,
read the Deep Sleep bit, DPSLP (RCON<10>).
This bit will be set if there was an exit from Deep
Sleep mode. If the bit is set, clear it.
3. Determine the wake-up source by reading the
DSWAKE register.
4. Determine if a DSBOR event occurred during
Deep Sleep mode by reading the DSBOR bit
(DSCON<1>).
5. If application context data has been saved, read
it back from the DSGPR0 and DSGPR1
registers.
6. Clear the RELEASE bit (DSCON<0>).
9.2.4.4 Deep Sleep Wake-up Time
Since wake-up from Deep Sleep results in a POR, the
wake-up time from Deep Sleep is the same as the
device POR time. Also, because the internal regulator
is turned off, the voltage on VCAP may drop depending
on how long the device is asleep. If VCAP has dropped
below 2V, then there will be additional wake-up time
while the regulator charges VCAP.
Deep Sleep wake-up time is specified in Section 28.0
“Electrical Characteristics” as TDSWU. This specifi-
cation indicates the worst-case wake-up time, including
the full POR Reset time (including TPOR and TRST), as
well as the time to fully charge a 10 F capacitor on
VCAP which has discharged to 0V. Wake-up may be
significantly faster if VCAP has not discharged.
9.2.4.5 Saving Context Data with the
DSGPR0/DSGPR1 Registers
As exiting Deep Sleep mode causes a POR, most
Special Function Registers reset to their default POR
values. In addition, because VDDCORE power is not
supplied in Deep Sleep mode, information in data RAM
may be lost when exiting this mode.
Applications which require critical data to be saved
prior to Deep Sleep may use the Deep Sleep General
Purpose registers, DSGPR0 and DSGPR1, or data
EEPROM (if available). Unlike other SFRs, the con-
tents of these registers are preserved while the device
is in Deep Sleep mode. After exiting Deep Sleep,
software can restore the data by reading the registers
and clearing the RELEASE bit (DSCON<0>).
9.2.4.6 I/O Pins During Deep Sleep
During Deep Sleep, the general purpose I/O pins retain
their previous states and the Secondary Oscillator
(SOSC) will remain running, if enabled. Pins that are
configured as inputs (TRIS bit is set) prior to entry into
Deep Sleep remain high-impedance during Deep
Sleep. Pins that are configured as outputs (TRIS bit is
clear) prior to entry into Deep Sleep remain as output
pins during Deep Sleep. While in this mode, they
continue to drive the output level determined by their
corresponding LAT bit at the time of entry into Deep
Sleep.
Note: Any interrupt pending when entering Deep
Sleep mode is cleared.
2010 Microchip Technology Inc. DS39951C-page 115
PIC24FJ64GA104 FAMILY
Once the device wakes back up, all I/O pins continue to
maintain their previous states, even after the device
has finished the POR sequence and is executing appli-
cation code again. Pins configured as inputs during
Deep Sleep remain high-impedance and pins config-
ured as outputs continue to drive their previous value.
After waking up, the TRIS and LAT registers, and the
SOSCEN bit (OSCCON<1>) are reset. If firmware
modifies any of these bits or registers, the I/O will not
immediately go to the newly configured states. Once
the firmware clears the RELEASE bit (DSCON<0>) the
I/O pins are “released”. This causes the I/O pins to take
the states configured by their respective TRIS and LAT
bit values.
This means that keeping the SOSC running after
waking up requires the SOSCEN bit to be set before
clearing RELEASE.
If the Deep Sleep BOR (DSBOR) is enabled, and a
DSBOR or a true POR event occurs during Deep
Sleep, the I/O pins will be immediately released similar
to clearing the RELEASE bit. All previous state infor-
mation will be lost, including the general purpose
DSGPR0 and DSGPR1 contents.
If a MCLR Reset event occurs during Deep Sleep, the
DSGPRx, DSCON and DSWAKE registers will remain
valid and the RELEASE bit will remain set. The state of
the SOSC will also be retained. The I/O pins, however,
will be reset to their MCLR Reset state. Since
RELEASE is still set, changes to the SOSCEN bit
(OSCCON<1>) cannot take effect until the RELEASE
bit is cleared.
In all other Deep Sleep wake-up cases, application
firmware must clear the RELEASE bit in order to
reconfigure the I/O pins.
9.2.4.7 Deep Sleep WDT
To enable the DSWDT in Deep Sleep mode, program
the Configuration bit, DSWDTEN (CW4<7>). The
device Watchdog Timer (WDT) need not be enabled for
the DSWDT to function. Entry into Deep Sleep mode
automatically resets the DSWDT.
The DSWDT clock source is selected by the
DSWDTOSC Configuration bit (CW4<4>). The
postscaler options are programmed by the
DSWDTPS<3:0> Configuration bits (CW4<3:0>). The
minimum time-out period that can be achieved is
2.1 ms and the maximum is 25.7 days. For more
details on the CW4 Configuration register and DSWDT
configuration options, refer to Section 25.0 “Special
Features”.
9.2.4.8 Switching Clocks in Deep Sleep Mode
Both the RTCC and the DSWDT may run from either
SOSC or the LPRC clock source. This allows both the
RTCC and DSWDT to run without requiring both the
LPRC and SOSC to be enabled together, reducing
power consumption.
Running the RTCC from LPRC will result in a loss of
accuracy in the RTCC of approximately 5 to 10%. If an
accurate RTCC is required, it must be run from the
SOSC clock source. The RTCC clock source is selected
with the RTCOSC Configuration bit (CW4<5>).
Under certain circumstances, it is possible for the
DSWDT clock source to be off when entering Deep
Sleep mode. In this case, the clock source is turned on
automatically (if DSWDT is enabled), without the need
for software intervention. However, this can cause a
delay in the start of the DSWDT counters. In order to
avoid this delay when using SOSC as a clock source,
the application can activate SOSC prior to entering
Deep Sleep mode.
9.2.4.9 Checking and Clearing the Status of
Deep Sleep
Upon entry into Deep Sleep mode, the status bit,
DPSLP (RCON<10>), becomes set and must be
cleared by software.
On power-up, the software should read this status bit to
determine if the Reset was due to an exit from Deep
Sleep mode and clear the bit if it is set. Of the four
possible combinations of DPSLP and POR bit states,
three cases can be considered:
Both the DPSLP and POR bits are cleared. In this
case, the Reset was due to some event other
than a Deep Sleep mode exit.
The DPSLP bit is clear, but the POR bit is set.
This is a normal Power-on Reset.
Both the DPSLP and POR bits are set. This
means that Deep Sleep mode was entered, the
device was powered down and Deep Sleep mode
was exited.
PIC24FJ64GA104 FAMILY
DS39951C-page 116 2010 Microchip Technology Inc.
9.2.4.10 Power-on Resets (PORs)
VDD voltage is monitored to produce PORs. Since exit-
ing from Deep Sleep functionally looks like a POR, the
technique described in Section 9.2.4.9 “Checking
and Clearing the Status of Deep Sleep” should be
used to distinguish between Deep Sleep and a true
POR event.
When a true POR occurs, the entire device, including
all Deep Sleep logic (Deep Sleep registers, RTCC,
DSWDT, etc.) is reset.
9.2.4.11 Summary of Deep Sleep Sequence
To review, these are the necessary steps involved in
invoking and exiting Deep Sleep mode:
1. Device exits Reset and begins to execute its
application code.
2. If DSWDT functionality is required, program the
appropriate Configuration bit.
3. Select the appropriate clock(s) for the DSWDT
and RTCC (optional).
4. Enable and configure the RTCC (optional).
5. Write context data to the DSGPRx registers
(optional).
6. Enable the INT0 interrupt (optional).
7. Set the DSEN bit in the DSCON register.
8. Enter Deep Sleep by issuing a PWRSV
#SLEEP_MODE command.
9. Device exits Deep Sleep when a wake-up event
occurs.
10. The DSEN bit is automatically cleared.
11. Read and clear the DPSLP status bit in RCON,
and the DSWAKE status bits.
12. Read the DSGPRx registers (optional).
13. Once all state related configurations are
complete, clear the RELEASE bit.
14. Application resumes normal operation.
2010 Microchip Technology Inc. DS39951C-page 117
PIC24FJ64GA104 FAMILY
REGISTER 9-1: DSCON: DEEP SLEEP CONTROL REGISTER
R/W-0, HC U-0 U-0 U-0 U-0 U-0 U-0 U-0
DSEN(1)
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0, HCS R/C-0, HS
DSBOR
(1,2,3)
RELEASE
(1,2)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit C = Clearable bit U = Unimplemented, read as ‘0’
-n = Value at POR 1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
HC = Hardware Clearable bit HS = Hardware Settable bit HCS = Hardware Clearable/Settable bit
bit 15 DSEN: Deep Sleep Enable bit(1)
1 = Device enters Deep Sleep when PWRSAV #0 is executed in the next instruction
0 = Device enters normal Sleep when PWRSAV #0 is executed
bit 14-2 Unimplemented: Read as ‘0
bit 1 DSBOR: Deep Sleep BOR Event Status bit(1,2,3)
1 = The DSBOR was active and a BOR event was detected during Deep Sleep
0 = The DSBOR was disabled or was active and did not detect a BOR event during Deep Sleep
bit 0 RELEASE: I/O Pin State Deep Sleep Release bit(1,2)
1 = I/O pins and SOSC maintain their states following exit from Deep Sleep, regardless of their LAT
and TRIS configuration
0 = I/O pins and SOSC are released from their Deep Sleep states. The pin state is controlled by the
LAT and TRIS configurations, and the SOSCEN bit.
Note 1: These bits are reset only in the case of a POR event outside of Deep Sleep mode.
2: Reset value is0’ for initial power-on POR only and ‘1’ for Deep Sleep POR.
3: This is a status bit only; a DSBOR event will NOT cause a wake-up from Deep Sleep.
PIC24FJ64GA104 FAMILY
DS39951C-page 118 2010 Microchip Technology Inc.
REGISTER 9-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0, HS
—DSINT0
(1)
bit 15 bit 8
R/W-0, HS U-0 U-0 R/W-0, HS R/W-0, HS R/W-0, HS U-0 R/W-0, HS
DSFLT(1) —DSWDT
(1) DSRTC(1) DSMCLR(1) DSPOR(2)
bit 7 bit 0
Legend: HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-9 Unimplemented: Read as0
bit 8 DSINT0: Interrupt-on-Change bit(1)
1 = External Interrupt 0 was asserted during Deep Sleep
0 = External Interrupt 0 was not asserted during Deep Sleep
bit 7 DSFLT: Deep Sleep Fault Detected bit(1)
1 = A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have been
corrupted
0 = No Fault was detected during Deep Sleep
bit 6-5 Unimplemented: Read as0
bit 4 DSWDT: Deep Sleep Watchdog Timer Time-out bit(1)
1 = The Deep Sleep Watchdog Timer timed out during Deep Sleep
0 = The Deep Sleep Watchdog Timer did not time out during Deep Sleep
bit 3 DSRTC: Real-Time Clock and Calendar Alarm bit(1)
1 = The Real-Time Clock and Calendar triggered an alarm during Deep Sleep
0 = The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep
bit 2 DSMCLR: Deep Sleep MCLR Event bit(1)
1 = The MCLR pin was asserted during Deep Sleep
0 = The MCLR pin was not asserted during Deep Sleep
bit 1 Unimplemented: Read as ‘0
bit 0 DSPOR: Power-on Reset Event bit(2)
1 = The VDD supply POR circuit was active and a POR event was detected
0 = The VDD supply POR circuit was not active, or was active, but did not detect a POR event
Note 1: This bit can only be set while the device is in Deep Sleep mode.
2: This bit can be set outside of Deep Sleep.
2010 Microchip Technology Inc. DS39951C-page 119
PIC24FJ64GA104 FAMILY
9.3 Doze Mode
Generally, changing clock speed and invoking one of
the power-saving modes are the preferred strategies
for reducing power consumption. There may be
circumstances, however, where this is not practical. For
example, it may be necessary for an application to
maintain uninterrupted synchronous communication,
even while it is doing nothing else. Reducing system
clock speed may introduce communication errors,
while using a power-saving mode may stop
communications completely.
Doze mode is a simple and effective alternative method
to reduce power consumption while the device is still
executing code. In this mode, the system clock contin-
ues to operate from the same source and at the same
speed. Peripheral modules continue to be clocked at
the same speed while the CPU clock speed is reduced.
Synchronization between the two clock domains is
maintained, allowing the peripherals to access the
SFRs while the CPU executes code at a slower rate.
Doze mode is enabled by setting the DOZEN bit
(CLKDIV<11>). The ratio between peripheral and core
clock speed is determined by the DOZE<2:0> bits
(CLKDIV<14:12>). There are eight possible
configurations, from 1:1 to 1:128, with 1:1 being the
default.
It is also possible to use Doze mode to selectively
reduce power consumption in event driven applica-
tions. This allows clock-sensitive functions, such as
synchronous communications, to continue without
interruption while the CPU Idles, waiting for something
to invoke an interrupt routine. Enabling the automatic
return to full-speed CPU operation on interrupts is
enabled by setting the ROI bit (CLKDIV<15>). By
default, interrupt events have no effect on Doze mode
operation.
9.4 Selective Peripheral Module
Control
Idle and Doze modes allow users to substantially
reduce power consumption by slowing or stopping the
CPU clock. Even so, peripheral modules still remain
clocked, and thus, consume power. There may be
cases where the application needs what these modes
do not provide: the allocation of power resources to
CPU processing with minimal power consumption from
the peripherals.
PIC24F devices address this requirement by allowing
peripheral modules to be selectively disabled, reducing
or eliminating their power consumption. This can be
done with two control bits:
The Peripheral Enable bit, generically named
“XXXEN”, located in the module’s main control
SFR.
The Peripheral Module Disable (PMD) bit,
generically named “XXXMD”, located in one of the
PMD Control registers.
Both bits have similar functions in enabling or disabling
its associated module. Setting the PMD bit for a module
disables all clock sources to that module, reducing its
power consumption to an absolute minimum. In this
state, the control and status registers associated with
the peripheral will also be disabled, so writes to those
registers will have no effect and read values will be
invalid. Many peripheral modules have a corresponding
PMD bit.
In contrast, disabling a module by clearing its XXXEN bit
disables its functionality, but leaves its registers available
to be read and written to. This reduces power consump-
tion, but not by as much as setting the PMD bit does.
Most peripheral modules have an enable bit; exceptions
include input capture, output compare and RTCC.
To achieve more selective power savings, peripheral
modules can also be selectively disabled when the
device enters Idle mode. This is done through the
control bit of the generic name format, “XXXIDL”. By
default, all modules that can operate during Idle mode
will do so. Using the disable on Idle feature allows
further reduction of power consumption during Idle
mode, enhancing power savings for extremely critical
power applications.
PIC24FJ64GA104 FAMILY
DS39951C-page 120 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 121
PIC24FJ64GA104 FAMILY
10.0 I/O PORTS
All of the device pins (except VDD, VSS, MCLR and
OSCI/CLKI) are shared between the peripherals and
the parallel I/O ports. All I/O input ports feature Schmitt
Trigger inputs for improved noise immunity.
10.1 Parallel I/O (PIO) Ports
A parallel I/O port that shares a pin with a peripheral is, in
general, subservient to the peripheral. The peripheral’s
output buffer data and control signals are provided to a
pair of multiplexers. The multiplexers select whether the
peripheral or the associated port has ownership of the
output data and control signals of the I/O pin. The logic
also prevents “loop through”, in which a port’s digital out-
put can drive the input of a peripheral that shares the
same pin. Figure 10-1 shows how ports are shared with
other peripherals and the associated I/O pin to which
they are connected.
When a peripheral is enabled and the peripheral is
actively driving an associated pin, the use of the pin as
a general purpose output pin is disabled. The I/O pin
may be read, but the output driver for the parallel port
bit will be disabled. If a peripheral is enabled, but the
peripheral is not actively driving a pin, that pin may be
driven by a port.
All port pins have three registers directly associated
with their operation as digital I/Os. The Data Direction
register (TRIS) determines whether the pin is an input
or an output. If the data direction bit is a ‘1’, then the pin
is an input. All port pins are defined as inputs after a
Reset. Reads from the Output Latch register (LAT),
read the latch. Writes to the Output Latch register, write
the latch. Reads from the port (PORT), read the port
pins, while writes to the port pins, write the latch.
Any bit and its associated data and control registers
that are not valid for a particular device will be
disabled. That means the corresponding LAT and
TRIS registers, and the port pin will read as zeros.
When a pin is shared with another peripheral or func-
tion that is defined as an input only, it is regarded as a
dedicated port because there is no other competing
source of outputs.
FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 12. “I/O Ports with Peripheral
Pin Select (PPS)” (DS39711).
QD
CK
WR LAT +
TRIS Latch
I/O Pin
WR PORT
Data Bus
QD
CK
Data Latch
Read PORT
Read TRIS
1
0
1
0
WR TRIS
Peripheral Output Data
Output Enable
Peripheral Input Data
I/O
Peripheral Module
Peripheral Output Enable
PIO Module
Output Multiplexers
Output Data
Input Data
Peripheral Module Enable
Read LAT
PIC24FJ64GA104 FAMILY
DS39951C-page 122 2010 Microchip Technology Inc.
10.1.1 OPEN-DRAIN CONFIGURATION
In addition to the PORT, LAT and TRIS registers for
data control, each port pin can also be individually
configured for either digital or open-drain output. This is
controlled by the Open-Drain Control register, ODCx,
associated with each port. Setting any of the bits con-
figures the corresponding pin to act as an open-drain
output.
The open-drain feature allows the generation of
outputs higher than VDD (e.g., 5V) on any desired
digital only pins by using external pull-up resistors. The
maximum open-drain voltage allowed is the same as
the maximum VIH specification.
10.2 Configuring Analog Port Pins
The AD1PCFGL and TRIS registers control the opera-
tion of the A/D port pins. Setting a port pin as an analog
input also requires that the corresponding TRIS bit be
set. If the TRIS bit is cleared (output), the digital output
level (VOH or VOL) will be converted.
When reading the PORT register, all pins configured as
analog input channels will read as cleared (a low level).
Pins configured as digital inputs will not convert an
analog input. Analog levels on any pin that is defined as
a digital input (including the ANx pins) may cause the
input buffer to consume current that exceeds the
device specifications.
10.2.1 I/O PORT WRITE/READ TIMING
One instruction cycle is required between a port
direction change or port write operation and a read
operation of the same port. Typically, this instruction
would be a NOP (Example 10-1).
10.2.2 ANALOG INPUT PINS AND
VOLTAGE CONSIDERATIONS
The voltage tolerance of pins used as device inputs is
dependent on the pin’s input function. Pins that are
used as digital only inputs are able to handle DC
voltages up to 5.5V, a level typical for digital logic
circuits. In contrast, pins that also have analog input
functions of any kind can only tolerate voltages up to
VDD. Voltage excursions beyond VDD on these pins
should be avoided.
Table 10-1 summarizes the input voltage capabilities.
Refer to Section 28.0 “Electrical Characteristics” for
more details.
TABLE 10-1: INPUT VOLTAGE TOLERANCE
EXAMPLE 10-1: PORT WRITE/READ EXAMPLE
Port or Pin Tolerated
Input Description
PORTA<4:0> VDD Only VDD input levels
tolerated.
PORTB<15:12>
PORTB<4:0>
PORTC<3:0>(1)
PORTA<10:7>(1) 5.5V Tolerates input levels
above VDD, useful for
most standard logic.
PORTB<11:7>
PORTB<6:5>
PORTC<9:4>(1)
Note 1: Not available on 28-pin devices.
MOV 0xFF00, W0 ; Configure PORTB<1 5:8> as inputs
MOV W0, TRISB ; and PORTB< 7:0> as output s
NOP ; Delay 1 cy cle
BTSS PORTB, #13 ; Next Instruction
2010 Microchip Technology Inc. DS39951C-page 123
PIC24FJ64GA104 FAMILY
10.3 Input Change Notification
The input change notification function of the I/O ports
allows the PIC24FJ64GA104 family of devices to gen-
erate interrupt requests to the processor in response to
a Change-of-State (COS) on selected input pins. This
feature is capable of detecting input Change-of-States
even in Sleep mode, when the clocks are disabled.
Depending on the device pin count, there are up to
31 external inputs that may be selected (enabled) for
generating an interrupt request on a Change-of-State.
Registers, CNEN1 and CNEN2, contain the interrupt
enable control bits for each of the CN input pins. Setting
any of these bits enables a CN interrupt for the
corresponding pins.
Each CN pin has a weak pull-up connected to it. The
pull-up acts as a current source that is connected to the
pin. This eliminates the need for external resistors
when push button or keypad devices are connected.
The pull-ups are separately enabled using the CNPU1
and CNPU2 registers (for pull-ups). Each CN pin has
individual control bits for its pull-up. Setting a control bit
enables the weak pull-up for the corresponding pin.
When the internal pull-up is selected, the pin pulls up to
VDD – 0.7V (typical). Make sure that there is no external
pull-up source when the internal pull-ups are enabled,
as the voltage difference can cause a current path.
10.4 Peripheral Pin Select (PPS)
A major challenge in general purpose devices is provid-
ing the largest possible set of peripheral features while
minimizing the conflict of features on I/O pins. In an
application that needs to use more than one peripheral
multiplexed on a single pin, inconvenient work arounds
in application code or a complete redesign may be the
only option.
The Peripheral Pin Select feature provides an alternative
to these choices by enabling the user’s peripheral set
selection and their placement on a wide range of I/O
pins. By increasing the pinout options available on a par-
ticular device, users can better tailor the microcontroller
to their entire application, rather than trimming the
application to fit the device.
The Peripheral Pin Select feature operates over a fixed
subset of digital I/O pins. Users may independently
map the input and/or output of any one of many digital
peripherals to any one of these I/O pins. Peripheral Pin
Select is performed in software and generally does not
require the device to be reprogrammed. Hardware
safeguards are included that prevent accidental or
spurious changes to the peripheral mapping once it has
been established.
10.4.1 AVAILABLE PINS
The Peripheral Pin Select feature is used with a range
of up to 25 pins, depending on the particular device and
its pin count. Pins that support the Peripheral Pin
Select feature include the designation “RPn” in their full
pin designation, where “n” is the remappable pin
number.
See Table 1-2 for a summary of pinout options in each
package offering.
10.4.2 AVAILABLE PERIPHERALS
The peripherals managed by the Peripheral Pin Select
are all digital only peripherals. These include general
serial communications (UART and SPI), general
purpose timer clock inputs, timer related peripherals
(input capture and output compare) and external
interrupt inputs. Also included are the outputs of the
comparator module, since these are discrete digital
signals.
Peripheral Pin Select is not available for I2C™ change
notification inputs, RTCC alarm outputs or peripherals
with analog inputs.
A key difference between pin select and non pin select
peripherals is that pin select peripherals are not asso-
ciated with a default I/O pin. The peripheral must
always be assigned to a specific I/O pin before it can be
used. In contrast, non pin select peripherals are always
available on a default pin, assuming that the peripheral
is active and not conflicting with another peripheral.
10.4.2.1 Peripheral Pin Select Function
Priority
Pin-selectable peripheral outputs (for example, OC and
UART transmit) take priority over any general purpose
digital functions permanently tied to that pin, such as
PMP and port I/O. Specialized digital outputs, such as
USB functionality, take priority over PPS outputs on the
same pin. The pin diagrams at the beginning of this
data sheet list peripheral outputs in order of priority.
Refer to them for priority concerns on a particular pin.
Unlike devices with fixed peripherals, pin-selectable
peripheral inputs never take ownership of a pin. The
pin’s output buffer is controlled by the pin’s TRIS bit
setting, or by a fixed peripheral on the pin. If the pin is
configured in Digital mode, then the PPS input will
operate correctly, reading the input. If an analog func-
tion is enabled on the same pin, the pin-selectable
input will be disabled.
Note: Pull-ups on change notification pins
should always be disabled whenever the
port pin is configured as a digital output.
PIC24FJ64GA104 FAMILY
DS39951C-page 124 2010 Microchip Technology Inc.
10.4.3 CONTROLLING PERIPHERAL PIN
SELECT
Peripheral Pin Select features are controlled through
two sets of Special Function Registers: one to map
peripheral inputs and one to map outputs. Because
they are separately controlled, a particular peripheral’s
input and output (if the peripheral has both) can be
placed on any selectable function pin without
constraint.
The association of a peripheral to a
peripheral-selectable pin is handled in two different
ways, depending on if an input or an output is being
mapped.
10.4.3.1 Input Mapping
The inputs of the Peripheral Pin Select options are
mapped on the basis of the peripheral; that is, a control
register associated with a peripheral dictates the pin it
will be mapped to. The RPINRx registers are used to
configure peripheral input mapping (see Register 10-1
through Register 10-14). Each register contains up to
two sets of 5-bit fields, with each set associated with
one of the pin-selectable peripherals. Programming a
given peripheral’s bit field with an appropriate 6-bit
value maps the RPn pin with that value to that
peripheral. For any given device, the valid range of
values for any of the bit fields corresponds to the
maximum number of Peripheral Pin Select options
supported by the device.
TABLE 10-2: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)
Input Name Function Name Register Function Mapping
Bits
External Interrupt 1 INT1 RPINR0 INT1R<5:0>
External Interrupt 2 INT2 RPINR1 INT2R<5:0>
Input Capture 1 IC1 RPINR7 IC1R<5:0>
Input Capture 2 IC2 RPINR7 IC2R<5:0>
Input Capture 3 IC3 RPINR8 IC3R<5:0>
Input Capture 4 IC4 RPINR8 IC4R<5:0>
Input Capture 5 IC5 RPINR9 IC5R<5:0>
Output Compare Fault A OCFA RPINR11 OCFAR<5:0>
Output Compare Fault B OCFB RPINR11 OCFBR<5:0>
SPI1 Clock Input SCK1IN RPINR20 SCK1R<5:0>
SPI1 Data Input SDI1 RPINR20 SDI1R<5:0>
SPI1 Slave Select Input SS1IN RPINR21 SS1R<5:0>
SPI2 Clock Input SCK2IN RPINR22 SCK2R<5:0>
SPI2 Data Input SDI2 RPINR22 SDI2R<5:0>
SPI2 Slave Select Input SS2IN RPINR23 SS2R<5:0>
Timer2 External Clock T2CK RPINR3 T2CKR<5:0>
Timer3 External Clock T3CK RPINR3 T3CKR<5:0>
Timer4 External Clock T4CK RPINR4 T4CKR<5:0>
Timer5 External Clock T5CK RPINR4 T5CKR<5:0>
UART1 Clear To Send U1CTS RPINR18 U1CTSR<5:0>
UART1 Receive U1RX RPINR18 U1RXR<5:0>
UART2 Clear To Send U2CTS RPINR19 U2CTSR<5:0>
UART2 Receive U2RX RPINR19 U2RXR<5:0>
Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.
2010 Microchip Technology Inc. DS39951C-page 125
PIC24FJ64GA104 FAMILY
10.4.3.2 Output Mapping
In contrast to inputs, the outputs of the Peripheral Pin
Select options are mapped on the basis of the pin. In
this case, a control register associated with a particular
pin dictates the peripheral output to be mapped. The
RPORx registers are used to control output mapping.
Each register contains up to two 5-bit fields, with each
field being associated with one RPn pin (see
Register 10-15 through Register 10-27). The value of
the bit field corresponds to one of the peripherals and
that peripheral’s output is mapped to the pin (see
Table 10-3).
Because of the mapping technique, the list of peripherals
for output mapping also includes a null value of ‘000000’.
This permits any given pin to remain disconnected from
the output of any of the pin-selectable peripherals.
TABLE 10-3: SELECTABLE OUTPUT SOURCES (MAPS FUNCTION TO OUTPUT)
Output Function Number(1) Function Output Name
0 NULL(2) Null
1 C1OUT Comparator 1 Output
2 C2OUT Comparator 2 Output
3 U1TX UART1 Transmit
4U1RTS
(3) UART1 Request To Send
5 U2TX UART2 Transmit
6U2RTS
(3) UART2 Request To Send
7 SDO1 SPI1 Data Output
8 SCK1OUT SPI1 Clock Output
9 SS1OUT SPI1 Slave Select Output
10 SDO2 SPI2 Data Output
11 SCK2OUT SPI2 Clock Output
12 SS2OUT SPI2 Slave Select Output
18 OC1 Output Compare 1
19 OC2 Output Compare 2
20 OC3 Output Compare 3
21 OC4 Output Compare 4
22 OC5 Output Compare 5
23-28 (unused) NC
29 CTPLS CTMU Output Pulse
30 C3OUT Comparator 3 Output
31 (unused) NC
Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.
2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.
3: IrDA® BCLK functionality uses this output.
PIC24FJ64GA104 FAMILY
DS39951C-page 126 2010 Microchip Technology Inc.
10.4.3.3 Mapping Limitations
The control schema of the Peripheral Pin Select is
extremely flexible. Other than systematic blocks that
prevent signal contention caused by two physical pins
being configured as the same functional input, or two
functional outputs configured as the same pin, there
are no hardware enforced lock outs. The flexibility
extends to the point of allowing a single input to drive
multiple peripherals or a single functional output to
drive multiple output pins.
10.4.3.4 PPS Mapping Exceptions for
PIC24FJ64GA1 Family Devices
Although the PPS registers allow for up to 32 remappable
pins, a maximum of 26 pins are implemented in 44-pin
devices (RP0 through RP25). In 28-pin devices, none of
the remappable pins above RP15 are implemented.
10.4.4 CONTROLLING CONFIGURATION
CHANGES
Because peripheral remapping can be changed during
run time, some restrictions on peripheral remapping
are needed to prevent accidental configuration
changes. PIC24F devices include three features to
prevent alterations to the peripheral map:
Control register lock sequence
Continuous state monitoring
Configuration bit remapping lock
10.4.4.1 Control Register Lock
Under normal operation, writes to the RPINRx and
RPORx registers are not allowed. Attempted writes will
appear to execute normally, but the contents of the
registers will remain unchanged. To change these reg-
isters, they must be unlocked in hardware. The register
lock is controlled by the IOLOCK bit (OSCCON<6>).
Setting IOLOCK prevents writes to the control
registers; clearing IOLOCK allows writes.
To set or clear IOLOCK, a specific command sequence
must be executed:
1. Write 46h to OSCCON<7:0>.
2. Write 57h to OSCCON<7:0>.
3. Clear (or set) IOLOCK as a single operation.
Unlike the similar sequence with the oscillator’s LOCK
bit, IOLOCK remains in one state until changed. This
allows all of the Peripheral Pin Selects to be configured
with a single unlock sequence, followed by an update
to all control registers, then locked with a second lock
sequence.
10.4.4.2 Continuous State Monitoring
In addition to being protected from direct writes, the
contents of the RPINRx and RPORx registers are
constantly monitored in hardware by shadow registers.
If an unexpected change in any of the registers occurs
(such as cell disturbances caused by ESD or other
external events), a Configuration Mismatch Reset will
be triggered.
10.4.4.3 Configuration Bit Pin Select Lock
As an additional level of safety, the device can be
configured to prevent more than one write session to
the RPINRx and RPORx registers. The IOL1WAY
(CW2<4>) Configuration bit blocks the IOLOCK bit
from being cleared after it has been set once. If
IOLOCK remains set, the register unlock procedure will
not execute and the Peripheral Pin Select Control
registers cannot be written to. The only way to clear the
bit and re-enable peripheral remapping is to perform a
device Reset.
In the default (unprogrammed) state, IOL1WAY is set,
restricting users to one write session. Programming
IOL1WAY allows users unlimited access (with the
proper use of the unlock sequence) to the Peripheral
Pin Select registers.
2010 Microchip Technology Inc. DS39951C-page 127
PIC24FJ64GA104 FAMILY
10.4.5 CONSIDERATIONS FOR
PERIPHERAL PIN SELECTION
The ability to control Peripheral Pin Selection intro-
duces several considerations into application design
that could be overlooked. This is particularly true for
several common peripherals that are available only as
remappable peripherals.
The main consideration is that the Peripheral Pin
Selects are not available on default pins in the device’s
default (Reset) state. Since all RPINRx registers reset
to ‘11111’ and all RPORx registers reset to ‘00000’, all
Peripheral Pin Select inputs are tied to VSS and all
Peripheral Pin Select outputs are disconnected.
This situation requires the user to initialize the device
with the proper peripheral configuration before any
other application code is executed. Since the IOLOCK
bit resets in the unlocked state, it is not necessary to
execute the unlock sequence after the device has
come out of Reset. For application safety, however, it is
best to set IOLOCK and lock the configuration after
writing to the control registers.
Because the unlock sequence is timing-critical, it must
be executed as an assembly language routine in the
same manner as changes to the oscillator configura-
tion. If the bulk of the application is written in C or
another high-level language, the unlock sequence
should be performed by writing in-line assembly.
Choosing the configuration requires the review of all
Peripheral Pin Selects and their pin assignments,
especially those that will not be used in the application.
In all cases, unused pin-selectable peripherals should
be disabled completely. Unused peripherals should
have their inputs assigned to an unused RPn pin
function. I/O pins with unused RPn functions should be
configured with the null peripheral output.
The assignment of a peripheral to a particular pin does
not automatically perform any other configuration of the
pin’s I/O circuitry. In theory, this means adding a
pin-selectable output to a pin may mean inadvertently
driving an existing peripheral input when the output is
driven. Users must be familiar with the behavior of
other fixed peripherals that share a remappable pin and
know when to enable or disable them. To be safe, fixed
digital peripherals that share the same pin should be
disabled when not in use.
Along these lines, configuring a remappable pin for a
specific peripheral does not automatically turn that
feature on. The peripheral must be specifically
configured for operation and enabled, as if it were tied to
a fixed pin. Where this happens in the application code
(immediately following device Reset and peripheral
configuration or inside the main application routine)
depends on the peripheral and its use in the application.
A final consideration is that Peripheral Pin Select func-
tions neither override analog inputs, nor reconfigure
pins with analog functions for digital I/O. If a pin is
configured as an analog input on device Reset, it must
be explicitly reconfigured as digital I/O when used with
a Peripheral Pin Select.
Example 10-2 shows a configuration for bidirectional
communication with flow control using UART1. The
following input and output functions are used:
Input Functions: U1RX, U1CTS
Output Functions: U1TX, U1RTS
Note: RP31 does not have to exist on a device
for the registers to be reset to it, or for
peripheral pin outputs to be tied to it.
PIC24FJ64GA104 FAMILY
DS39951C-page 128 2010 Microchip Technology Inc.
EXAMPLE 10-2: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS IN ASSEMBLY CODE
EXAMPLE 10-3: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS IN C
;unlock registers
push w1;
push w2;
push w3;
mov #OSCCON, w1;
mov #0x46, w2;
mov #0x57, w3;
mov.b w2, [w1];
mov.b w3, [w1];
bclr OSCCON, #6;
; Configure Input Functions (Table10-2)
; Assign U1CTS To Pin RP1, U1RX To Pin RP0
mov #0x0100, w1;
mov w1,RPINR18;
; Configure Output Functions (Table 10-3)
; Assign U1RTS To Pin RP3, U1TX To Pin RP2
mov #0x0403, w1;
mov w1, RPOR1;
;lock registers
mov #OSCCON, w1;
mov #0x46, w2;
mov #0x57, w3;
mov.b w2, [w1];
mov.b w3, [w1];
bset OSCCON, #6;
pop w3;
pop w2;
pop w1;
//unlock registers
__builtin_write_OSCCONL(OSCCON & 0xBF);
// Configure Input Functions (Table 9-1)
// Assign U1RX To Pin RP0
RPINR18bits.U1RXR = 0;
// Assign U1CTS To Pin RP1
RPINR18bits.U1CTSR = 1;
// Configure Output Functions (Table 9-2)
// Assign U1TX To Pin RP2
RPOR1bits.RP2R = 3;
// Assign U1RTS To Pin RP3
RPOR1bits.RP3R = 4;
//lock registers
__builtin_write_OSCCONL(OSCCON | 0x40);
2010 Microchip Technology Inc. DS39951C-page 129
PIC24FJ64GA104 FAMILY
10.4.6 PERIPHERAL PIN SELECT
REGISTERS
The PIC24FJ64GA104 family of devices implements a
total of 27 registers for remappable peripheral
configuration:
Input Remappable Peripheral Registers (14)
Output Remappable Peripheral Registers (13)
Note: Input and output register values can only be
changed if IOLOCK (OSCCON<6>) = 0.
See Section 10.4.4.1 “Control Register
Lock” for a specific command sequence.
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
INT1R4 INT1R3 INT1R2 INT1R1 INT1R0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 INT1R<4:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits
bit 7-0 Unimplemented: Read as ‘0
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
INT2R4 INT2R3 INT2R2 INT2R1 INT2R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 INT2R<4:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn pin bits
PIC24FJ64GA104 FAMILY
DS39951C-page 130 2010 Microchip Technology Inc.
REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
T3CKR4 T3CKR3 T3CKR2 T3CKR1 T3CKR0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
T2CKR4 T2CKR3 T2CKR2 T2CKR1 T2CKR0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to Corresponding RPn or RPIn Pin bits
REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
T5CKR4 T5CKR3 T5CKR2 T5CKR1 T5CKR0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
T4CKR4 T4CKR3 T4CKR2 T4CKR1 T4CKR0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to Corresponding RPn or RPIn Pin bits
2010 Microchip Technology Inc. DS39951C-page 131
PIC24FJ64GA104 FAMILY
REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC2R4 IC2R3 IC2R2 IC2R1 IC2R0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC1R4 IC1R3 IC1R2 IC1R1 IC1R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 IC2R<4:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 IC1R<4:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits
REGISTER 10-6: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC4R4 IC4R3 IC4R2 IC4R1 IC4R0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC3R4 IC3R3 IC3R2 IC3R1 IC3R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 IC4R<4:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 IC3R<4:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits
PIC24FJ64GA104 FAMILY
DS39951C-page 132 2010 Microchip Technology Inc.
REGISTER 10-7: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
IC5R4 IC5R3 IC5R2 IC5R1 IC5R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 IC5R<4:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits
REGISTER 10-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
OCFBR4 OCFBR3 OCFBR2 OCFBR1 OCFBR0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
OCFAR4 OCFAR3 OCFAR2 OCFAR1 OCFAR0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 OCFBR<4:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 OCFAR<4:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits
2010 Microchip Technology Inc. DS39951C-page 133
PIC24FJ64GA104 FAMILY
REGISTER 10-9: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
U1CTSR4 U1CTSR3 U1CTSR2 U1CTSR1 U1CTSR0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
U1RXR4 U1RXR3 U1RXR2 U1RXR1 U1RXR0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 U1RXR<4:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits
REGISTER 10-10: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
U2CTSR4 U2CTSR3 U2CTSR2 U2CTSR1 U2CTSR0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
U2RXR4 U2RXR3 U2RXR2 U2RXR1 U2RXR0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 U2CTSR<4:0>: Assign UART2 Clear to Send (U2CTS) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 U2RXR<4:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits
PIC24FJ64GA104 FAMILY
DS39951C-page 134 2010 Microchip Technology Inc.
REGISTER 10-11: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
SCK1R4 SCK1R3 SCK1R2 SCK1R1 SCK1R0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
SDI1R4 SDI1R3 SDI1R2 SDI1R1 SDI1R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits
REGISTER 10-12: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
SS1R4 SS1R3 SS1R2 SS1R1 SS1R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits
2010 Microchip Technology Inc. DS39951C-page 135
PIC24FJ64GA104 FAMILY
REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
SCK2R4 SCK2R3 SCK2R2 SCK2R1 SCK2R0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
SDI2R4 SDI2R3 SDI2R2 SDI2R1 SDI2R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 SCK2R<4:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits
REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
SS2R4 SS2R3 SS2R2 SS2R1 SS2R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-5 Unimplemented: Read as ‘0
bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits
PIC24FJ64GA104 FAMILY
DS39951C-page 136 2010 Microchip Technology Inc.
REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP1R4 RP1R3 RP1R2 RP1R1 RP1R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP0R4 RP0R3 RP0R2 RP0R1 RP0R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP1R<4:0<: RP1 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP1 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP0R<4:0>: RP0 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers).
REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP3R4 RP3R3 RP3R2 RP3R1 RP3R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP2R4 RP2R3 RP2R2 RP2R1 RP2R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP3R<4:0>: RP3 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP3 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP2R<4:0>: RP2 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP2 (see Table 10-3 for peripheral function numbers).
2010 Microchip Technology Inc. DS39951C-page 137
PIC24FJ64GA104 FAMILY
REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP5R4 RP5R3 RP5R2 RP5R1 RP5R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP4R4 RP4R3 RP4R2 RP4R1 RP4R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP5R<4:0>: RP5 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP5 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP4R<4:0>: RP4 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP4 (see Table 10-3 for peripheral function numbers).
REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP7R4 RP7R3 RP7R2 RP7R1 RP7R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP6R4 RP6R3 RP6R2 RP6R1 RP6R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP7R<4:0>: RP7 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP7 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP6R<4:0>: RP6 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP6 (see Table 10-3 for peripheral function numbers).
PIC24FJ64GA104 FAMILY
DS39951C-page 138 2010 Microchip Technology Inc.
REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP9R4 RP9R3 RP9R2 RP9R1 RP9R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP8R4 RP8R3 RP8R2 RP8R1 RP8R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP9R<4:0>: RP9 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP9 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP8R<4:0>: RP8 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP8 (see Table 10-3 for peripheral function numbers).
REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP11R4 RP11R3 RP11R2 RP11R1 RP11R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP10R4 RP10R3 RP10R2 RP10R1 RP10R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP11R<4:0>: RP11 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP11 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP10R<4:0>: RP10 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP10 (see Table 10-3 for peripheral function numbers).
2010 Microchip Technology Inc. DS39951C-page 139
PIC24FJ64GA104 FAMILY
REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP13R4 RP13R3 RP13R2 RP13R1 RP13R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP12R4 RP12R3 RP12R2 RP12R1 RP12R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP13R<4:0>: RP13 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP13 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP12R<4:0>: RP12 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP12 (see Table 10-3 for peripheral function numbers).
REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP15R4 RP15R3 RP15R2 RP15R1 RP15R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP14R4 RP14R3 RP14R2 RP14R1 RP14R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP15R<4:0>: RP15 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP0 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP14R<4:0>: RP14 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP14 (see Table 10-3 for peripheral function numbers).
PIC24FJ64GA104 FAMILY
DS39951C-page 140 2010 Microchip Technology Inc.
REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8(1)
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP17R4 RP17R3 RP17R2 RP17R1 RP17R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP16R4 RP16R3 RP16R2 RP16R1 RP16R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP17R<4:0>: RP17 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP17 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP16R<4:0>: RP16 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP16 (see Table 10-3 for peripheral function numbers).
Note 1: This register is unimplemented in 28-pin devices; all bits read as ‘0’.
REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9(1)
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP19R4 RP19R3 RP19R2 RP19R1 RP19R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP18R4 RP18R3 RP18R2 RP18R1 RP18R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP19R<4:0>: RP19 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP19 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP18R<4:0>: RP18 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP18 (see Table 10-3 for peripheral function numbers).
Note 1: This register is unimplemented in 28-pin devices; all bits read as ‘0’.
2010 Microchip Technology Inc. DS39951C-page 141
PIC24FJ64GA104 FAMILY
REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10(1)
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP21R4 RP21R3 RP21R2 RP21R1 RP21R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP20R4 RP20R3 RP20R2 RP20R1 RP20R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP21R<4:0>: RP21 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP21 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP20R<4:0>: RP20 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP20 (see Table 10-3 for peripheral function numbers).
Note 1: This register is unimplemented in 28-pin devices; all bits read as ‘0’.
REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11(1)
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP23R4 RP23R3 RP23R2 RP23R1 RP23R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP22R4 RP22R3 RP22R2 RP22R1 RP22R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP23R<4:0>: RP23 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP23 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP22R<4:0>: RP22 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP22 (see Table 10-3 for peripheral function numbers).
Note 1: This register is unimplemented in 28-pin devices; all bits read as ‘0’.
PIC24FJ64GA104 FAMILY
DS39951C-page 142 2010 Microchip Technology Inc.
REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12(1)
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP25R4 RP25R3 RP25R2 RP25R1 RP25R0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RP24R4 RP24R3 RP24R2 RP24R1 RP24R0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 RP25R<5:0>: RP25 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP25 (see Table 10-3 for peripheral function numbers).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 RP24R<5:0>: RP24 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP24 (see Table 10-3 for peripheral function numbers).
Note 1: This register is unimplemented in 28-pin devices; all bits read as ‘0’.
2010 Microchip Technology Inc. DS39951C-page 143
PIC24FJ64GA104 FAMILY
11.0 TIMER1
The Timer1 module is a 16-bit timer which can serve as
the time counter for the Real-Time Clock (RTC) or
operate as a free-running, interval timer/counter.
Timer1 can operate in three modes:
•16-Bit Timer
16-Bit Synchronous Counter
16-Bit Asynchronous Counter
Timer1 also supports these features:
Timer Gate Operation
Selectable Prescaler Settings
Timer Operation during CPU Idle and Sleep
modes
Interrupt on 16-Bit Period Register Match or
Falling Edge of External Gate Signal
Figure 11-1 presents a block diagram of the 16-bit timer
module.
To configure Timer1 for operation:
1. Set the TON bit (= 1).
2. Select the timer prescaler ratio using the
TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the TCS
and TGATE bits.
4. Set or clear the TSYNC bit to configure
synchronous or asynchronous operation.
5. Load the timer period value into the PR1
register.
6. If interrupts are required, set the interrupt enable
bit, T1IE. Use the priority bits, T1IP<2:0>, to set
the interrupt priority.
FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 14. “Timers” (DS39704).
TON
Sync
SOSCI
SOSCO/
PR1
Set T1IF
Equal Comparator
TMR1
Reset
SOSCEN
1
0
TSYNC
Q
QD
CK
TCKPS<1:0>
Prescaler
1, 8, 64, 256
2
TGATE
TCY
1
0
T1CK
TCS
1x
01
TGATE
00
Gate
Sync
PIC24FJ64GA104 FAMILY
DS39951C-page 144 2010 Microchip Technology Inc.
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER(1)
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
TON —TSIDL—————
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 U-0
TGATE TCKPS1 TCKPS0 —TSYNCTCS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 TON: Timer1 On bit
1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1
bit 14 Unimplemented: Read as ‘0
bit 13 TSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ‘0
bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation enabled
0 = Gated time accumulation disabled
bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1
bit 3 Unimplemented: Read as0
bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit
When TCS = 1:
1 = Synchronize external clock input
0 = Do not synchronize external clock input
When TCS = 0:
This bit is ignored.
bit 1 TCS: Timer1 Clock Source Select bit
1 = External clock from T1CK pin (on the rising edge)
0 = Internal clock (FOSC/2)
bit 0 Unimplemented: Read as0
Note 1: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to
reset and is not recommended.
2010 Microchip Technology Inc. DS39951C-page 145
PIC24FJ64GA104 FAMILY
12.0 TIMER2/3 AND TIMER4/5
The Timer2/3 and Timer4/5 modules are 32-bit timers,
which can also be configured as four independent 16-bit
timers with selectable operating modes.
As 32-bit timers, Timer2/3 and Timer4/5 can each
operate in three modes:
Two Independent 16-Bit Timers with All 16-Bit
Operating modes (except Asynchronous Counter
mode)
Single 32-Bit Timer
Single 32-Bit Synchronous Counter
They also support these features:
Timer Gate Operation
Selectable Prescaler Settings
Timer Operation during Idle and Sleep modes
Interrupt on a 32-Bit Period Register Match
ADC Event Trigger (Timer4/5 only)
Individually, all four of the 16-bit timers can function as
synchronous timers or counters. They also offer the
features listed above, except for the ADC event trigger;
this is implemented only with Timer5. The operating
modes and enabled features are determined by setting
the appropriate bit(s) in the T2CON, T3CON, T4CON
and T5CON registers. T2CON and T4CON are shown
in generic form in Register 12-1; T3CON and T5CON
are shown in Register 12-2.
For 32-bit timer/counter operation, Timer2 and Timer4
are the least significant word; Timer3 and Timer4 are
the most significant word of the 32-bit timers.
To configure Timer2/3 or Timer4/5 for 32-bit operation:
1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
2. Select the prescaler ratio for Timer2 or Timer4
using the TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the TCS
and TGATE bits. If TCS is set to an external
clock, RPINRx (TxCK) must be configured to an
available RPn pin. See Section
10.4 “Peripheral Pin Select (PPS)” for more
information.
4. Load the timer period value. PR3 (or PR5) will
contain the most significant word of the value
while PR2 (or PR4) contains the least significant
word.
5. If interrupts are required, set the interrupt enable
bit, T3IE or T5IE; use the priority bits, T3IP<2:0>
or T5IP<2:0>, to set the interrupt priority. Note
that while Timer2 or Timer4 controls the timer,
the interrupt appears as a Timer3 or Timer5
interrupt.
6. Set the TON bit (= 1).
The timer value, at any point, is stored in the register
pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5)
always contains the most significant word of the count,
while TMR2 (TMR4) contains the least significant word.
To configure any of the timers for individual 16-bit
operation:
1. Clear the T32 bit corresponding to that timer
(T2CON<3> for Timer2 and Timer3 or
T4CON<3> for Timer4 and Timer5).
2. Select the timer prescaler ratio using the
TCKPS<1:0> bits.
3. Set the Clock and Gating modes using the TCS
and TGATE bits. See Section 10.4 Peripheral
Pin Select (PPS)” for more information.
4. Load the timer period value into the PRx register.
5. If interrupts are required, set the interrupt enable
bit, TxIE; use the priority bits, TxIP<2:0>, to set
the interrupt priority.
6. Set the TON bit (TxCON<15> = 1).
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 14. “Timers” (DS39704).
Note: For 32-bit operation, T3CON and T5CON
control bits are ignored. Only T2CON and
T4CON control bits are used for setup and
control. Timer2 and Timer4 clock and gate
inputs are utilized for the 32-bit timer
modules, but an interrupt is generated with
the Timer3 or Timer5 interrupt flags.
PIC24FJ64GA104 FAMILY
DS39951C-page 146 2010 Microchip Technology Inc.
FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM
TMR3 TMR2
Set T3IF (T5IF)
Equal Comparator
PR3 PR2
Reset
LSB MSB
Note 1: The 32-Bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are
respective to the T2CON and T4CON registers.
2: The timer clock input must be assigned to an available RPn pin before use. Please see Section 10.4 “Peripheral
Pin Select (PPS)” for more information.
3: The ADC event trigger is available only on Timer 2/3 in 32-bit mode and Timer 3 in 16-bit mode.
Data Bus<15:0>
TMR3HLD
Read TMR2 (TMR4)(1)
Write TMR2 (TMR4)(1)
16
16
16
Q
QD
CK
TGATE
0
1
TON
TCKPS<1:0>
Prescaler
1, 8, 64, 256
2
TCY
TCS(2)
TGATE(2)
Gate
T2CK
Sync
ADC Event Trigger(3)
Sync
(T4CK)
(PR5) (PR4)
(TMR5HLD)
(TMR5) (TMR4)
1x
01
00
2010 Microchip Technology Inc. DS39951C-page 147
PIC24FJ64GA104 FAMILY
FIGURE 12-2: TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM
FIGURE 12-3: TIMER3 AND TIMER5 (16-BIT ASYNCHRONOUS) BLOCK DIAGRAM
TON
TCKPS<1:0>
Prescaler
1, 8, 64, 256
2
TCY TCS(1)
1x
01
TGATE(1)
00
Gate
T2CK
Sync
PR2 (PR4)
Set T2IF (T4IF)
Equal Comparator
TMR2 (TMR4)
Reset
Q
QD
CK
TGATE
1
0
(T4CK)
Sync
Note 1: The timer clock input must be assigned to an available RPn pin before use. Please see Section 10.4 “Peripheral
Pin Select (PPS)” for more information.
TON
TCKPS<1:0>
2
TCY TCS(1)
1x
01
TGATE(1)
00
T3CK
PR3 (PR5)
Set T3IF (T5IF)
Equal Comparator
TMR3 (TMR5)
Reset
Q
QD
CK
TGATE
1
0
ADC Event Trigger(2)
(T5CK)
Prescaler
1, 8, 64, 256
Sync
Note 1: The timer clock input must be assigned to an available RPn pin before use. Please see Section 10.4 “Peripheral
Pin Select (PPS)” for more information.
2: The ADC event trigger is available only on Timer3.
PIC24FJ64GA104 FAMILY
DS39951C-page 148 2010 Microchip Technology Inc.
REGISTER 12-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER(3)
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
TON —TSIDL—————
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 U-0
TGATE TCKPS1 TCKPS0 T32(1) —TCS
(2)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 TON: Timerx On bit
When TxCON<3> = 1:
1 = Starts 32-bit Timerx/y
0 = Stops 32-bit Timerx/y
When TxCON<3> = 0:
1 = Starts 16-bit Timerx
0 = Stops 16-bit Timerx
bit 14 Unimplemented: Read as ‘0
bit 13 TSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ‘0
bit 6 TGATE: Timerx Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled
bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1
bit 3 T32: 32-Bit Timer Mode Select bit(1)
1 = Timerx and Timery form a single 32-bit timer
0 = Timerx and Timery act as two 16-bit timers
In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
bit 2 Unimplemented: Read as ‘0
bit 1 TCS: Timerx Clock Source Select bit(2)
1 = External clock from pin, TxCK (on the rising edge)
0 = Internal clock (FOSC/2)
bit 0 Unimplemented: Read as ‘0
Note 1: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. For more information, see
Section 10.4 “Peripheral Pin Select (PPS).
3: Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to
reset and is not recommended.
2010 Microchip Technology Inc. DS39951C-page 149
PIC24FJ64GA104 FAMILY
REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER(3)
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0
TON(1) —TSIDL
(1) —————
bit 15 bit 8
U-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0
—TGATE
(1) TCKPS1(1) TCKPS0(1) —TCS
(1,2)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 TON: Timery On bit(1)
1 = Starts 16-bit Timery
0 = Stops 16-bit Timery
bit 14 Unimplemented: Read as ‘0
bit 13 TSIDL: Stop in Idle Mode bit(1)
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-7 Unimplemented: Read as ‘0
bit 6 TGATE: Timery Gated Time Accumulation Enable bit(1)
When TCS = 1:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled
bit 5-4 TCKPS<1:0>: Timery Input Clock Prescale Select bits(1)
11 = 1:256
10 = 1:64
01 = 1:8
00 = 1:1
bit 3-2 Unimplemented: Read as ‘0
bit 1 TCS: Timery Clock Source Select bit(1,2)
1 = External clock from pin TyCK (on the rising edge)
0 = Internal clock (FOSC/2)
bit 0 Unimplemented: Read as0
Note 1: When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery
operation; all timer functions are set through T2CON and T4CON.
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 “Peripheral
Pin Select (PPS)” for more information.
3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to
reset and is not recommended.
PIC24FJ64GA104 FAMILY
DS39951C-page 150 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 151
PIC24FJ64GA104 FAMILY
13.0 INPUT CAPTURE WITH
DEDICATED TIMERS
Devices in the PIC24FJ64GA104 family all feature 5
independent input capture modules. Each of the
modules offers a wide range of configuration and
operating options for capturing external pulse events
and generating interrupts.
Key features of the input capture module include:
Hardware-configurable for 32-bit operation in all
modes by cascading two adjacent modules
Synchronous and Trigger modes of output
compare operation, with up to 20 user-selectable
trigger/sync sources available
A 4-level FIFO buffer for capturing and holding
timer values for several events
Configurable interrupt generation
Up to 6 clock sources available for each module,
driving a separate internal 16-bit counter
The module is controlled through two registers: ICxCON1
(Register 13-1) and ICxCON2 (Register 13-2). A general
block diagram of the module is shown in Figure 13-1.
13.1 General Operating Modes
13.1.1 SYNCHRONOUS AND TRIGGER
MODES
By default, the input capture module operates in a
free-running mode. The internal 16-bit counter ICxTMR
counts up continuously, wrapping around from FFFFh
to 0000h on each overflow, with its period synchronized
to the selected external clock source. When a capture
event occurs, the current 16-bit value of the internal
counter is written to the FIFO buffer.
In Synchronous mode, the module begins capturing
events on the ICx pin as soon as its selected clock
source is enabled. Whenever an event occurs on the
selected sync source, the internal counter is reset. In
Trigger mode, the module waits for a Sync event from
another internal module to occur before allowing the
internal counter to run.
Standard, free-running operation is selected by setting
the SYNCSEL bits to ‘00000 and clearing the ICTRIG
bit (ICxCON2<7>). Synchronous and Trigger modes
are selected any time the SYNCSEL bits are set to any
value except ‘00000’. The ICTRIG bit selects either
Synchronous or Trigger mode; setting the bit selects
Trigger mode operation. In both modes, the SYNCSEL
bits determine the sync/trigger source.
When the SYNCSEL bits are set to ‘00000’ and
ICTRIG is set, the module operates in Software Trigger
mode. In this case, capture operations are started by
manually setting the TRIGSTAT bit (ICxCON2<6>).
FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 34. “Input Capture with
Dedicated Timer” (DS39722).
ICxBUF
4-Level FIFO Buffer
ICx Pin(1)
ICM<2:0>
Set ICxIF
Edge Detect Logic
ICI<1:0>
ICOV, ICBNE
Interrupt
Logic
System Bus
Prescaler
Counter
1:1/4/16
and
Clock Synchronizer
Note 1: The ICx inputs must be assigned to an available RPn pin before use. Please see Section 10.4 “Peripheral
Pin Select (PPS)” for more information.
Event and
Trigger and
Sync Logic
Clock
Select
IC Clock
Sources
Trigger and
Sync Sources
ICTSEL<2:0>
SYNCSEL<4:0>
Trigger
16
16
16
ICxTMR
Increment
Reset
PIC24FJ64GA104 FAMILY
DS39951C-page 152 2010 Microchip Technology Inc.
13.1.2 CASCADED (32-BIT) MODE
By default, each module operates independently with
its own 16-bit timer. To increase resolution, adjacent
even and odd modules can be configured to function as
a single 32-bit module. (For example, modules 1 and 2
are paired, as are modules 3 and 4, and so on.) The
odd-numbered module (ICx) provides the Least Signif-
icant 16 bits of the 32-bit register pairs, and the even
module (ICy) provides the Most Significant 16 bits.
Wrap-arounds of the ICx registers cause an increment
of their corresponding ICy registers.
Cascaded operation is configured in hardware by
setting the IC32 bits (ICxCON2<8>) for both modules.
13.2 Capture Operations
The input capture module can be configured to capture
timer values and generate interrupts on rising edges on
ICx, or all transitions on ICx. Captures can be configured
to occur on all rising edges or just some (every 4th or
16th). Interrupts can be independently configured to
generate on each event or a subset of events.
To set up the module for capture operations:
1. Configure the ICx input for one of the available
Peripheral Pin Select pins.
2. If Synchronous mode is to be used, disable the
sync source before proceeding.
3. Make sure that any previous data has been
removed from the FIFO by reading ICxBUF until
the ICBNE bit (ICxCON1<3>) is cleared.
4. Set the SYNCSEL bits (ICxCON2<4:0>) to the
desired sync/trigger source.
5. Set the ICTSEL bits (ICxCON1<12:10>) for the
desired clock source. If the desired clock source
is running, set the ICTSEL bits before the Input
Capture module is enabled for proper
synchronization with the desired clock source.
6. Set the ICI bits (ICxCON1<6:5>) to the desired
interrupt frequency.
7. Select Synchronous or Trigger mode operation:
a) Check that the SYNCSEL bits are not set to
00000’.
b) For Synchronous mode, clear the ICTRIG
bit (ICxCON2<7>).
c) For Trigger mode, set ICTRIG and clear the
TRIGSTAT bit (ICxCON2<6>).
8. Set the ICM bits (ICxCON1<2:0>) to the desired
operational mode.
9. Enable the selected trigger/sync source.
For 32-bit cascaded operations, the setup procedure is
slightly different:
1. Set the IC32 bits for both modules
(ICyCON2<8> and (ICxCON2<8>), enabling the
even-numbered module first. This ensures the
modules will start functioning in unison.
2. Set the ICTSEL and SYNCSEL bits for both
modules to select the same sync/trigger and
time base source. Set the even module first,
then the odd module. Both modules must use
the same ICTSEL and SYNCSEL settings.
3. Clear the ICTRIG bit of the even module
(ICyCON2<7>); this forces the module to run in
Synchronous mode with the odd module,
regardless of its trigger setting.
4. Use the odd module’s ICI bits (ICxCON1<6:5>)
to the desired interrupt frequency.
5. Use the ICTRIG bit of the odd module
(ICxCON2<7>) to configure Trigger or
Synchronous mode operation.
6. Use the ICM bits of the odd module
(ICxCON1<2:0>) to set the desired capture
mode.
The module is ready to capture events when the time
base and the trigger/sync source are enabled. When
the ICBNE bit (ICxCON1<3>) becomes set, at least
one capture value is available in the FIFO. Read input
capture values from the FIFO until the ICBNE clears to
0’.
For 32-bit operation, read both the ICxBUF and
ICyBUF for the full 32-bit timer value (ICxBUF for the
lsw, ICyBUF for the msw). At least one capture value is
available in the FIFO buffer when the odd module’s
ICBNE bit (ICxCON1<3>) becomes set. Continue to
read the buffer registers until ICBNE is cleared
(perform automatically by hardware).
Note: For Synchronous mode operation, enable
the sync source as the last step. Both
input capture modules are held in Reset
until the sync source is enabled.
2010 Microchip Technology Inc. DS39951C-page 153
PIC24FJ64GA104 FAMILY
REGISTER 13-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0
ICSIDL ICTSEL2 ICTSEL1 ICTSEL0
bit 15 bit 8
U-0 R/W-0 R/W-0 R-0, HCS R-0, HCS R/W-0 R/W-0 R/W-0
ICI1 ICI0 ICOV ICBNE ICM2(1) ICM1(1) ICM0(1)
bit 7 bit 0
Legend: HCS = Hardware Clearable/Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 ICSIDL: Input Capture x Module Stop in Idle Control bit
1 = Input capture module halts in CPU Idle mode
0 = Input capture module continues to operate in CPU Idle mode
bit 12-10 ICTSEL<2:0>: Input Capture Timer Select bits
111 = System clock (FOSC/2)
110 = Reserved
101 = Reserved
100 = Timer1
011 = Timer5
010 = Timer4
001 = Timer2
000 = Timer3
bit 9-7 Unimplemented: Read as ‘0
bit 6-5 ICI<1:0>: Select Number of Captures per Interrupt bits
11 = Interrupt on every fourth capture event
10 = Interrupt on every third capture event
01 = Interrupt on every second capture event
00 = Interrupt on every capture event
bit 4 ICOV: Input Capture x Overflow Status Flag bit (read-only)
1 = Input capture overflow occurred
0 = No input capture overflow occurred
bit 3 ICBNE: Input Capture x Buffer Empty Status bit (read-only)
1 = Input capture buffer is not empty, at least one more capture value can be read
0 = Input capture buffer is empty
bit 2-0 ICM<2:0>: Input Capture Mode Select bits(1)
111 = Interrupt mode: input capture functions as interrupt pin only when device is in Sleep or Idle mode
(rising edge detect only, all other control bits are not applicable)
110 = Unused (module disabled)
101 = Prescaler Capture mode: capture on every 16th rising edge
100 = Prescaler Capture mode: capture on every 4th rising edge
011 = Simple Capture mode: capture on every rising edge
010 = Simple Capture mode: capture on every falling edge
001 = Edge Detect Capture mode: capture on every edge (rising and falling); ICI<1:0 bits do not control
interrupt generation for this mode
000 = Input capture module turned off
Note 1: The ICx input must also be configured to an available RPn pin. For more information, see Section 10.4
“Peripheral Pin Select (PPS)”.
PIC24FJ64GA104 FAMILY
DS39951C-page 154 2010 Microchip Technology Inc.
REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0
—IC32
bit 15 bit 8
R/W-0 R/W-0, HS U-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-1
ICTRIG TRIGSTAT SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
bit 7 bit 0
Legend: HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-9 Unimplemented: Read as ‘0
bit 8 IC32: Cascade Two IC Modules Enable bit (32-bit operation)
1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules)
0 = ICx functions independently as a 16-bit module
bit 7 ICTRIG: ICx Trigger/Sync Select bit
1 = Trigger ICx from source designated by SYNCSELx bits
0 = Synchronize ICx with source designated by SYNCSELx bits
bit 6 TRIGSTAT: Timer Trigger Status bit
1 = Timer source has been triggered and is running (set in hardware, can be set in software)
0 = Timer source has not been triggered and is being held clear
bit 5 Unimplemented: Read as0
bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
11111 = Reserved
11110 = Reserved
11101 = Reserved
11100 = CTMU(1)
11011 = A/D(1)
11010 = Comparator 3(1)
11001 = Comparator 2(1)
11000 = Comparator 1(1)
10111 = Input Capture 4
10110 = Input Capture 3
10101 = Input Capture 2
10100 = Input Capture 1
10011 = Reserved
10010 = Reserved
1000x = Reserved
01111 = Timer5
01110 = Timer4
01101 = Timer3
01100 = Timer2
01011 = Timer1
01010 = Input Capture 5
01001 = Reserved
01000 = Reserved
00111 = Reserved
00110 = Reserved
00101 = Output Compare 5
00100 = Output Compare 4
00011 = Output Compare 3
00010 = Output Compare 2
00001 = Output Compare 1
00000 = Not synchronized to any other module
Note 1: Use these inputs as trigger sources only and never as sync sources.
2010 Microchip Technology Inc. DS39951C-page 155
PIC24FJ64GA104 FAMILY
14.0 OUTPUT COMPARE WITH
DEDICATED TIMERS
All devices in the PIC24FJ64GA104 family features
5 independent output compare modules. Each of these
modules offers a wide range of configuration and oper-
ating options for generating pulse trains on internal
device events, and can produce Pulse-Width Modulated
(PWM) waveforms for driving power applications.
Key features of the output compare module include:
Hardware-configurable for 32-bit operation in all
modes by cascading two adjacent modules
Synchronous and Trigger modes of output
compare operation, with up to 21 user-selectable
trigger/sync sources available
Two separate Period registers (a main register,
OCxR, and a secondary register, OCxRS) for
greater flexibility in generating pulses of varying
widths
Configurable for single pulse or continuous pulse
generation on an output event or continuous
PWM waveform generation
Up to 6 clock sources available for each module,
driving a separate internal 16-bit counter
14.1 General Operating Modes
14.1.1 SYNCHRONOUS AND TRIGGER
MODES
By default, the output compare module operates in a
Free-Running mode. The internal 16-bit counter,
OCxTMR, runs counts up continuously, wrapping
around from FFFFh to 0000h on each overflow with its
period synchronized to the selected external clock
source. Compare or PWM events are generated each
time a match between the internal counter and one of
the Period registers occurs.
In Synchronous mode, the module begins performing
its compare or PWM operation as soon as its selected
clock source is enabled. Whenever an event occurs on
the selected sync source, the module’s internal counter
is reset. In Trigger mode, the module waits for a sync
event from another internal module to occur before
allowing the counter to run.
Free-Running mode is selected by default or any time
that the SYNCSEL bits (OCxCON2<4:0>) are set to
00000’. Synchronous or Trigger modes are selected
any time the SYNCSEL bits are set to any value except
00000’. The OCTRIG bit (OCxCON2<7>) selects
either Synchronous or Trigger mode; setting the bit
selects Trigger mode operation. In both modes, the
SYNCSEL bits determine the sync/trigger source.
14.1.2 CASCADED (32-BIT) MODE
By default, each module operates independently with
its own set of 16-bit Timer and Duty Cycle registers. To
increase the range, adjacent even and odd modules
can be configured to function as a single 32-bit module.
(For example, Modules 1 and 2 are paired, as are
Modules 3 and 4, and so on.) The odd-numbered
module (OCx) provides the Least Significant 16 bits of
the 32-bit register pairs and the even-numbered
module (OCy) provides the Most Significant 16 bits.
Wrap-arounds of the OCx registers cause an increment
of their corresponding OCy registers.
Cascaded operation is configured in hardware by setting
the OC32 bit (OCxCON2<8>) for both modules.
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 35. “Output Capture with
Dedicated Timer” (DS39723).
PIC24FJ64GA104 FAMILY
DS39951C-page 156 2010 Microchip Technology Inc.
FIGURE 14-1: OUTPUT COMPARE BLOCK DIAGRAM (16-BIT MODE)
OCxR
Comparator
OCxTMR
OCxCON1
OCxCON2
OC Output and
OCx Interrupt
OCx Pin(1)
OCxRS
Comparator
Fault Logic
Match Event
Match Event
Trigger and
Sync Logic
Clock
Select
Increment
Reset
OC Clock
Sources
Trigger and
Sync Sources
Reset
Match Event
OCTSELx
SYNCSELx
TRIGSTAT
TRIGMODE
OCTRIG
OCMx
OCINV
OCTRIS
FLTOUT
FLTTRIEN
FLTMD
ENFLTx
OCFLTx
Note 1: The OCx outputs must be assigned to an available RPn pin before use. Please see Section 10.4 “Peripheral
Pin Select (PPS)” for more information.
DCBx
OCFA/
OCFB/
CxOUT
2010 Microchip Technology Inc. DS39951C-page 157
PIC24FJ64GA104 FAMILY
14.2 Compare Operations
In Compare mode (Figure 14-1), the output compare
module can be configured for single-shot or continuous
pulse generation; it can also repeatedly toggle an
output pin on each timer event.
To set up the module for compare operations:
1. Configure the OCx output for one of the
available Peripheral Pin Select pins.
2. Calculate the required values for the OCxR and
(for Double Compare modes) OCxRS Duty Cycle
registers:
a) Determine the instruction clock cycle time.
Take into account the frequency of the
external clock to the timer source (if one is
used) and the timer prescaler settings.
b) Calculate time to the rising edge of the
output pulse relative to the timer start value
(0000h).
c) Calculate the time to the falling edge of the
pulse based on the desired pulse width and
the time to the rising edge of the pulse.
3. Write the rising edge value to OCxR and the
falling edge value to OCxRS.
4. For Trigger mode operations, set OCTRIG to
enable Trigger mode. Set or clear TRIGMODE to
configure trigger operation and TRIGSTAT to
select a hardware or software trigger. For
Synchronous mode, clear OCTRIG.
5. Set the SYNCSEL<4:0> bits to configure the
trigger or synchronization source. If free-running
timer operation is required, set the SYNCSEL
bits to ‘00000’ (no sync/trigger source).
6. Select the time base source with the
OCTSEL<2:0> bits. If the desired clock source is
running, set the OCTSEL<2:0> bits before the
output compare module is enabled for proper
synchronization with the desired clock source. If
necessary, set the TON bit for the selected timer
which enables the compare time base to count.
Synchronous mode operation starts as soon as
the synchronization source is enabled. Trigger
mode operation starts after a trigger source event
occurs.
7. Set the OCM<2:0> bits for the appropriate
compare operation (= 0xx).
For 32-bit cascaded operation, these steps are also
necessary:
1. Set the OC32 bits for both registers
(OCyCON2<8> and (OCxCON2<8>). Enable
the even-numbered module first to ensure the
modules will start functioning in unison.
2. Clear the OCTRIG bit of the even module
(OCyCON2), so the module will run in
Synchronous mode.
3. Configure the desired output and Fault settings
for OCy.
4. Force the output pin for OCx to the output state
by clearing the OCTRIS bit.
5. If Trigger mode operation is required, configure
the trigger options in OCx by using the OCTRIG
(OCxCON2<7>), TRIGSTAT (OCxCON2<6>)
and SYNCSEL (OCxCON2<4:0>) bits.
6. Configure the desired Compare or PWM mode
of operation (OCM<2:0>) for OCy first, then for
OCx.
Depending on the output mode selected, the module
holds the OCx pin in its default state and forces a
transition to the opposite state when OCxR matches
the timer. In Double Compare modes, OCx is forced
back to its default state when a match with OCxRS
occurs. The OCxIF interrupt flag is set after an OCxR
match in Single Compare modes and after each
OCxRS match in Double Compare modes.
Single-shot pulse events only occur once, but may be
repeated by simply rewriting the value of the
OCxCON1 register. Continuous pulse events continue
indefinitely until terminated.
PIC24FJ64GA104 FAMILY
DS39951C-page 158 2010 Microchip Technology Inc.
14.3 Pulse-Width Modulation (PWM)
Mode
In PWM mode, the output compare module can be
configured for edge-aligned or center-aligned pulse
waveform generation. All PWM operations are
double-buffered (buffer registers are internal to the
module and are not mapped into SFR space).
To configure the output compare module for
edge-aligned PWM operation:
1. Configure the OCx output for one of the
available Peripheral Pin Select pins.
2. Calculate the desired on-time and load it into the
OCxR register.
3. Calculate the desired period and load it into the
OCxRS register.
4. Select the current OCx as the synchronization
source by writing 0x1F to SYNCSEL<4:0>
(OCxCON2<4:0>) and ‘0’ to OCTRIG
(OCxCON2<7>).
5. Select a clock source by writing to the
OCTSEL2<2:0> (OCxCON1<12:10>) bits.
6. Enable interrupts, if required, for the timer and
output compare modules. The output compare
interrupt is required for PWM Fault pin utilization.
7. Select the desired PWM mode in the OCM<2:0>
(OCxCON1<2:0>) bits.
8. If a timer is selected as a clock source, set the
TMRy prescale value and enable the time base by
setting the TON (TxCON<15>) bit.
FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM
(DOUBLE-BUFFERED, 16-BIT PWM MODE)
Note: This peripheral contains input and output
functions that may need to be configured
by the Peripheral Pin Select. See
Section 10.4 “Peripheral Pin Select
(PPS)” for more information.
OCxR and DCB<1:0> Buffers
Comparator
OCxTMR
OCxCON1
OCxCON2
OC Output Timing
OCx Interrupt
OCx Pin(1)
OCxRS Buffer
Comparator
and Fault Logic
Match
Match
Trigger and
Sync Logic
Clock
Select
Increment
Reset
OC Clock
Sources
Trigger and
Sync Sources
Reset
Match Event
OCFA/OCFB/CxOUT
OCTSELx
SYNCSELx
TRIGSTAT
TRIGMODE
OCTRIG
OCMx
OCINV
OCTRIS
FLTOUT
FLTTRIEN
FLTMD
ENFLTx
OCFLTx
OCxR and DCB<1:0>
OCxRS
Event
Event
Rollover
Rollover/Reset
Rollover/Reset
DCB<1:0>
Note 1: The OCx outputs must be assigned to an available RPn pin before use. Please see Section 10.4 “Peripheral Pin
Select (PPS)” for more information.
2010 Microchip Technology Inc. DS39951C-page 159
PIC24FJ64GA104 FAMILY
14.3.1 PWM PERIOD
In edge aligned PWM mode, the period is specified by
the value of OCxRS register. In center aligned PWM
mode, the period of the synchronization source such as
Timer's PRy specifies the period. The period in both
cases can be calculated using Equation 14-1.
EQUATION 14-1: CALCULATING THE PWM
PERIOD(1)
14.3.2 PWM DUTY CYCLE
The PWM duty cycle is specified by writing to the
OCxRS and OCxR registers. The OCxRS and OCxR
registers can be written to at any time, but the duty
cycle value is not latched until a period is complete.
This provides a double buffer for the PWM duty cycle
and is essential for glitchless PWM operation.
Some important boundary parameters of the PWM duty
cycle include:
Edge-Aligned PWM
- If OCxR and OCxRS are loaded with 0000h,
the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than OCxR, the pin will
remain high (100% duty cycle).
Center-Aligned PWM (with TMRy as the sync
source)
- If OCxR, OCxRS and PRy are all loaded with
0000h, the OCx pin will remain low (0% duty
cycle).
- If OCxRS is greater than PRy, the pin will go
high (100% duty cycle).
See Example 14-1 for PWM mode timing details.
Table 14-1 and Table 14-2 show example PWM
frequencies and resolutions for a device operating at
4 MIPS and 10 MIPS, respectively.
EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION(1)
EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)
PWM Period = [Value + 1] x TCY x (Prescaler Value)
Value = OCxRS in Edge-Aligned PWM modeWhere:
Note 1: Based on TCY = TOSC * 2; Doze mode
and PLL are disabled.
and can be PRy in Center-Aligned PWM mode
(If TMRy is the sync source).
( )
Maximum PWM Resolution (bits) =
FCY
FPWM • (Prescale Value)
log10
log10(2) bits
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.
1. Find the OCxRS register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device
clock rate) and a prescaler setting of 1:1 using Edge-Aligned PWM mode.
TCY = 2 * TOSC = 62.5 ns
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 s
PWM Period = (OCxRS + 1) • TCY • (OCx Prescale Value)
19.2 s = (OCxRS + 1) • 62.5 ns • 1
OCxRS = 306
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
PWM Resolution = log10(FCY/FPWM)/log102) bits
=(log
10 (16 MHz/52.08 kHz)/log102) bits
= 8.3 bits
Note 1: Based on T
CY = 2 * TOSC; Doze mode and PLL are disabled.
PIC24FJ64GA104 FAMILY
DS39951C-page 160 2010 Microchip Technology Inc.
14.4 Subcycle Resolution
The DCB bits (OCxCON2<10:9>) provide for resolution
better than one instruction cycle. When used, they
delay the falling edge generated by a match event by a
portion of an instruction cycle.
For example, setting DCB<1:0> = 10 causes the falling
edge to occur half way through the instruction cycle in
which the match event occurs, instead of at the
beginning. These bits cannot be used when
OCM<2:0> = 001. When operating the module in PWM
mode (OCM<2:0> = 110 or 111), the DCB bits will be
double-buffered.
The DCB bits are intended for use with a clock source
identical to the system clock. When an OCx module
with enabled prescaler is used, the falling edge delay
caused by the DCB bits will be referenced to the
system clock period, rather than the OCx module's
period.
TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)(1)
TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)(1)
PWM Frequency 7.6 Hz 61 Hz 122 Hz 977 Hz 3.9 kHz 31.3 kHz 125 kHz
Prescaler Ratio 8111111
Period Value FFFFh FFFFh 7FFFh 0FFFh 03FFh 007Fh 001Fh
Resolution (bits) 16 16 15 12 10 7 5
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.
PWM Frequency 30.5 Hz 244 Hz 488 Hz 3.9 kHz 15.6 kHz 125 kHz 500 kHz
Prescaler Ratio 8111111
Period Value FFFFh FFFFh 7FFFh 0FFFh 03FFh 007Fh 001Fh
Resolution (bits) 16 16 15 12 10 7 5
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.
2010 Microchip Technology Inc. DS39951C-page 161
PIC24FJ64GA104 FAMILY
REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2(2) ENFLT1
bit 15 bit 8
R/W-0 R/W-0, HCS R/W-0, HCS R/W-0, HCS R/W-0 R/W-0 R/W-0 R/W-0
ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2(1) OCM1(1) OCM0(1)
bit 7 bit 0
Legend: HCS = Hardware Clearable/Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0
bit 13 OCSIDL: Stop Output Compare x in Idle Mode Control bit
1 = Output compare x halts in CPU Idle mode
0 = Output compare x continues to operate in CPU Idle mode
bit 12-10 OCTSEL<2:0>: Output Compare x Timer Select bits
111 = System clock
110 = Reserved
101 = Reserved
100 = Timer1
011 = Timer5
010 = Timer4
001 = Timer3
000 = Timer2
bit 9 ENFLT2: Comparator Fault Input Enable bit(2)
1 = Comparator Fault input is enabled
0 = Comparator Fault input is disabled
bit 8 ENFLT1: OCFB Fault Input Enable bit
1 = OCFB Fault input is enabled
0 = OCFB Fault input is disabled
bit 7 ENFLT0: OCFA Fault Input Enable bit
1 = OCFA Fault input is enabled
0 = OCFA Fault input is disabled
bit 6 OCFLT2: PWM Comparator Fault Condition Status bit(2)
1 = PWM comparator Fault condition has occurred (this is cleared in hardware only)
0 = PWM comparator Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 5 OCFLT1: PWM OCFB Fault Input Enable bit
1 = PWM OCFB Fault condition has occurred (this is cleared in hardware only)
0 = PWM OCFB Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 4 OCFLT0: PWM OCFA Fault Condition Status bit
1 = PWM OCFA Fault condition has occurred (this is cleared in hardware only)
0 = PWM OCFA Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 3 TRIGMODE: Trigger Status Mode Select bit
1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
0 = TRIGSTAT is only cleared by software
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4
“Peripheral Pin Select (PPS)”.
2: The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1;
OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.
PIC24FJ64GA104 FAMILY
DS39951C-page 162 2010 Microchip Technology Inc.
bit 2-0 OCM<2:0>: Output Compare x Mode Select bits(1)
111 = Center-Aligned PWM mode on OCx
110 = Edge-Aligned PWM mode on OCx
101 = Double Compare Continuous Pulse mode: initialize OCx pin low, toggle OCx state continuously
on alternate matches of OCxR and OCxRS
100 = Double Compare Single-Shot mode: initialize OCx pin low, toggle OCx state on matches of
OCxR and OCxRS for one cycle
011 = Single Compare Continuous Pulse mode: compare events continuously toggle OCx pin
010 = Single Compare Single-Shot mode: initialize OCx pin high, compare event forces OCx pin low
001 = Single Compare Single-Shot mode: initialize OCx pin low, compare event forces OCx pin high
000 = Output compare channel is disabled
REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)
Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4
“Peripheral Pin Select (PPS)”.
2: The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1;
OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.
2010 Microchip Technology Inc. DS39951C-page 163
PIC24FJ64GA104 FAMILY
REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2
R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0
FLTMD FLTOUT FLTTRIEN OCINV DCB1(3) DCB0(3) OC32
bit 15 bit 8
R/W-0 R/W-0, HS R/W-0 R/W-0 R/W-1 R/W-1 R/W-0 R/W-0
OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0
bit 7 bit 0
Legend: HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FLTMD: Fault Mode Select bit
1 = Fault mode is maintained until the Fault source is removed and the corresponding OCFLT0 bit is
cleared in software
0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts
bit 14 FLTOUT: Fault Out bit
1 = PWM output is driven high on a Fault
0 = PWM output is driven low on a Fault
bit 13 FLTTRIEN: Fault Output State Select bit
1 = Pin is forced to an output on a Fault condition
0 = Pin I/O condition is unaffected by a Fault
bit 12 OCINV: OCMP Invert bit
1 = OCx output is inverted
0 = OCx output is not inverted
bit 11 Unimplemented: Read as ‘0
bit 10-9 DCB<1:0>: OC Pulse-Width Least Significant bits(3)
11 = Delay OCx falling edge by 3/4 of the instruction cycle
10 = Delay OCx falling edge by 1/2 of the instruction cycle
01 = Delay OCx falling edge by 1/4 of the instruction cycle
00 = OCx falling edge occurs at start of the instruction cycle
bit 8 OC32: Cascade Two OC Modules Enable bit (32-bit operation)
1 = Cascade module operation enabled
0 = Cascade module operation disabled
bit 7 OCTRIG: OCx Trigger/Sync Select bit
1 = Trigger OCx from source designated by SYNCSELx bits
0 = Synchronize OCx with source designated by SYNCSELx bits
bit 6 TRIGSTAT: Timer Trigger Status bit
1 = Timer source has been triggered and is running
0 = Timer source has not been triggered and is being held clear
bit 5 OCTRIS: OCx Output Pin Direction Select bit
1 = OCx pin is tri-stated
0 = Output compare peripheral x connected to OCx pin
Note 1: Do not use an OC module as its own trigger source, either by selecting this mode or another equivalent
SYNCSEL setting.
2: Use these inputs as trigger sources only and never as sync sources.
3: These bits affect the rising edge when OCINV = 1. The bits have no effect when the
OCM bits (OCxCON1<1:0>) = 001.
PIC24FJ64GA104 FAMILY
DS39951C-page 164 2010 Microchip Technology Inc.
bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
11111 = This OC module(1)
11110 = Reserved
11101 = Reserved
11100 = CTMU(2)
11011 = A/D(2)
11010 = Comparator 3(2)
11001 = Comparator 2(2)
11000 = Comparator 1(2)
10111 = Input Capture 4(2)
10110 = Input Capture 3(2)
10101 = Input Capture 2(2)
10100 = Input Capture 1(2)
100xx = Reserved
01111 = Timer5
01110 = Timer4
01101 = Timer3
01100 = Timer2
01011 = Timer1
01010 = Input Capture 5(2)
01001 = Reserved
01000 = Reserved
00111 = Reserved
00110 = Reserved
00101 = Output Compare 5(1)
00100 = Output Compare 4(1)
00011 = Output Compare 3(1)
00010 = Output Compare 2(1)
00001 = Output Compare 1(1)
00000 = Not synchronized to any other module
REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)
Note 1: Do not use an OC module as its own trigger source, either by selecting this mode or another equivalent
SYNCSEL setting.
2: Use these inputs as trigger sources only and never as sync sources.
3: These bits affect the rising edge when OCINV = 1. The bits have no effect when the
OCM bits (OCxCON1<1:0>) = 001.
2010 Microchip Technology Inc. DS39951C-page 165
PIC24FJ64GA104 FAMILY
15.0 SERIAL PERIPHERAL
INTERFACE (SPI)
The Serial Peripheral Interface (SPI) module is a
synchronous serial interface useful for communicating
with other peripheral or microcontroller devices. These
peripheral devices may be serial EEPROMs, shift
registers, display drivers, A/D Converters, etc. The SPI
module is compatible with Motorola® SPI and SIOP
interfaces. All devices of the PIC24FJ64GA104 family
include three SPI modules
The module supports operation in two buffer modes. In
Standard mode, data is shifted through a single serial
buffer. In Enhanced Buffer mode, data is shifted
through an 8-level FIFO buffer.
The module also supports a basic framed SPI protocol
while operating in either Master or Slave mode. A total
of four framed SPI configurations are supported.
The SPI serial interface consists of four pins:
SDIx: Serial Data Input
SDOx: Serial Data Output
SCKx: Shift Clock Input or Output
SSx: Active-Low Slave Select or Frame
Synchronization I/O Pulse
The SPI module can be configured to operate using
2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the
2-pin mode, both SDOx and SSx are not used.
Block diagrams of the module in Standard and
Enhanced modes are shown in Figure 15-1 and
Figure 15-2.
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 23. “Serial Peripheral Interface
(SPI)” (DS39699).
Note: Do not perform read-modify-write opera-
tions (such as bit-oriented instructions) on
the SPIxBUF register in either Standard or
Enhanced Buffer mode.
Note: In this section, the SPI modules are
referred to together as SPIx or separately
as SPI1, SPI2 or SPI3. Special Function
Registers will follow a similar notation. For
example, SPIxCON1 and SPIxCON2 refer
to the control registers for any of the 3 SPI
modules.
PIC24FJ64GA104 FAMILY
DS39951C-page 166 2010 Microchip Technology Inc.
To set up the SPI module for the Standard Master mode
of operation:
1. If using interrupts:
a) Clear the SPIxIF bit in the respective IFS
register.
b) Set the SPIxIE bit in the respective IEC
register.
c) Write the SPIxIP bits in the respective IPC
register to set the interrupt priority.
2. Write the desired settings to the SPIxCON1
and SPIxCON2 registers with MSTEN
(SPIxCON1<5>) = 1.
3. Clear the SPIROV bit (SPIxSTAT<6>).
4. Enable SPI operation by setting the SPIEN bit
(SPIxSTAT<15>).
5. Write the data to be transmitted to the SPIxBUF
register. Transmission (and reception) will start
as soon as data is written to the SPIxBUF
register.
To set up the SPI module for the Standard Slave mode
of operation:
1. Clear the SPIxBUF register.
2. If using interrupts:
a) Clear the SPIxIF bit in the respective IFS
register.
b) Set the SPIxIE bit in the respective IEC
register.
c) Write the SPIxIP bits in the respective IPC
register to set the interrupt priority.
3. Write the desired settings to the SPIxCON1
and SPIxCON2 registers with MSTEN
(SPIxCON1<5>) = 0.
4. Clear the SMP bit.
5. If the CKE bit (SPIxCON1<8>) is set, then the
SSEN bit (SPIxCON1<7>) must be set to enable
the SSx pin.
6. Clear the SPIROV bit (SPIxSTAT<6>).
7. Enable SPI operation by setting the SPIEN bit
(SPIxSTAT<15>).
FIGURE 15-1: SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)
Internal Data Bus
SDIx
SDOx
SSx/FSYNCx
SCKx
SPIxSR
bit 0
Shift Control
Edge
Select
FCYPrimary
1:1/4/16/64
Enable
Prescaler
Sync
Clock
Control
SPIxBUF
Control
Transfer
Transfer
Write SPIxBUF
Read SPIxBUF
16
SPIxCON1<1:0>
SPIxCON1<4:2>
Master Clock
Secondary
Prescaler
1:1 to 1:8
2010 Microchip Technology Inc. DS39951C-page 167
PIC24FJ64GA104 FAMILY
To set up the SPI module for the Enhanced Buffer
Master mode of operation:
1. If using interrupts:
a) Clear the SPIxIF bit in the respective IFS
register.
b) Set the SPIxIE bit in the respective IEC
register.
c) Write the SPIxIP bits in the respective IPC
register.
2. Write the desired settings to the SPIxCON1
and SPIxCON2 registers with MSTEN
(SPIxCON1<5>) = 1.
3. Clear the SPIROV bit (SPIxSTAT<6>).
4. Select Enhanced Buffer mode by setting the
SPIBEN bit (SPIxCON2<0>).
5. Enable SPI operation by setting the SPIEN bit
(SPIxSTAT<15>).
6. Write the data to be transmitted to the SPIxBUF
register. Transmission (and reception) will start
as soon as data is written to the SPIxBUF
register.
To set up the SPI module for the Enhanced Buffer
Slave mode of operation:
1. Clear the SPIxBUF register.
2. If using interrupts:
a) Clear the SPIxIF bit in the respective IFS
register.
b) Set the SPIxIE bit in the respective IEC
register.
c) Write the SPIxIP bits in the respective IPC
register to set the interrupt priority.
3. Write the desired settings to the SPIxCON1
and SPIxCON2 registers with MSTEN
(SPIxCON1<5>) = 0.
4. Clear the SMP bit.
5. If the CKE bit is set, then the SSEN bit must be
set, thus enabling the SSx pin.
6. Clear the SPIROV bit (SPIxSTAT<6>).
7. Select Enhanced Buffer mode by setting the
SPIBEN bit (SPIxCON2<0>).
8. Enable SPI operation by setting the SPIEN bit
(SPIxSTAT<15>).
FIGURE 15-2: SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)
Internal Data Bus
SDIx
SDOx
SSx/FSYNCx
SCKx
SPIxSR
bit 0
Shift Control
Edge
Select
FCY
Primary
1:1/4/16/64
Enable
Prescaler
Secondary
Prescaler
1:1 to 1:8
Sync
Clock
Control
SPIxBUF
Control
Transfer
Transfer
Write SPIxBUF
Read SPIxBUF
16
SPIxCON1<1:0>
SPIxCON1<4:2>
Master Clock
8-Level FIFO
Transmit Buffer
8-Level FIFO
Receive Buffer
PIC24FJ64GA104 FAMILY
DS39951C-page 168 2010 Microchip Technology Inc.
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER
R/W-0 U-0 R/W-0 U-0 U-0 R-0 R-0 R-0
SPIEN(1) SPISIDL SPIBEC2 SPIBEC1 SPIBEC0
bit 15 bit 8
R-0 R/C-0, HS R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0
SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF
bit 7 bit 0
Legend: C = Clearable bit HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 SPIEN: SPIx Enable bit(1)
1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins
0 = Disables module
bit 14 Unimplemented: Read as ‘0
bit 13 SPISIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-11 Unimplemented: Read as ‘0
bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)
Master mode:
Number of SPI transfers that are pending.
Slave mode:
Number of SPI transfers that are unread.
bit 7 SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)
1 = SPIx Shift register is empty and ready to send or receive
0 = SPIx Shift register is not empty
bit 6 SPIROV: Receive Overflow Flag bit
1 = A new byte/word is completely received and discarded. The user software has not read the previous
data in the SPIxBUF register.
0 = No overflow has occurred
bit 5 SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)
1 = Receive FIFO is empty
0 = Receive FIFO is not empty
bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)
111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set)
110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty
101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete
100 = Interrupt when one data is shifted into the SPIxSR; as a result, the TX FIFO has one open spot
011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set)
010 = Interrupt when SPIx receive buffer is 3/4 or more full
001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty
(SRXMPT bit set)
Note 1: If SPIEN = 1, these functions must be assigned to available RPn pins before use. See Section 10.4
“Peripheral Pin Select (PPS)” for more information.
2010 Microchip Technology Inc. DS39951C-page 169
PIC24FJ64GA104 FAMILY
bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
1 = Transmit not yet started; SPIxTXB is full
0 = Transmit started; SPIxTXB is empty
In Standard Buffer mode:
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically
cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.
In Enhanced Buffer mode:
Automatically set in hardware when CPU writes SPIxBUF location, loading the last available buffer location.
Automatically cleared in hardware when a buffer location is available for a CPU write.
bit 0 SPIRBF: SPIx Receive Buffer Full Status bit
1 = Receive is complete, SPIxRXB is full
0 = Receive is not complete, SPIxRXB is empty
In Standard Buffer mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically
cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.
In Enhanced Buffer mode:
Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread
buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from
SPIxSR.
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)
Note 1: If SPIEN = 1, these functions must be assigned to available RPn pins before use. See Section 10.4
“Peripheral Pin Select (PPS)” for more information.
PIC24FJ64GA104 FAMILY
DS39951C-page 170 2010 Microchip Technology Inc.
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DISSCK(1) DISSDO(2) MODE16 SMP CKE(3)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSEN(4) CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12 DISSCK: Disable SCKx pin bit (SPI Master modes only)(1)
1 = Internal SPI clock is disabled; pin functions as I/O
0 = Internal SPI clock is enabled
bit 11 DISSDO: Disable SDOx pin bit(2)
1 = SDOx pin is not used by module; pin functions as I/O
0 = SDOx pin is controlled by the module
bit 10 MODE16: Word/Byte Communication Select bit
1 = Communication is word-wide (16 bits)
0 = Communication is byte-wide (8 bits)
bit 9 SMP: SPIx Data Input Sample Phase bit
Master mode:
1 = Input data is sampled at the end of data output time
0 = Input data is sampled at the middle of data output time
Slave mode:
SMP must be cleared when SPIx is used in Slave mode.
bit 8 CKE: SPIx Clock Edge Select bit(3)
1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)
0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)
bit 7 SSEN: Slave Select Enable (Slave mode) bit(4)
1 =SSx pin is used for Slave mode
0 =SSx
pin is not used by module; pin is controlled by port function
bit 6 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level; active state is a low level
0 = Idle state for clock is a low level; active state is a high level
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 =Slave mode
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin
Select (PPS)” for more information.
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin
Select (PPS)” for more information.
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed
SPI modes (FRMEN = 1).
4: If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin Select
(PPS)” for more information.
2010 Microchip Technology Inc. DS39951C-page 171
PIC24FJ64GA104 FAMILY
bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)
111 = Secondary prescale 1:1
110 = Secondary prescale 2:1
...
000 = Secondary prescale 8:1
bit 1-0 PPRE<1:0>: Primary Prescale bits (Master mode)
11 = Primary prescale 1:1
10 = Primary prescale 4:1
01 = Primary prescale 16:1
00 = Primary prescale 64:1
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin
Select (PPS)” for more information.
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin
Select (PPS)” for more information.
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed
SPI modes (FRMEN = 1).
4: If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin Select
(PPS)” for more information.
REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0
FRMEN SPIFSD SPIFPOL —————
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
SPIFE SPIBEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 FRMEN: Framed SPIx Support bit
1 = Framed SPIx support is enabled
0 = Framed SPIx support is disabled
bit 14 SPIFSD: Frame Sync Pulse Direction Control on SSx Pin bit
1 = Frame sync pulse input (slave)
0 = Frame sync pulse output (master)
bit 13 SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)
1 = Frame sync pulse is active-high
0 = Frame sync pulse is active-low
bit 12-2 Unimplemented: Read as ‘0
bit 1 SPIFE: Frame Sync Pulse Edge Select bit
1 = Frame sync pulse coincides with the first bit clock
0 = Frame sync pulse precedes the first bit clock
bit 0 SPIBEN: Enhanced Buffer Enable bit
1 = Enhanced buffer is enabled
0 = Enhanced buffer is disabled (Legacy mode)
PIC24FJ64GA104 FAMILY
DS39951C-page 172 2010 Microchip Technology Inc.
FIGURE 15-3: SPI MASTER/SLAVE CONNECTION (STANDARD MODE)
FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)
Serial Receive Buffer
(SPIxRXB)
Shift Register
(SPIxSR)
LSb
MSb
SDIx
SDOx
PROCESSOR 2 (SPI Slave)
SCKx
SSx(1)
Serial Transmit Buffer
(SPIxTXB)
Serial Receive Buffer
(SPIxRXB)
Shift Register
(SPIxSR)
MSb LSb
SDOx
SDIx
PROCESSOR 1 (SPI Master)
Serial Clock
SSEN (SPIxCON1<7>) = 1 and MSTEN (SPIxCON1<5>) = 0
Note 1: Using the SSx pin in Slave mode of operation is optional.
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory
mapped to SPIxBUF.
SCKx
Serial Transmit Buffer
(SPIxTXB)
MSTEN (SPIxCON1<5>) = 1)
SPIx Buffer
(SPIxBUF)(2)
SPIx Buffer
(SPIxBUF)(2)
Shift Register
(SPIxSR)
LSb
MSb
SDIx
SDOx
PROCESSOR 2 (SPI Enhanced Buffer Slave)
SCKx
SSx(1)
Shift Register
(SPIxSR)
MSb LSb
SDOx
SDIx
PROCESSOR 1 (SPI Enhanced Buffer Master)
Serial Clock
SSEN (SPIxCON1<7>) = 1,
Note 1: Using the SSx pin in Slave mode of operation is optional.
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory
mapped to SPIxBUF.
SSx
SCKx
8-Level FIFO Buffer
MSTEN (SPIxCON1<5>) = 1 and
SPIx Buffer
(SPIxBUF)(2)
8-Level FIFO Buffer
SPIx Buffer
(SPIxBUF)(2)
SPIBEN (SPIxCON2<0>) = 1MSTEN (SPIxCON1<5>) = 0 and
SPIBEN (SPIxCON2<0>) = 1
2010 Microchip Technology Inc. DS39951C-page 173
PIC24FJ64GA104 FAMILY
FIGURE 15-5: SPI MASTER, FRAME MASTER CONNECTION DIAGRAM
FIGURE 15-6: SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM
FIGURE 15-7: SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM
FIGURE 15-8: SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM
SDOx
SDIx
Serial Clock
SSx
SCKx
Frame Sync
Pulse
SDIx
SDOx
PROCESSOR 2
SSx
SCKx
(SPI Master, Frame Master)
PIC24F
SDOx
SDIx
Serial Clock
SSx
SCKx
Frame Sync
Pulse
SDIx
SDOx
PROCESSOR 2
SSx
SCKx
SPI Master, Frame Slave)
PIC24F
SDOx
SDIx
Serial Clock
SSx
SCKx
Frame Sync.
Pulse
SDIx
SDOx
PROCESSOR 2
SSx
SCKx
(SPI Slave, Frame Master)
PIC24F
SDOx
SDIx
Serial Clock
SSx
SCKx
Frame Sync
Pulse
SDIx
SDOx
PROCESSOR 2
SSx
SCKx
(SPI Slave, Frame Slave)
PIC24F
PIC24FJ64GA104 FAMILY
DS39951C-page 174 2010 Microchip Technology Inc.
EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED(1)
TABLE 15-1: SAMPLE SCK FREQUENCIES(1,2)
FCY = 16 MHz
Secondary Prescaler Settings
1:12:14:16:18:1
Primary Prescaler Settings 1:1 Invalid 8000 4000 2667 2000
4:1 4000 2000 1000 667 500
16:1 1000 500 250 167 125
64:1 250 125 63 42 31
FCY = 5 MHz
Primary Prescaler Settings 1:1 5000 2500 1250 833 625
4:1 1250 625 313 208 156
16:1 313 156 78 52 39
64:17839201310
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.
2: SCKx frequencies are shown in kHz.
Primary Prescaler * Secondary Prescaler
FCY
FSCK =
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.
2010 Microchip Technology Inc. DS39951C-page 175
PIC24FJ64GA104 FAMILY
16.0 INTER-INTEGRATED CIRCUIT
(I2C™)
The Inter-Integrated Circuit (I2C) module is a serial
interface useful for communicating with other peripheral
or microcontroller devices. These peripheral devices
may be serial EEPROMs, display drivers, A/D
Converters, etc.
The I2C module supports these features:
Independent master and slave logic
7-bit and 10-bit device addresses
General call address as defined in the I
2
C protocol
Clock stretching to provide delays for the
processor to respond to a slave data request
Both 100 kHz and 400 kHz bus specifications.
Configurable address masking
Multi-Master modes to prevent loss of messages
in arbitration
Bus Repeater mode, allowing the acceptance of
all messages as a slave regardless of the address
Automatic SCL
A block diagram of the module is shown in Figure 16-1.
16.1 Communicating as a Master in a
Single Master Environment
The details of sending a message in Master mode
depends on the communications protocol for the device
being communicated with. Typically, the sequence of
events is as follows:
1. Assert a Start condition on SDAx and SCLx.
2. Send the I2C device address byte to the slave
with a write indication.
3. Wait for and verify an Acknowledge from the
slave.
4. Send the first data byte (sometimes known as
the command) to the slave.
5. Wait for and verify an Acknowledge from the
slave.
6. Send the serial memory address low byte to the
slave.
7. Repeat steps 4 and 5 until all data bytes are
sent.
8. Assert a Repeated Start condition on SDAx and
SCLx.
9. Send the device address byte to the slave with
a read indication.
10. Wait for and verify an Acknowledge from the
slave.
11. Enable master reception to receive serial
memory data.
12. Generate an ACK or NACK condition at the end
of a received byte of data.
13. Generate a Stop condition on SDAx and SCLx.
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 24. “Inter-Integrated Circuit™
(I2C™)” (DS39702).
PIC24FJ64GA104 FAMILY
DS39951C-page 176 2010 Microchip Technology Inc.
FIGURE 16-1: I2C™ BLOCK DIAGRAM
I2CxRCV
Internal
Data Bus
SCLx
SDAx
Shift
Match Detect
I2CxADD
Start and Stop
Bit Detect
Clock
Address Match
Clock
Stretching
I2CxTRN
LSB
Shift Clock
BRG Down Counter
Reload
Control
TCY/2
Start and Stop
Bit Generation
Acknowledge
Generation
Collision
Detect
I2CxCON
I2CxSTAT
Control Logic
Read
LSB
Write
Read
I2CxBRG
I2CxRSR
Write
Read
Write
Read
Write
Read
Write
Read
Write
Read
I2CxMSK
2010 Microchip Technology Inc. DS39951C-page 177
PIC24FJ64GA104 FAMILY
16.2 Setting Baud Rate When
Operating as a Bus Master
To compute the Baud Rate Generator (BRG) reload
value, use Equation 16-1.
EQUATION 16-1: COMPUTING BAUD RATE
RELOAD VALUE(1,2)
16.3 Slave Address Masking
The I2CxMSK register (Register 16-3) designates
address bit positions as “don’t care” for both 7-Bit and
10-Bit Addressing modes. Setting a particular bit loca-
tion (= 1) in the I2CxMSK register causes the slave
module to respond whether the corresponding address
bit value is a 0’ or a 1’. For example, when I2CxMSK
is set to ‘00100000, the slave module will detect both
addresses: ‘0000000’ and 0100000’.
To enable address masking, the IPMI (Intelligent
Peripheral Management Interface) must be disabled by
clearing the IPMIEN bit (I2CxCON<11>).
TABLE 16-1: I2C™ CLOCK RATES(1,2)
TABLE 16-2: I2C™ RESERVED ADDRESSES(1)
I2CxBRG FCY
FSCL
------------FCY
10 000 000
------------------------------


1=
FSCL FCY
I2CxBRG 1 FCY
10 000 000
------------------------------++
----------------------------------------------------------------------=
or
Note 1: Based on FCY = FOSC/2, Doze mode and
PLL are disabled.
2: These clock rate values are for guidance
only. The actual clock rate can be affected
by various system level parameters. The
actual clock rate should be measured in
its intended application.
Note: As a result of changes in the I2C™ proto-
col, the addresses in Table 16-2 are
reserved and will not be Acknowledged in
Slave mode. This includes any address
mask settings that include any of these
addresses.
Required System FSCL FCY
I2CxBRG Value
Actual FSCL
(Decimal) (Hexadecimal)
100 kHz 16 MHz 157 9D 100 kHz
100 kHz 8 MHz 78 4E 100 kHz
100kHz 4MHz 39 27 99kHz
400 kHz 16 MHz 37 25 404 kHz
400 kHz 8 MHz 18 12 404 kHz
400kHz 4MHz 9 9 385kHz
400kHz 2MHz 4 4 385kHz
1 MHz 16 MHz 13 D 1.026 MHz
1MHz 8MHz 6 6 1.026MHz
1MHz 4MHz 3 3 0.909MHz
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.
2: These clock rate values are for guidance only. The actual clock rate can be affected by various system
level parameters. The actual clock rate should be measured in its intended application.
Slave Address R/W Bit Description
0000 000 0 General Call Address(2)
0000 000 1 Start Byte
0000 001 x Cbus Address
0000 010 x Reserved
0000 011 x Reserved
0000 1xx x HS Mode Master Code
1111 1xx x Reserved
1111 0xx x 10-Bit Slave Upper Byte(3)
Note 1: The address bits listed here will never cause an address match, independent of address mask settings.
2: The address will be Acknowledged only if GCEN = 1.
3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.
PIC24FJ64GA104 FAMILY
DS39951C-page 178 2010 Microchip Technology Inc.
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER
R/W-0 U-0 R/W-0 R/W-1, HC R/W-0 R/W-0 R/W-0 R/W-0
I2CEN I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC
GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN
bit 7 bit 0
Legend: HC = Hardware Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 I2CEN: I2Cx Enable bit
1 = Enables the I2Cx module, and configures the SDAx and SCLx pins as serial port pins
0 = Disables the I2Cx module. All I2C pins are controlled by port functions.
bit 14 Unimplemented: Read as ‘0
bit 13 I2CSIDL: Stop in Idle Mode bit
1 = Discontinues module operation when device enters an Idle mode
0 = Continues module operation in Idle mode
bit 12 SCLREL: SCLx Release Control bit (when operating as I2C Slave)
1 = Releases SCLx clock
0 = Holds SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear
at beginning of slave transmission. Hardware clear at end of slave reception.
If STREN = 0:
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave
transmission.
bit 11 IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit
1 = IPMI Support mode is enabled; all addresses Acknowledged
0 = IPMI mode is disabled
bit 10 A10M: 10-Bit Slave Addressing bit
1 = I2CxADD is a 10-bit slave address
0 = I2CxADD is a 7-bit slave address
bit 9 DISSLW: Disable Slew Rate Control bit
1 = Slew rate control is disabled
0 = Slew rate control is enabled
bit 8 SMEN: SMBus Input Levels bit
1 = Enables I/O pin thresholds compliant with the SMBus specification
0 = Disables the SMBus input thresholds
bit 7 GCEN: General Call Enable bit (when operating as I2C slave)
1 = Enables interrupt when a general call address is received in the I2CxRSR
(module is enabled for reception)
0 = General call address is disabled
bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)
Used in conjunction with the SCLREL bit.
1 = Enables software or receive clock stretching
0 = Disables software or receive clock stretching
2010 Microchip Technology Inc. DS39951C-page 179
PIC24FJ64GA104 FAMILY
bit 5 ACKDT: Acknowledge Data bit (When operating as I2C master. Applicable during master receive.)
Value that will be transmitted when the software initiates an Acknowledge sequence.
1 = Sends NACK during Acknowledge
0 = Sends ACK during Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit
(When operating as I2C master. Applicable during master receive.)
1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware
clear at end of master Acknowledge sequence.
0 = Acknowledge sequence is not in progress
bit 3 RCEN: Receive Enable bit (when operating as I2C master)
1 = Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.
0 = Receive sequence is not in progress
bit 2 PEN: Stop Condition Enable bit (when operating as I2C master)
1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.
0 = Stop condition is not in progress
bit 1 RSEN: Repeated Start Condition Enabled bit (when operating as I2C master)
1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master
Repeated Start sequence.
0 = Repeated Start condition is not in progress
bit 0 SEN: Start Condition Enabled bit (when operating as I2C master)
1 = Initiates Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.
0 = Start condition is not in progress
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)
PIC24FJ64GA104 FAMILY
DS39951C-page 180 2010 Microchip Technology Inc.
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER
R-0, HSC R-0, HSC U-0 U-0 U-0 R/C-0, HS R-0, HSC R-0, HSC
ACKSTAT TRSTAT BCL GCSTAT ADD10
bit 15 bit 8
R/C-0, HS R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC R-0, HSC R-0, HSC R-0, HSC
IWCOL I2COV D/A PSR/W RBF TBF
bit 7 bit 0
Legend: C = Clearable bit HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set 0’ = Bit is cleared x = Bit is unknown
bit 15 ACKSTAT: Acknowledge Status bit
1 = NACK was detected last
0 = ACK was detected last
Hardware set or clear at end of Acknowledge.
bit 14 TRSTAT: Transmit Status bit
(When operating as I2C master. Applicable to master transmit operation.)
1 = Master transmit is in progress (8 bits + ACK)
0 = Master transmit is not in progress
Hardware set at the beginning of master transmission. Hardware clear at the end of slave Acknowledge.
bit 13-11 Unimplemented: Read as 0
bit 10 BCL: Master Bus Collision Detect bit
1 = A bus collision has been detected during a master operation
0 = No collision
Hardware set at detection of bus collision.
bit 9 GCSTAT: General Call Status bit
1 = General call address was received
0 = General call address was not received
Hardware set when the address matches the general call address. Hardware clear at Stop detection.
bit 8 ADD10: 10-Bit Address Status bit
1 = 10-bit address was matched
0 = 10-bit address was not matched
Hardware set at the match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7 IWCOL: Write Collision Detect bit
1 = An attempt to write to the I2CxTRN register failed because the I2C module is busy
0 = No collision
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit 6 I2COV: Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register was still holding the previous byte
0 = No overflow
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5 D/A: Data/Address bit (when operating as I2C slave)
1 = Indicates that the last byte received was data
0 = Indicates that the last byte received was the the device address
Hardware clear occurs at device address match. Hardware set after a transmission finishes or at reception
of a slave byte.
2010 Microchip Technology Inc. DS39951C-page 181
PIC24FJ64GA104 FAMILY
bit 4 P: Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop is detected.
bit 3 S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop is detected.
bit 2 R/W: Read/Write Information bit (when operating as I2C slave)
1 = Read – indicates data transfer is output from the slave
0 = Write – indicates data transfer is input to the slave
Hardware set or clear after reception of I2C device address byte.
bit 1 RBF: Receive Buffer Full Status bit
1 = Receive is complete, I2CxRCV is full
0 = Receive is not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0 TBF: Transmit Buffer Full Status bit
1 = Transmit is in progress, I2CxTRN is full
0 = Transmit is complete, I2CxTRN is empty
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)
PIC24FJ64GA104 FAMILY
DS39951C-page 182 2010 Microchip Technology Inc.
REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
AMSK9 AMSK8
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AMSK7 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 AMSK0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-10 Unimplemented: Read as ‘0
bit 9-0 AMSK<9:0>: Mask for Address Bit x Select bits
1 = Enable masking for bit x of incoming message address; bit match is not required in this position
0 = Disable masking for bit x; bit match is required in this position
2010 Microchip Technology Inc. DS39951C-page 183
PIC24FJ64GA104 FAMILY
17.0 UNIVERSAL ASYNCHRONOUS
RECEIVER TRANSMITTER
(UART)
The Universal Asynchronous Receiver Transmitter
(UART) module is one of the serial I/O modules available
in the PIC24F device family. The UART is a full-duplex,
asynchronous system that can communicate with
peripheral devices, such as personal computers,
LIN/J2602, RS-232 and RS-485 interfaces. The module
also supports a hardware flow control option with the
UxCTS and UxRTS pins, and also includes an IrDA®
encoder and decoder.
The primary features of the UART module are:
Full-Duplex, 8 or 9-Bit Data Transmission through
the UxTX and UxRX pins
Even, Odd or No Parity Options (for 8-bit data)
One or Two Stop bits
Hardware Flow Control Option with UxCTS and
UxRTS pins
Fully Integrated Baud Rate Generator with 16-Bit
Prescaler
Baud Rates Ranging from 1 Mbps to 15 bps at
16 MIPS
4-Deep, First-In-First-Out (FIFO) Transmit Data
Buffer
4-Deep FIFO Receive Data Buffer
Parity, Framing and Buffer Overrun Error Detection
Support for 9-Bit mode with Address Detect
(9th bit = 1)
Transmit and Receive Interrupts
Loopback mode for Diagnostic Support
Support for Sync and Break Characters
Supports Automatic Baud Rate Detection
IrDA Encoder and Decoder Logic
16x Baud Clock Output for IrDA Support
A simplified block diagram of the UART is shown in
Figure 17-1. The UART module consists of these key
important hardware elements:
Baud Rate Generator
Asynchronous Transmitter
Asynchronous Receiver
FIGURE 17-1: UART SIMPLIFIED BLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 21. “UART” (DS39708).
UxRX
IrDA®
Hardware Flow Control
UARTx Receiver
UARTx Transmitter UxTX
UxCTS
UxRTS/BCLKx
Baud Rate Generator
Note: The UART inputs and outputs must all be assigned to available RPn pins before use. Please see
Section 10.4 “Peripheral Pin Select (PPS)” for more information.
PIC24FJ64GA104 FAMILY
DS39951C-page 184 2010 Microchip Technology Inc.
17.1 UART Baud Rate Generator (BRG)
The UART module includes a dedicated 16-bit Baud
Rate Generator. The UxBRG register controls the
period of a free-running, 16-bit timer. Equation 17-1
shows the formula for computation of the baud rate
with BRGH = 0.
EQUATION 17-1: UART BAUD RATE WITH
BRGH = 0(1,2)
Example 17-1 shows the calculation of the baud rate
error for the following conditions:
•F
CY = 4 MHz
Desired Baud Rate = 9600
The maximum baud rate (BRGH = 0) possible is
FCY/16 (for UxBRG = 0) and the minimum baud rate
possible is FCY/(16 * 65536).
Equation 17-2 shows the formula for computation of
the baud rate with BRGH = 1.
EQUATION 17-2: UART BAUD RATE WITH
BRGH = 1(1,2)
The maximum baud rate (BRGH = 1) possible is FCY/4
(for UxBRG = 0) and the minimum baud rate possible
is FCY/(4 * 65536).
Writing a new value to the UxBRG register causes the
BRG timer to be reset (cleared). This ensures the BRG
does not wait for a timer overflow before generating the
new baud rate.
EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)(1)
Note 1: FCY denotes the instruction cycle clock
frequency (FOSC/2).
2: Based on FCY = FOSC/2, Doze mode
and PLL are disabled.
Baud Rate = FCY
16 • (UxBRG + 1)
FCY
16 • Baud Rate
UxBRG = – 1
Baud Rate = FCY
4 • (UxBRG + 1)
FCY
4 • Baud Rate
UxBRG = 1
Note 1: FCY denotes the instruction cycle clock
frequency.
2: Based on FCY = FOSC/2, Doze mode
and PLL are disabled.
Desired Baud Rate = FCY/(16 (UxBRG + 1))
Solving for UxBRG Value:
UxBRG = ((FCY/Desired Baud Rate)/16) – 1
UxBRG = ((4000000/9600)/16) – 1
UxBRG = 25
Calculated Baud Rate = 4000000/(16 (25 + 1))
= 9615
Error = (Calculated Baud Rate – Desired Baud Rate)
Desired Baud Rate
= (9615 – 9600)/9600
= 0.16%
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.
2010 Microchip Technology Inc. DS39951C-page 185
PIC24FJ64GA104 FAMILY
17.2 Transmitting in 8-Bit Data Mode
1. Set up the UART:
a) Write appropriate values for data, parity and
Stop bits.
b) Write appropriate baud rate value to the
UxBRG register.
c) Set up transmit and receive interrupt enable
and priority bits.
2. Enable the UART.
3. Set the UTXEN bit (causes a transmit interrupt
two cycles after being set).
4. Write data byte to the lower byte of the
UxTXREG word. The value will be immediately
transferred to the Transmit Shift Register (TSR)
and the serial bit stream will start shifting out
with the next rising edge of the baud clock.
5. Alternately, the data byte may be transferred
while UTXEN = 0, and then the user may set
UTXEN. This will cause the serial bit stream to
begin immediately because the baud clock will
start from a cleared state.
6. A transmit interrupt will be generated as per
interrupt control bit, UTXISELx.
17.3 Transmitting in 9-Bit Data Mode
1. Set up the UART (as described in Section 17.2
“Transmitting in 8-Bit Data Mode”).
2. Enable the UART.
3. Set the UTXEN bit (causes a transmit interrupt).
4. Write UxTXREG as a 16-bit value only.
5. A word write to UxTXREG triggers the transfer
of the 9-bit data to the TSR. The serial bit stream
will start shifting out with the first rising edge of
the baud clock.
6. A transmit interrupt will be generated as per the
setting of control bit, UTXISELx.
17.4 Break and Sync Transmit
Sequence
The following sequence will send a message frame
header made up of a Break, followed by an Auto-Baud
Sync byte.
1. Configure the UART for the desired mode.
2. Set UTXEN and UTXBRK to set up the Break
character.
3. Load the UxTXREG with a dummy character to
initiate transmission (value is ignored).
4. Write ‘55h’ to UxTXREG; this loads the Sync
character into the transmit FIFO.
5. After the Break has been sent, the UTXBRK bit
is reset by hardware. The Sync character now
transmits.
17.5 Receiving in 8-Bit or 9-Bit Data
Mode
1. Set up the UART (as described in Section 17.2
“Transmitting in 8-Bit Data Mode”).
2. Enable the UART.
3. A receive interrupt will be generated when one
or more data characters have been received as
per interrupt control bit, URXISELx.
4. Read the OERR bit to determine if an overrun
error has occurred. The OERR bit must be reset
in software.
5. Read UxRXREG.
The act of reading the UxRXREG character will move
the next character to the top of the receive FIFO,
including a new set of PERR and FERR values.
17.6 Operation of UxCTS and UxRTS
Control Pins
UARTx Clear to Send (UxCTS) and Request to Send
(UxRTS) are the two hardware-controlled pins that are
associated with the UART module. These two pins
allow the UART to operate in Simplex and Flow Control
modes. They are implemented to control the transmis-
sion and reception between the Data Terminal
Equipment (DTE). The UEN<1:0> bits in the UxMODE
register configure these pins.
17.7 Infrared Support
The UART module provides two types of infrared UART
support: one is the IrDA clock output to support the
external IrDA encoder and decoder device (legacy
module support), and the other is the full implementa-
tion of the IrDA encoder and decoder. Note that
because the IrDA modes require a 16x baud clock, they
will only work when the BRGH bit (UxMODE<3>) is ‘0’.
17.7.1 IRDA CLOCK OUTPUT FOR
EXTERNAL IRDA SUPPORT
To support external IrDA encoder and decoder devices,
the BCLKx pin (same as the UxRTS pin) can be
configured to generate the 16x baud clock. When
UEN<1:0> = 11, the BCLKx pin will output the 16x
baud clock if the UART module is enabled. It can be
used to support the IrDA codec chip.
17.7.2 BUILT-IN IRDA ENCODER AND
DECODER
The UART has full implementation of the IrDA encoder
and decoder as part of the UART module. The built-in
IrDA encoder and decoder functionality is enabled
using the IREN bit (UxMODE<12>). When enabled
(IREN = 1), the receive pin (UxRX) acts as the input
from the infrared receiver. The transmit pin (UxTX) acts
as the output to the infrared transmitter.
PIC24FJ64GA104 FAMILY
DS39951C-page 186 2010 Microchip Technology Inc.
REGISTER 17-1: UxMODE: UARTx MODE REGISTER
R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0
UARTEN(1) USIDL IREN(2) RTSMD UEN1 UEN0
bit 15 bit 8
R/W-0, HC R/W-0 R/W-0, HC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
WAKE LPBACK ABAUD RXINV BRGH PDSEL1 PDSEL0 STSEL
bit 7 bit 0
Legend: HC = Hardware Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 UARTEN: UARTx Enable bit(1)
1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>
0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption is minimal
bit 14 Unimplemented: Read as0
bit 13 USIDL: Stop in Idle Mode bit
1 = Discontinue module operation when the device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 IREN: IrDA® Encoder and Decoder Enable bit(2)
1 = IrDA encoder and decoder are enabled
0 = IrDA encoder and decoder are disabled
bit 11 RTSMD: Mode Selection for UxRTS Pin bit
1 =UxRTS pin is in Simplex mode
0 =UxRTS
pin is in Flow Control mode
bit 10 Unimplemented: Read as0
bit 9-8 UEN<1:0>: UARTx Enable bits
11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by port latches
10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used
01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by port latches
00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by
port latches
bit 7 WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit
1 = UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared in
hardware on following rising edge
0 = No wake-up is enabled
bit 6 LPBACK: UARTx Loopback Mode Select bit
1 = Enable Loopback mode
0 = Loopback mode is disabled
bit 5 ABAUD: Auto-Baud Enable bit
1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h);
cleared in hardware upon completion
0 = Baud rate measurement is disabled or completed
bit 4 RXINV: Receive Polarity Inversion bit
1 = UxRX Idle state is ‘0
0 = UxRX Idle state is ‘1
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See
Section 10.4 “Peripheral Pin Select (PPS)” for more information.
2: This feature is only available for the 16x BRG mode (BRGH = 0).
2010 Microchip Technology Inc. DS39951C-page 187
PIC24FJ64GA104 FAMILY
bit 3 BRGH: High Baud Rate Enable bit
1 = High-Speed mode (four BRG clock cycles per bit)
0 = Standard mode (16 BRG clock cycles per bit)
bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
10 = 8-bit data, odd parity
01 = 8-bit data, even parity
00 = 8-bit data, no parity
bit 0 STSEL: Stop Bit Selection bit
1 = Two Stop bits
0 = One Stop bit
REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See
Section 10.4 “Peripheral Pin Select (PPS)” for more information.
2: This feature is only available for the 16x BRG mode (BRGH = 0).
PIC24FJ64GA104 FAMILY
DS39951C-page 188 2010 Microchip Technology Inc.
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER
R/W-0 R/W-0 R/W-0 U-0 R/W-0, HC R/W-0 R-0 R-1
UTXISEL1 UTXINV(1) UTXISEL0 UTXBRK UTXEN(2) UTXBF TRMT
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R-1 R-0 R-0 R/C-0 R-0
URXISEL1 URXISEL0 ADDEN RIDLE PERR FERR OERR URXDA
bit 7 bit 0
Legend: C = Clearable bit HC = Hardware Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits
11 = Reserved; do not use
10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result,
the transmit buffer becomes empty
01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit
operations are completed
00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at
least one character open in the transmit buffer)
bit 14 UTXINV: IrDA® Encoder Transmit Polarity Inversion bit(1)
IREN = 0:
1 = UxTX Idle ‘0
0 = UxTX Idle ‘1
IREN = 1:
1 = UxTX Idle ‘1
0 = UxTX Idle ‘0
bit 12 Unimplemented: Read as ‘0
bit 11 UTXBRK: Transmit Break bit
1 = Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;
cleared by hardware upon completion
0 = Sync Break transmission is disabled or completed
bit 10 UTXEN: Transmit Enable bit(2)
1 = Transmit is enabled, UxTX pin is controlled by UARTx
0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is
controlled by port
bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
0 = Transmit buffer is not full; at least one more character can be written
bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters)
10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer;
receive buffer has one or more characters
Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See
Section 10.4 “Peripheral Pin Select (PPS)” for more information.
2010 Microchip Technology Inc. DS39951C-page 189
PIC24FJ64GA104 FAMILY
bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1)
1 = Address Detect mode is enabled. If 9-bit mode is not selected, this does not take effect.
0 = Address Detect mode is disabled
bit 4 RIDLE: Receiver Idle bit (read-only)
1 = Receiver is Idle
0 = Receiver is active
bit 3 PERR: Parity Error Status bit (read-only)
1 = Parity error has been detected for the current character (character at the top of the receive FIFO)
0 = Parity error has not been detected
bit 2 FERR: Framing Error Status bit (read-only)
1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
0 = Framing error has not been detected
bit 1 OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
1 = Receive buffer has overflowed
0 = Receive buffer has not overflowed (clearing a previously set OERR bit (10 transition) will reset
the receiver buffer and the RSR to the empty state
bit 0 URXDA: Receive Buffer Data Available bit (read-only)
1 = Receive buffer has data, at least one more character can be read
0 = Receive buffer is empty
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).
2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See
Section 10.4 “Peripheral Pin Select (PPS)” for more information.
PIC24FJ64GA104 FAMILY
DS39951C-page 190 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 191
PIC24FJ64GA104 FAMILY
18.0 PARALLEL MASTER PORT
(PMP)
The Parallel Master Port (PMP) module is a parallel,
8-bit I/O module, specifically designed to communicate
with a wide variety of parallel devices, such as commu-
nication peripherals, LCDs, external memory devices
and microcontrollers. Because the interface to parallel
peripherals varies significantly, the PMP is highly
configurable.
Key features of the PMP module include:
Up to 16 Programmable Address Lines
One Chip Select Line
Programmable Strobe Options:
- Individual Read and Write Strobes or;
- Read/Write Strobe with Enable Strobe
Address Auto-Increment/Auto-Decrement
Programmable Address/Data Multiplexing
Programmable Polarity on Control Signals
Legacy Parallel Slave Port Support
Enhanced Parallel Slave Support:
- Address Support
- 4-Byte Deep Auto-Incrementing Buffer
Programmable Wait States
Selectable Input Voltage Levels
FIGURE 18-1: PMP MODULE OVERVIEW
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 13. “Parallel Master Port
(PMP)” (DS39713).
Note: A number of the pins for the PMP are not
present on PIC24FJ64GA1 family devices.
Refer to the specific device’s pinout to
determine which pins are available.
PMA<0>
PMBE
PMRD
PMWR
PMD<7:0>
PMENB
PMRD/PMWR
PMCS1
PMA<1>
PMA<10:2>
PMALL
PMALH
PMA<7:0>
PMA<15:8>
EEPROM
Address Bus
Data Bus
Control Lines
LCD FIFO
Microcontroller
8-Bit Data
Up to 11-Bit Address
Buffer
Note 1: PMA<10:2> bits are not available on 28-pin devices.
(1)
PIC24F
Parallel Master Port
PIC24FJ64GA104 FAMILY
DS39951C-page 192 2010 Microchip Technology Inc.
REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER
R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PMPEN PSIDL
ADRMUX1
(1)
ADRMUX0
(1) PTBEEN PTWREN PTRDEN
bit 15 bit 8
R/W-0 R/W-0 R/W-0(2) U-0 R/W-0(2) R/W-0 R/W-0 R/W-0
CSF1 CSF0 ALP CS1P BEP WRSP RDSP
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 PMPEN: Parallel Master Port Enable bit
1 = PMP is enabled
0 = PMP is disabled, no off-chip access performed
bit 14 Unimplemented: Read as ‘0
bit 13 PSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits(1)
11 = Reserved
10 = All 16 bits of address are multiplexed on PMD<7:0> pins
01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on
PMA<10:8>
00 = Address and data appear on separate pins
bit 10 PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode)
1 = PMBE port is enabled
0 = PMBE port is disabled
bit 9 PTWREN: Write Enable Strobe Port Enable bit
1 = PMWR/PMENB port is enabled
0 = PMWR/PMENB port is disabled
bit 8 PTRDEN: Read/Write Strobe Port Enable bit
1 = PMRD/PMWR port is enabled
0 = PMRD/PMWR port is disabled
bit 7-6 CSF<1:0>: Chip Select Function bits
11 = Reserved
10 = PMCS1 functions as chip set
01 = Reserved
00 = Reserved
bit 5 ALP: Address Latch Polarity bit(2)
1 = Active-high (PMALL and PMALH)
0 = Active-low (PMALL and PMALH)
bit 4 Unimplemented: Read as0
bit 3 CS1P: Chip Select 1 Polarity bit(2)
1 = Active-high (PMCS1/PMCS1)
0 =Active-low (PMCS1
/PMCS1)
Note 1: PMA<10:2> bits are not available on 28-pin devices.
2: These bits have no effect when their corresponding pins are used as address lines.
2010 Microchip Technology Inc. DS39951C-page 193
PIC24FJ64GA104 FAMILY
bit 2 BEP: Byte Enable Polarity bit
1 = Byte enable active-high (PMBE)
0 = Byte enable active-low (PMBE)
bit 1 WRSP: Write Strobe Polarity bit
For Slave modes and Master Mode 2 (PMMODE<9:8> = 00,01,10):
1 = Write strobe active-high (PMWR)
0 = Write strobe active-low (PMWR)
For Master Mode 1 (PMMODE<9:8> = 11):
1 = Enable strobe active-high (PMENB)
0 = Enable strobe active-low (PMENB)
bit 0 RDSP: Read Strobe Polarity bit
For Slave modes and Master Mode 2 (PMMODE<9:8> = 00,01,10):
1 = Read strobe active-high (PMRD)
0 = Read strobe active-low (PMRD)
For Master Mode 1 (PMMODE<9:8> = 11):
1 = Read/write strobe active-high (PMRD/PMWR)
0 = Read/write strobe active-low (PMRD/PMWR)
REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
Note 1: PMA<10:2> bits are not available on 28-pin devices.
2: These bits have no effect when their corresponding pins are used as address lines.
PIC24FJ64GA104 FAMILY
DS39951C-page 194 2010 Microchip Technology Inc.
REGISTER 18-2: PMMODE: PARALLEL PORT MODE REGISTER
R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BUSY IRQM1 IRQM0 INCM1 INCM0 MODE16 MODE1 MODE0
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
WAITB1(1) WAITB0(1) WAITM3 WAITM2 WAITM1 WAITM0 WAITE1(1) WAITE0(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 BUSY: Busy bit (Master mode only)
1 = Port is busy (not useful when the processor stall is active)
0 = Port is not busy
bit 14-13 IRQM<1:0>: Interrupt Request Mode bits
11 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode),
or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only)
10 = No interrupt is generated, processor stall activated
01 = Interrupt is generated at the end of the read/write cycle
00 = No interrupt is generated
bit 12-11 INCM<1:0>: Increment Mode bits
11 = PSP read and write buffers auto-increment (Legacy PSP mode only)
10 = Decrement ADDR<10:0> by 1 every read/write cycle
01 = Increment ADDR<10:0> by 1 every read/write cycle
00 = No increment or decrement of address
bit 10 MODE16: 8/16-Bit Mode bit
1 = 16-bit mode: Data register is 16 bits; a read or write to the Data register invokes two 8-bit transfers
0 = 8-bit mode: Data register is 8 bits; a read or write to the Data register invokes one 8-bit transfer
bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
11 = Master Mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)
10 = Master Mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)
01 = Enhanced PSP control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>)
00 = Legacy Parallel Slave Port control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)
bit 7-6 WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits(1)
11 = Data wait of 4 TCY; multiplexed address phase of 4 TCY
10 = Data wait of 3 TCY; multiplexed address phase of 3 TCY
01 = Data wait of 2 TCY; multiplexed address phase of 2 TCY
00 = Data wait of 1 TCY; multiplexed address phase of 1 TCY
bit 5-2 WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits
1111 = Wait of additional 15 TCY
...
0001 = Wait of additional 1 T
CY
0000 = No additional wait cycles (operation forced into one TCY)
bit 1-0 WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits(1)
11 = Wait of 4 TCY
10 = Wait of 3 TCY
01 = Wait of 2 TCY
00 = Wait of 1 TCY
Note 1: WAITB and WAITE bits are ignored whenever WAITM<3:0> = 0000.
2010 Microchip Technology Inc. DS39951C-page 195
PIC24FJ64GA104 FAMILY
REGISTER 18-3: PMADDR: PARALLEL PORT ADDRESS REGISTER
U-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
—CS1 ADDR10(1) ADDR9(1) ADDR8(1)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADDR7(1) ADDR6(1) ADDR5(1) ADDR4(1) ADDR3(1) ADDR2(1) ADDR1(1) ADDR0(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14 CS1: Chip Select 1 bit
1 = Chip Select 1 is active
0 = Chip Select 1 is inactive
bit 13-11 Unimplemented: Read as ‘0
bit 10-0 ADDR<10:0>: Parallel Port Destination Address bits(1)
Note 1: PMA<10:2> bits are not available on 28-pin devices.
REGISTER 18-4: PMAEN: PARALLEL PORT ENABLE REGISTER
U-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
—PTEN14 —PTEN10
(1) PTEN9(1) PTEN8(1)
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PTEN7(1) PTEN6(1) PTEN5(1) PTEN4(1) PTEN3(1) PTEN2(1) PTEN1 PTEN0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14 PTEN14: PMCS1 Strobe Enable bit
1 = PMCS1 functions as chip select
0 = PMCS1 pin functions as port I/O
bit 13-11 Unimplemented: Read as ‘0
bit 10-2 PTEN<10:2>: PMP Address Port Enable bits(1)
1 = PMA<10:2> function as PMP address lines
0 = PMA<10:2> function as port I/O
bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits
1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL
0 = PMA1 and PMA0 pads function as port I/O
Note 1: PMA<10:2> bits are not available on 28-pin devices.
PIC24FJ64GA104 FAMILY
DS39951C-page 196 2010 Microchip Technology Inc.
REGISTER 18-5: PMSTAT: PARALLEL PORT STATUS REGISTER
R-0 R/W-0, HS U-0 U-0 R-0 R-0 R-0 R-0
IBF IBOV IB3F IB2F IB1F IB0F
bit 15 bit 8
R-1 R/W-0, HS U-0 U-0 R-1 R-1 R-1 R-1
OBE OBUF OB3E OB2E OB1E OB0E
bit 7 bit 0
Legend: HS = Hardware Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 IBF: Input Buffer Full Status bit
1 = All writable input buffer registers are full
0 = Some or all of the writable input buffer registers are empty
bit 14 IBOV: Input Buffer Overflow Status bit
1 = A write attempt to a full input byte register occurred (must be cleared in software)
0 = No overflow occurred
bit 13-12 Unimplemented: Read as ‘0
bit 11-8 IB3F:IB0F Input Buffer x Status Full bits
1 = Input buffer contains data that has not been read (reading buffer will clear this bit)
0 = Input buffer does not contain any unread data
bit 7 OBE: Output Buffer Empty Status bit
1 = All readable output buffer registers are empty
0 = Some or all of the readable output buffer registers are full
bit 6 OBUF: Output Buffer Underflow Status bits
1 = A read occurred from an empty output byte register (must be cleared in software)
0 = No underflow occurred
bit 5-4 Unimplemented: Read as ‘0
bit 3-0 OB3E:OB0E Output Buffer x Status Empty bits
1 = Output buffer is empty (writing data to the buffer will clear this bit)
0 = Output buffer contains data that has not been transmitted
2010 Microchip Technology Inc. DS39951C-page 197
PIC24FJ64GA104 FAMILY
REGISTER 18-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
—————
RTSECSEL1
(1)
RTSECSEL0
(1)
PMPTTL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-3 Unimplemented: Read as ‘0
bit 2-1 RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits(1)
11 = Reserved; do not use
10 = RTCC source clock is selected for the RTCC pin (clock can be LPRC or SOSC, depending on the
setting of the Flash Configuration bit, RTCOSC (CW4<5>))
01 = RTCC seconds clock is selected for the RTCC pin
00 = RTCC alarm pulse is selected for the RTCC pin
bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit
1 = PMP module uses TTL input buffers
0 = PMP module uses Schmitt Trigger input buffers
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.
PIC24FJ64GA104 FAMILY
DS39951C-page 198 2010 Microchip Technology Inc.
FIGURE 18-2: LEGACY PARALLEL SLAVE PORT EXAMPLE
FIGURE 18-3: ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE
TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION
FIGURE 18-4: MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND
WRITE STROBES, SINGLE CHIP SELECT)
PMA<1:0> Output Register (Buffer) Input Register (Buffer)
00 PMDOUT1<7:0> (0) PMDIN1<7:0> (0)
01 PMDOUT1<15:8> (1) PMDIN1<15:8> (1)
10 PMDOUT2<7:0> (2) PMDIN2<7:0> (2)
11 PMDOUT2<15:8> (3) PMDIN2<15:8> (3)
PMD<7:0>
PMRD
PMWR
Master Address Bus
Data Bus
Control Lines
PMCS1
PMD<7:0>
PMRD
PMWR
PMCS1
PIC24F Slave
PMD<7:0>
PMRD
PMWR
Master
PMCS1
PMA<1:0>
Address Bus
Data Bus
Control Lines
PMRD
PMWR
PMCS1
PMDOUT1L (0)
PMDOUT1H (1)
PMDOUT2L (2)
PMDOUT2H (3)
PMDIN1L (0)
PMDIN1H (1)
PMDIN2L (2)
PMDIN2H (3)
PMD<7:0> Write
Address
Decode
Read
Address
Decode
PMA<1:0> PIC24F Slave
PMRD
PMWR
PMD<7:0>
PMCS1
PMA<10:0>
Address Bus
Data Bus
Control Lines
PIC24F
2010 Microchip Technology Inc. DS39951C-page 199
PIC24FJ64GA104 FAMILY
FIGURE 18-5: MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ
AND WRITE STROBES, SINGLE CHIP SELECT)
FIGURE 18-6: MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND
WRITE STROBES, SINGLE CHIP SELECT)
FIGURE 18-7: EXAMPLE OF A MULTIPLEXED ADDRESSING APPLICATION
FIGURE 18-8: EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION
PMRD
PMWR
PMD<7:0>
PMCS1
PMA<10:8>
PMALL
PMA<7:0>
Address Bus
Multiplexed
Data and
Address Bus
Control Lines
PIC24F
PMRD
PMWR
PMD<7:0>
PMCS1
PMALH
PMA<15:8>
Multiplexed
Data and
Address Bus
Control Lines
PMALL
PMA<7:0>
PIC24F
PMD<7:0>
PMALH
D<7:0>
373 A<15:0>
D<7:0>
A<7:0>
373
PMRD
PMWR
OE WR
CE
Address Bus
Data Bus
Control Lines
PMCS1
PMALL
A<15:8>
PIC24F
PMA<10:8>
D<7:0>
373 A<10:0>
D<7:0>
A<7:0>
PMRD
PMWR
OE WR
CE
Address Bus
Data Bus
Control Lines
PMCS1
PMALL
A<10:8>
PMD<7:0>
PIC24F
PIC24FJ64GA104 FAMILY
DS39951C-page 200 2010 Microchip Technology Inc.
FIGURE 18-9: EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION
FIGURE 18-10: PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 8-BIT DATA)
FIGURE 18-11: PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 16-BIT DATA)
FIGURE 18-12: LCD CONTROL EXAMPLE (BYTE MODE OPERATION)
ALE
PMRD
PMWR
RD
WR
CS Address Bus
Data Bus
Control Lines
PMCS1
PMALL
AD<7:0>
Parallel Peripheral
PMD<7:0>
PIC24F
PMA<n:0> A<n:0>
D<7:0>
PMRD
PMWR
OE
WR
CE Address Bus
Data Bus
Control Lines
PMCS1
PMD<7:0>
Parallel EEPROM
PIC24F
PMA<n:0> A<n:1>
D<7:0>
PMRD
PMWR
OE
WR
CE Address Bus
Data Bus
Control Lines
PMCS1
PMD<7:0>
Parallel EEPROM
PMBE A0
PIC24F
PMRD/PMWR
D<7:0>
Address Bus
Data Bus
Control Lines
PMA0
R/W
RS
E
LCD Controller
PMCS1
PMD<7:0>
PIC24F
2010 Microchip Technology Inc. DS39951C-page 201
PIC24FJ64GA104 FAMILY
19.0 REAL-TIME CLOCK AND
CALENDAR (RTCC)
The RTCC provides the user with a Real-Time Clock
and Calendar (RTCC) function that can be calibrated.
Key features of the RTCC module are:
Operates in Deep Sleep mode
Selectable clock source
Provides hours, minutes and seconds using
24-hour format
Visibility of one half second period
Provides calendar – weekday, date, month and
year
Alarm-configurable for half a second, one second,
10 seconds, one minute, 10 minutes, one hour,
one day, one week, one month or one year
Alarm repeat with decrementing counter
Alarm with indefinite repeat chime
Year 2000 to 2099 leap year correction
BCD format for smaller software overhead
Optimized for long-term battery operation
User calibration of the 32.768 kHz clock
crystal/32K INTRC frequency with periodic
auto-adjust
19.1 RTCC Source Clock
The user can select between the SOSC crystal
oscillator or the LPRC Low-Power Internal Oscillator as
the clock reference for the RTCC module. This is con-
figured using the RTCOSC (CW4<5>) Configuration
bit. This gives the user an option to trade off system
cost, accuracy and power consumption, based on the
overall system needs.
The SOSC and RTCC will both remain running while
the device is held in Reset with MCLR and will continue
running after MCLR is released.
FIGURE 19-1: RTCC BLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 29. “Real-Time Clock and
Calendar (RTCC)” (DS39696).
RTCC Clock Domain CPU Clock Domain
RTCC
RTCC Prescalers
RTCC Timer
Comparator
Alarm Registers with Masks
Repeat Counter
0.5 Sec
ALRMVAL
RTCVAL
ALCFGRPT
RCFGCAL
Alarm
Event
YEAR
MTHDY
WKDYHR
MINSEC
ALMTHDY
ALWDHR
ALMINSEC
RTCC
Interrupt
RTSECSEL<1:0>
RTCOE
10
00
01
Clock Source
1 Sec
Pin
Alarm Pulse
Input from
SOSC/LPRC
Oscillator
RTCC Interrupt Logic
PIC24FJ64GA104 FAMILY
DS39951C-page 202 2010 Microchip Technology Inc.
19.2 RTCC Module Registers
The RTCC module registers are organized into three
categories:
RTCC Control Registers
RTCC Value Registers
Alarm Value Registers
19.2.1 REGISTER MAPPING
To limit the register interface, the RTCC Timer and
Alarm Time registers are accessed through
corresponding register pointers. The RTCC Value
register window (RTCVALH and RTCVALL) uses the
RTCPTR bits (RCFGCAL<9:8>) to select the desired
Timer register pair (see Table 19-1).
By writing to the RTCVALH byte, the RTCC Pointer
value (the RTCPTR<1:0> bits) decrements by one until
they reach ‘00’. Once they reach ‘00’, the MINUTES
and SECONDS value will be accessible through
RTCVALH and RTCVALL until the pointer value is
manually changed.
TABLE 19-1: RTCVAL REGISTER MAPPING
The Alarm Value register window (ALRMVALH and
ALRMVALL) uses the ALRMPTR bits
(ALCFGRPT<9:8>) to select the desired Alarm register
pair (see Table 19-2).
By writing to the ALRMVALH byte, the Alarm Pointer
value (ALRMPTR<1:0> bits) decrements by one until
they reach ‘00’. Once they reach ‘00’, the ALRMMIN
and ALRMSEC value will be accessible through
ALRMVALH and ALRMVALL until the pointer value is
manually changed.
TABLE 19-2: ALRMVAL REGISTER
MAPPING
Considering that the 16-bit core does not distinguish
between 8-bit and 16-bit read operations, the user must
be aware that when reading either the ALRMVALH or
ALRMVALL bytes, the ALRMPTR<1:0> value will be
decremented. The same applies to the RTCVALH or
RTCVALL bytes with the RTCPTR<1:0> being
decremented.
19.2.2 WRITE LOCK
To perform a write to any of the RTCC Timer registers,
the RTCWREN bit (RCFGCAL<13>) must be set (refer
to Example 19-1).
19.2.3 SELECTING RTCC CLOCK SOURCE
The clock source for the RTCC module can be selected
using the Flash Configuration bit, RTCOSC (CW4<5>).
When the bit is set to ‘1’, the Secondary Oscillator
(SOSC) is used as the reference clock, and when the
bit is ‘0’, LPRC is used as the reference clock.
EXAMPLE 19-1: SETTING THE RTCWREN BIT
RTCPTR<1:0>
RTCC Value Register Window
RTCVAL<15:8> RTCVAL<7:0>
00 MINUTES SECONDS
01 WEEKDAY HOURS
10 MONTH DAY
11 YEAR
ALRMPTR
<1:0>
Alarm Value Register Window
ALRMVAL<15:8> ALRMVAL<7:0>
00 ALRMMIN ALRMSEC
01 ALRMWD ALRMHR
10 ALRMMNTH ALRMDAY
11 ——
Note: This only applies to read operations and
not write operations.
Note: To avoid accidental writes to the timer, it is
recommended that the RTCWREN bit
(RCFGCAL<13>) is kept clear at any
other time. For the RTCWREN bit to be
set, there is only one instruction cycle time
window allowed between the 55h/AA
sequence and the setting of RTCWREN;
therefore, it is recommended that code
follow the procedure in Example 19-1.
asm volatile(“push w7”);
asm volatile(“push w8”);
asm volatile(“disi #5”);
asm volatile(“mov #0x55, w7”);
asm volatile(“mov w7, _NVMKEY”);
asm volatile(“mov #0xAA, w8”);
asm volatile(“mov w8, _NVMKEY”);
asm volatile(“bset _RCFGCAL, #13”); //set the RTCWREN bit
asm volatile(“pop w8”);
asm volatile(“pop w7”);
2010 Microchip Technology Inc. DS39951C-page 203
PIC24FJ64GA104 FAMILY
19.2.4 RTCC CONTROL REGISTERS
REGISTER 19-1:
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER
(1
)
R/W-0 U-0 R/W-0 R-0, HSC R-0, HSC R/W-0 R/W-0 R/W-0
RTCEN(2) RTCWREN RTCSYNC HALFSEC(3) RTCOE RTCPTR1 RTCPTR0
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0
bit 7 bit 0
Legend: HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 RTCEN: RTCC Enable bit(2)
1 = RTCC module is enabled
0 = RTCC module is disabled
bit 14 Unimplemented: Read as ‘0
bit 13 RTCWREN: RTCC Value Registers Write Enable bit
1 = RTCVALH and RTCVALL registers can be written to by the user
0 = RTCVALH and RTCVALL registers are locked out from being written to by the user
bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit
1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple
resulting in an invalid data read. If the register is read twice and results in the same data, the data
can be assumed to be valid.
0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple
bit 11 HALFSEC: Half Second Status bit(3)
1 = Second half period of a second
0 = First half period of a second
bit 10 RTCOE: RTCC Output Enable bit
1 = RTCC output is enabled
0 = RTCC output is disabled
bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits
Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers.
The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.
RTCVAL<15:8>:
00 = MINUTES
01 = WEEKDAY
10 = MONTH
11 = Reserved
RTCVAL<7:0>:
00 = SECONDS
01 = HOURS
10 = DAY
11 = YEAR
Note 1: The RCFGCAL register is only affected by a POR.
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.
PIC24FJ64GA104 FAMILY
DS39951C-page 204 2010 Microchip Technology Inc.
bit 7-0 CAL<7:0>: RTC Drift Calibration bits
01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute
.
.
.
01111111 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute
00000000 = No adjustment
11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
.
.
.
10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute
REGISTER 19-1:
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER
(1
) (CONTINUED)
Note 1: The RCFGCAL register is only affected by a POR.
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.
REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
RTSECSEL1
(1)
RTSECSEL0
(1)
PMPTTL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-3 Unimplemented: Read as ‘0
bit 2-1 RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits(1)
11 = Reserved; do not use
10 = RTCC source clock is selected for the RTCC pin (clock can be LPRC or SOSC, depending on the
setting of the RTCOSC bit (CW4<5>))
01 = RTCC seconds clock is selected for the RTCC pin
00 = RTCC alarm pulse is selected for the RTCC pin
bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit
1 = PMP module uses TTL input buffers
0 = PMP module uses Schmitt Trigger input buffers
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.
2010 Microchip Technology Inc. DS39951C-page 205
PIC24FJ64GA104 FAMILY
REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ALRMEN CHIME AMASK3 AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ARPT7 ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ALRMEN: Alarm Enable bit
1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and
CHIME = 0)
0 = Alarm is disabled
bit 14 CHIME: Chime Enable bit
1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh
0 = Chime is disabled; ARPT<7:0> bits stop once they reach 00h
bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits
0000 = Every half second
0001 = Every second
0010 = Every 10 seconds
0011 = Every minute
0100 = Every 10 minutes
0101 = Every hour
0110 = Once a day
0111 = Once a week
1000 = Once a month
1001 = Once a year (except when configured for February 29th, once every 4 years)
101x = Reserved; do not use
11xx = Reserved; do not use
bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits
Points to the corresponding Alarm Value registers when reading the ALRMVALH and ALRMVALL registers.
The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.
ALRMVAL<15:8>:
00 = ALRMMIN
01 = ALRMWD
10 = ALRMMNTH
11 = Unimplemented
ALRMVAL<7:0>:
00 = ALRMSEC
01 = ALRMHR
10 = ALRMDAY
11 = Unimplemented
bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits
11111111 = Alarm will repeat 255 more times
.
.
.
00000000 = Alarm will not repeat
The counter decrements on any alarm event; it is prevented from rolling over from 00h to FFh unless
CHIME = 1.
PIC24FJ64GA104 FAMILY
DS39951C-page 206 2010 Microchip Technology Inc.
19.2.5 RTCVAL REGISTER MAPPINGS
REGISTER 19-4: YEAR: YEAR VALUE REGISTER(1)
U-0, HSC U-0, HSC U-0, HSC U-0, HSC U-0, HSC U-0, HSC U-0, HSC U-0, HSC
bit 15 bit 8
R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC
YRTEN3 YRTEN2 YRTEN1 YRTEN0 YRONE3 YRONE2 YRONE1 YRONE0
bit 7 bit 0
Legend: HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-8 Unimplemented: Read as ‘0
bit 7-4 YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit bits
Contains a value from 0 to 9.
bit 3-0 YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit bits
Contains a value from 0 to 9.
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.
REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER(1)
U-0, HSC U-0, HSC U-0, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC
MTHTEN0 MTHONE3 MTHONE2 MTHONE1 MTHONE0
bit 15 bit 8
U-0, HSC U-0, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC
DAYTEN1 DAYTEN0 DAYONE3 DAYONE2 DAYONE1 DAYONE0
bit 7 bit 0
Legend: HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12 MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit
Contains a value of 0 or 1.
bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits
Contains a value from 0 to 9.
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits
Contains a value from 0 to 3.
bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits
Contains a value from 0 to 9.
Note 1: A write to this register is only allowed when RTCWREN = 1.
2010 Microchip Technology Inc. DS39951C-page 207
PIC24FJ64GA104 FAMILY
REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER(1)
U-0, HSC U-0, HSC U-0, HSC U-0, HSC U-0, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC
WDAY2 WDAY1 WDAY0
bit 15 bit 8
U-0, HSC U-0, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC
HRTEN1 HRTEN0 HRONE3 HRONE2 HRONE1 HRONE0
bit 7 bit 0
Legend: HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
Contains a value from 0 to 6.
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits
Contains a value from 0 to 2.
bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits
Contains a value from 0 to 9.
Note 1: A write to this register is only allowed when RTCWREN = 1.
REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER
U-0, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC
MINTEN2 MINTEN1 MINTEN0 MINONE3 MINONE2 MINONE1 MINONE0
bit 15 bit 8
U-0, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC R/W-x, HSC
SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 SECONE1 SECONE0
bit 7 bit 0
Legend: HSC = Hardware Settable/Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as ‘0
bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits
Contains a value from 0 to 5.
bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits
Contains a value from 0 to 9.
bit 7 Unimplemented: Read as0
bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits
Contains a value from 0 to 5.
bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits
Contains a value from 0 to 9.
PIC24FJ64GA104 FAMILY
DS39951C-page 208 2010 Microchip Technology Inc.
19.2.6 ALRMVAL REGISTER MAPPINGS
REGISTER 19-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER(1)
U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x
MTHTEN0 MTHONE3 MTHONE2 MTHONE1 MTHONE0
bit 15 bit 8
U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DAYTEN1 DAYTEN0 DAYONE3 DAYONE2 DAYONE1 DAYONE0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12 MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit bit
Contains a value of 0 or 1.
bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit bits
Contains a value from 0 to 9.
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit bits
Contains a value from 0 to 3.
bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit bits
Contains a value from 0 to 9.
Note 1: A write to this register is only allowed when RTCWREN = 1.
REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER(1)
U-0 U-0 U-0 U-0 U-0 R/W-x R/W-x R/W-x
WDAY2 WDAY1 WDAY0
bit 15 bit 8
U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
HRTEN1 HRTEN0 HRONE3 HRONE2 HRONE1 HRONE0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
Contains a value from 0 to 6.
bit 7-6 Unimplemented: Read as ‘0
bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit bits
Contains a value from 0 to 2.
bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit bits
Contains a value from 0 to 9.
Note 1: A write to this register is only allowed when RTCWREN = 1.
2010 Microchip Technology Inc. DS39951C-page 209
PIC24FJ64GA104 FAMILY
REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER
U-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
MINTEN2 MINTEN1 MINTEN0 MINONE3 MINONE2 MINONE1 MINONE0
bit 15 bit 8
U-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 SECONE1 SECONE0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 Unimplemented: Read as0
bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit bits
Contains a value from 0 to 5.
bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit bits
Contains a value from 0 to 9.
bit 7 Unimplemented: Read as0
bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit bits
Contains a value from 0 to 5.
bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit bits
Contains a value from 0 to 9.
PIC24FJ64GA104 FAMILY
DS39951C-page 210 2010 Microchip Technology Inc.
19.3 Calibration
The real-time crystal input can be calibrated using the
periodic auto-adjust feature. When properly calibrated,
the RTCC can provide an error of less than 3 seconds
per month. This is accomplished by finding the number
of error clock pulses and storing the value into the
lower half of the RCFGCAL register. The 8-bit signed
value loaded into the lower half of RCFGCAL is
multiplied by four and will either be added or subtracted
from the RTCC timer, once every minute. Refer to the
steps below for RTCC calibration:
1. Using another timer resource on the device; the
user must find the error of the 32.768 kHz crystal.
2. Once the error is known, it must be converted to
the number of error clock pulses per minute.
3. a) If the oscillator is faster than ideal (negative
result from step 2), the RCFGCAL register value
must be negative. This causes the specified
number of clock pulses to be subtracted from
the timer counter, once every minute.
b) If the oscillator is slower than ideal (positive
result from step 2), the RCFGCAL register value
must be positive. This causes the specified
number of clock pulses to be subtracted from
the timer counter, once every minute.
Divide the number of error clocks per minute by 4 to get
the correct calibration value and load the RCFGCAL
register with the correct value. (Each 1-bit increment in
the calibration adds or subtracts 4 pulses.)
EQUATION 19-1:
Writes to the lower half of the RCFGCAL register
should only occur when the timer is turned off or
immediately after the rising edge of the seconds pulse.
19.4 Alarm
Configurable from half second to one year
Enabled using the ALRMEN bit (ALCFGRPT<15>)
One-time alarm and repeat alarm options are
available
19.4.1 CONFIGURING THE ALARM
The alarm feature is enabled using the ALRMEN bit.
This bit is cleared when an alarm is issued. Writes to
ALRMVAL should only take place when ALRMEN = 0.
As displayed in Figure 19-2, the interval selection of the
alarm is configured through the AMASK bits
(ALCFGRPT<13:10>). These bits determine which and
how many digits of the alarm must match the clock
value for the alarm to occur.
The alarm can also be configured to repeat based on a
preconfigured interval. The amount of times this
occurs, once the alarm is enabled, is stored in the
ARPT<7:0> bits (ALCFGRPT<7:0>). When the value
of the ARPT bits equals 00h and the CHIME bit
(ALCFGRPT<14>) is cleared, the repeat function is
disabled and only a single alarm will occur. The alarm
can be repeated up to 255 times by loading
ARPT<7:0> with FFh.
After each alarm is issued, the value of the ARPT bits
is decremented by one. Once the value has reached
00h, the alarm will be issued one last time, after which,
the ALRMEN bit will be cleared automatically and the
alarm will turn off.
Indefinite repetition of the alarm can occur if the
CHIME bit = 1. Instead of the alarm being disabled
when the value of the ARPT bits reaches 00h, it rolls
over to FFh and continues counting indefinitely while
CHIME is set.
19.4.2 ALARM INTERRUPT
At every alarm event, an interrupt is generated. In
addition, an alarm pulse output is provided that
operates at half the frequency of the alarm. This output
is completely synchronous to the RTCC clock and can
be used as a trigger clock to other peripherals.
Note: It is up to the user to include, in the error
value, the initial error of the crystal drift
due to temperature and drift due to crystal
aging.
(Ideal Frequency Measured Frequency) * 60 =
Clocks per Minute
† Ideal Frequency = 32,768 Hz
Note: Changing any of the registers, other than
the RCFGCAL and ALCFGRPT registers,
and the CHIME bit while the alarm is
enabled (ALRMEN = 1), can result in a
false alarm event leading to a false alarm
interrupt. To avoid a false alarm event, the
timer and alarm values should only be
changed while the alarm is disabled
(ALRMEN = 0). It is recommended that the
ALCFGRPT register and CHIME bit be
changed when RTCSYNC = 0.
2010 Microchip Technology Inc. DS39951C-page 211
PIC24FJ64GA104 FAMILY
FIGURE 19-2: ALARM MASK SETTINGS
Note 1: Annually, except when configured for February 29.
s
ss
mss
mm s s
hh mm ss
dhhmmss
dd hh mm s s
mm d d h h mm s s
Day of
the
Week Month Day Hours Minutes Seconds
Alarm Mask Setting
(AMASK<3:0>)
0000 - Every half second
0001 - Every second
0010 - Every 10 seconds
0011 - Every minute
0100 - Every 10 minutes
0101 - Every hour
0110 - Every day
0111 - Every week
1000 - Every month
1001 - Every year(1)
PIC24FJ64GA104 FAMILY
DS39951C-page 212 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 213
PIC24FJ64GA104 FAMILY
20.0 32-BIT PROGRAMMABLE
CYCLIC REDUNDANCY CHECK
(CRC) GENERATOR
The programmable CRC generator provides a
hardware-implemented method of quickly generating
checksums for various networking and security
applications. It offers the following features:
User-programmable CRC polynomial equation,
up to 32 bits
Programmable shift direction (little or big-endian)
Independent data and polynomial lengths
Configurable interrupt output
Data FIFO
A simplified block diagram of the CRC generator is
shown in Figure 20-1. A simple version of the CRC shift
engine is shown in Figure 20-2.
FIGURE 20-1: CRC BLOCK DIAGRAM
FIGURE 20-2: CRC SHIFT ENGINE DETAIL
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 41. “32-Bit Programmable
Cyclic Redundancy Check (CRC)”
(DS39729).
Variable FIFO
(4x32, 8x16 or 16x8)
CRCDATH CRCDATL
Shift Buffer
CRC Shift Engine
CRCWDATH CRCWDATL
LENDIAN
10
CRCISEL
1
0
FIFO Empty Event
Shift Complete Event
Set CRCIF
2 * FCY Shift Clock
CRCWDATH CRCWDATL
Bit 0 Bit 1 Bit n(2)
X(1)(1)
Read/Write Bus
Shift Buffer
Data Bit 2
X(2)(1) X(n)(1)
Note 1: Each XOR stage of the shift engine is programmable. See text for details.
2: Polynomial length n is determined by ([PLEN<3:0>] + 1)
PIC24FJ64GA104 FAMILY
DS39951C-page 214 2010 Microchip Technology Inc.
20.1 User Interface
20.1.1 POLYNOMIAL INTERFACE
The CRC module can be programmed for CRC
polynomials of up to the 32nd order, using up to 32 bits.
Polynomial length, which reflects the highest exponent
in the equation, is selected by the PLEN<4:0> bits
(CRCCON2<4:0>).
The CRCXORL and CRCXORH registers control which
exponent terms are included in the equation. Setting a
particular bit includes that exponent term in the
equation; functionally, this includes an XOR operation
on the corresponding bit in the CRC engine. Clearing
the bit disables the XOR.
For example, consider two CRC polynomials, one a
16-bit equation and the other, a 32-bit equation:
To program these polynomials into the CRC generator,
set the register bits as shown in Table 20-1.
Note that the appropriate positions are set to ‘1’ to indi-
cate that they are used in the equation (for example, X26
and X23). The 0 bit required by the equation is always
XORed; thus, X0 is a don’t care. For a polynomial of
length N, it is assumed that the Nth bit will always be
used, regardless of the bit setting. Therefore, for a poly-
nomial length of 32, there is no 32nd bit in the CRCxOR
register.
20.1.2 DATA INTERFACE
The module incorporates a FIFO that works with a vari-
able data width. Input data width can be configured to
any value between one and 32 bits using the
DWIDTH<4:0> bits (CRCCON2<12:8>). When the
data width is greater than 15, the FIFO is four words
deep. When the DWIDTH value is between 15 and 8,
the FIFO is 8 words deep. When the DWIDTH value is
less than 8, the FIFO is 16 words deep.
The data for which the CRC is to be calculated must
first be written into the FIFO. Even if the data width is
less than 8, the smallest data element that can be writ-
ten into the FIFO is one byte. For example, if the
DWIDTH value is five, then the size of the data is
DWIDTH + 1, or six. The data is written as a whole byte;
the two unused upper bits are ignored by the module.
Once data is written into the MSb of the CRCDAT reg-
isters (that is, MSb as defined by the data width), the
value of the VWORD<4:0> bits (CRCCON1<12:8>)
increments by one. For example, if the DWIDTH value
is 24, the VWORD bits will increment when bit 7 of
CRCDATH is written. Therefore, CRCDATL must
always be written before CRCDATH.
The CRC engine starts shifting data when the CRCGO
bit is set and the value of VWORD is greater than zero.
Each word is copied out of the FIFO into a buffer
register, which decrements VWORD. The data is then
shifted out of the buffer. The CRC engine continues
shifting at a rate of two bits per instruction cycle, until
the VWORD value reaches zero. This means that for a
given data width, it takes half that number of instruc-
tions for each word to complete the calculation. For
example, it takes 16 cycles to calculate the CRC for a
single word of 32-bit data.
When the VWORD value reaches the maximum value
for the configured value of DWIDTH (4, 8 or 16), the
CRCFUL bit becomes set. When the VWORD value
reaches zero, the CRCMPT bit becomes set. The FIFO
is emptied and the VWORD<4:0> bits are set to
00000’ whenever CRCEN is ‘0’.
At least one instruction cycle must pass, after a write to
CRCDAT, before a read of the VWORD bits is done.
TABLE 20-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL
x16 + x12 + x5 + 1
and
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7
+ x5 + x4 + x2 + x + 1
CRC Control
Bits
Bit Values
16-Bit Polynomial 32-Bit Polynomial
PLEN<4:0> 01111 11111
X<31:16> 0000 0000 0000 000x 0000 0100 1100 0001
X<15:0> 0001 0000 0010 000x 0001 1101 1011 011x
2010 Microchip Technology Inc. DS39951C-page 215
PIC24FJ64GA104 FAMILY
20.1.3 DATA SHIFT DIRECTION
The LENDIAN bit (CRCCON1<3>) is used to control
the shift direction. By default, the CRC will shift data
through the engine, MSb first. Setting LENDIAN (= 1)
causes the CRC to shift data, LSb first. This setting
allows better integration with various communication
schemes and removes the overhead of reversing the
bit order in software. Note that this only changes the
direction of the data that is shifted into the engine. The
result of the CRC calculation will still be a normal CRC
result, not a reverse CRC result.
20.1.4 INTERRUPT OPERATION
The module generates an interrupt that is configurable
by the user for either of two conditions.
If CRCISEL is ‘0’, an interrupt is generated when the
VWORD<4:0> bits make a transition from a value of ‘1
to ‘0’. If CRCISEL is ‘1’, an interrupt will be generated
after the CRC operation finishes and the module sets
the CRCGO bit to ‘0’. Manually setting CRCGO to ‘0
will not generate an interrupt.
20.1.5 TYPICAL OPERATION
To use the module for a typical CRC calculation:
1. Set the CRCEN bit to enable the module.
2. Configure the module for the desired operation:
d) Program the desired polynomial using the
CRCXORL and CRCXORH registers, and
the PLEN<4:0> bits
e) Configure the data width and shift direction
using the DWIDTH and LENDIAN bits
f) Select the desired interrupt mode using the
CRCISEL bit
3. Preload the FIFO by writing to the CRCDATL
and CRCDATH registers until the CRCFUL bit is
set or no data is left
4. Clear old results by writing 00h to CRCWDATL
and CRCWDATH. CRCWDAT can also be left
unchanged to resume a previously halted
calculation.
5. Set the CRCGO bit to start calculation.
6. Write remaining data into the FIFO as space
becomes available.
7. When the calculation completes, CRCGO is
automatically cleared. An interrupt will be
generated if CRCISEL = 1.
8. Read CRCWDATL and CRCWDATH for the
result of the calculation.
20.2 Registers
There are eight registers associated with the module:
CRCCON1
CRCCON2
CRCXORL
CRCXORH
CRCDATL
CRCDATH
CRCWDATL
CRCWDATH
The CRCCON1 and CRCCON2 registers
(Register 20-1 and Register 20-2) control the operation
of the module, and configure the various settings. The
CRCXOR registers (Register 20-3 and Register 20-4)
select the polynomial terms to be used in the CRC
equation. The CRCDAT and CRCWDAT registers are
each register pairs that serve as buffers for the
double-word, input data and CRC processed output,
respectively.
PIC24FJ64GA104 FAMILY
DS39951C-page 216 2010 Microchip Technology Inc.
REGISTER 20-1: CRCCON1: CRC CONTROL REGISTER 1
R/W-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0
CRCEN CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0
bit 15 bit 8
R-0, HCS R-1, HCS R/W-0 R/W-0, HC R/W-0 U-0 U-0 U-0
CRCFUL CRCMPT CRCISEL CRCGO LENDIAN
bit 7 bit 0
Legend: HC = Hardware Clearable bit HCS = Hardware Clearable/Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CRCEN: CRC Enable bit
1 = Module is enabled
0 = Module is enabled. All state machines, pointers and CRCWDAT/CRCDAT are reset; other SFRs are
NOT reset.
bit 14 Unimplemented: Read as ‘0
bit 13 CSIDL: CRC Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-8 VWORD<4:0>: Pointer Value bits
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> > 7, or
16 when PLEN<3:0> 7.
bit 7 CRCFUL: FIFO Full bit
1 = FIFO is full
0 = FIFO is not full
bit 6 CRCMPT: FIFO Empty Bit
1 = FIFO is empty
0 = FIFO is not empty
bit 5 CRCISEL: CRC interrupt Selection bit
1 = Interrupt on FIFO is empty; CRC calculation is not complete
0 = Interrupt on shift is complete and CRCWDAT result is ready
bit 4 CRCGO: Start CRC bit
1 = Start CRC serial shifter
0 = CRC serial shifter is turned off
bit 3 LENDIAN: Data Shift Direction Select bit
1 = Data word is shifted into the CRC starting with the LSb (little endian)
0 = Data word is shifted into the CRC starting with the MSb (big endian)
bit 2-0 Unimplemented: Read as ‘0
2010 Microchip Technology Inc. DS39951C-page 217
PIC24FJ64GA104 FAMILY
REGISTER 20-2: CRCCON2: CRC CONTROL REGISTER 2
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DWIDTH4 DWIDTH3 DWIDTH2 DWIDTH1 DWIDTH0
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PLEN4 PLEN3 PLEN2 PLEN1 PLEN0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 Unimplemented: Read as ‘0
bit 12-8 DWIDTH<4:0>: Data Width Select bits
Defines the width of the data word (Data Word Width = (DWIDTH<4:0>) + 1).
bit 7-5 Unimplemented: Read as ‘0
bit 4-0 PLEN<4:0>: Polynomial Length Select bits
Defines the length of the CRC polynomial (Polynomial Length = (PLEN<4:0>) + 1).
REGISTER 20-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X15 X14 X13 X12 X11 X10 X9 X8
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
X7 X6 X5 X4 X3 X2 X1
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-1 X<15:1>: XOR of Polynomial Term Xn Enable bits
bit 0 Unimplemented: Read as0
PIC24FJ64GA104 FAMILY
DS39951C-page 218 2010 Microchip Technology Inc.
REGISTER 20-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X31 X30 X29 X28 X27 X26 X25 X24
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X23 X22 X21 X20 X19 X18 X17 X16
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-0 X<31:16>: XOR of Polynomial Term Xn Enable bits
2010 Microchip Technology Inc. DS39951C-page 219
PIC24FJ64GA104 FAMILY
21.0 10-BIT HIGH-SPEED A/D
CONVERTER
The 10-bit A/D Converter has the following key
features:
Successive Approximation (SAR) conversion
Conversion speeds of up to 500 ksps
13 analog input pins
External voltage reference input pins
Internal band gap reference inputs
Automatic Channel Scan mode
Selectable conversion trigger source
16-word conversion result buffer
Selectable Buffer Fill modes
Four result alignment options
Operation during CPU Sleep and Idle modes
On all PIC24FJ64GA104 family devices, the 10-bit A/D
Converter has 13 analog input pins, designated AN0
through AN12. In addition, there are two analog input
pins for external voltage reference connections (VREF+
and VREF-). These voltage reference inputs may be
shared with other analog input pins.
A block diagram of the A/D Converter is shown in
Figure 21-1.
To perform an A/D conversion:
1. Configure the A/D module:
a) Configure port pins as analog inputs and/or
select band gap reference inputs
(AD1PCFGL<15:0> and AD1PCFGH<1:0>).
b) Select voltage reference source to match
expected range on analog inputs
(AD1CON2<15:13>).
c) Select the analog conversion clock to match
the desired data rate with the processor
clock (AD1CON3<7:0>).
d) Select the appropriate sample/conversion
sequence (AD1CON1<7:5> and
AD1CON3<12:8>).
e) Select how conversion results are
presented in the buffer (AD1CON1<9:8>).
f) Select interrupt rate (AD1CON2<5:2>).
g) Turn on A/D module (AD1CON1<15>).
2. Configure the A/D interrupt (if required):
a) Clear the AD1IF bit.
b) Select A/D interrupt priority.
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 17. “10-Bit A/D Converter”
(DS39705).
PIC24FJ64GA104 FAMILY
DS39951C-page 220 2010 Microchip Technology Inc.
FIGURE 21-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM
Comparator
10-Bit SAR Conversion Logic
VREF+
DAC
AN12
AN8
AN9
AN10
AN11
AN4
AN5
AN6
AN7
AN0
AN1
AN2
AN3
VREF-
Sample Control
S/H
AVSS
AVDD
ADC1BUF0:
ADC1BUFF
AD1CON1
AD1CON2
AD1CON3
AD1CHS0
AD1PCFGL
AD1PCFGH
Control Logic
Data Formatting
Input MUX Control
Conversion Control
Pin Config Control
Internal Data Bus
16
VR+VR-
MUX A
MUX B
VINH
VINL
VINH
VINH
VINL
VINL
VR+
VR-
VR Select
VBG
AD1CSSL
AD1CSSH
VDDCORE
VBG/2
2010 Microchip Technology Inc. DS39951C-page 221
PIC24FJ64GA104 FAMILY
REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1
R/W-0 U-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0
ADON(1) —ADSIDL —FORM1FORM0
bit 15 bit 8
R/W
-0
R/W
-0
R/W-0
U-0 U-0
R/W-0 R/W
-0, HCS
R/C
-0, HCS
SSRC2 SSRC1 SSRC0 ASAM SAMP DONE
bit 7 bit 0
Legend: C = Clearable bit HCS = Hardware Clearable/Settable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ADON: A/D Operating Mode bit(1)
1 = A/D Converter module is operating
0 = A/D Converter is off
bit 14 Unimplemented: Read as ‘0
bit 13 ADSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-10 Unimplemented: Read as ‘0
bit 9-8 FORM<1:0>: Data Output Format bits
11 = Signed fractional (sddd dddd dd00 0000)
10 = Fractional (dddd dddd dd00 0000)
01 = Signed integer (ssss sssd dddd dddd)
00 = Integer (0000 00dd dddd dddd)
bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits
111 = Internal counter ends sampling and starts conversion (auto-convert)
110 = CTMU event ends sampling and starts conversion
101 = Reserved
100 = Timer5 compare ends sampling and starts conversion
011 = Reserved
010 = Timer3 compare ends sampling and starts conversion
001 = Active transition on INT0 pin ends sampling and starts conversion
000 = Clearing the SAMP bit ends sampling and starts conversion
bit 4-3 Unimplemented: Read as ‘0
bit 2 ASAM: A/D Sample Auto-Start bit
1 = Sampling begins immediately after the last conversion completes; SAMP bit is auto-set
0 = Sampling begins when the SAMP bit is set
bit 1 SAMP: A/D Sample Enable bit
1 = A/D sample/hold amplifier is sampling input
0 = A/D sample/hold amplifier is holding
bit 0 DONE: A/D Conversion Status bit
1 = A/D conversion is done
0 = A/D conversion is NOT done
Note 1: Values of ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out the
conversion values from the buffer before disabling the module.
PIC24FJ64GA104 FAMILY
DS39951C-page 222 2010 Microchip Technology Inc.
REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2
R/W-0 R/W-0 R/W-0 r-0 U-0 R/W-0 U-0 U-0
VCFG2 VCFG1 VCFG0 r CSCNA
bit 15 bit 8
R-0
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BUFS SMPI3 SMPI2 SMPI1 SMPI0 BUFM ALTS
bit 7 bit 0
Legend: r = Reserved bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits
bit 12 Reserved: Maintain as ‘0
bit 11 Unimplemented: Read as ‘0
bit 10 CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit
1 = Scan inputs
0 = Do not scan inputs
bit 9-8 Unimplemented: Read as ‘0
bit 7 BUFS: Buffer Fill Status bit (valid only when BUFM = 1)
1 = A/D is currently filling buffer 08-0F; user should access data in 00-07
0 = A/D is currently filling buffer 00-07; user should access data in 08-0F
bit 6 Unimplemented: Read as0
bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
.....
0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
0000 = Interrupts at the completion of conversion for each sample/convert sequence
bit 1 BUFM: Buffer Mode Select bit
1 = Buffer is configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)
0 = Buffer is configured as one 16-word buffer (ADC1BUFn<15:0>)
bit 0 ALTS: Alternate Input Sample Mode Select bit
1 = Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and
MUX A input multiplexer settings for all subsequent samples
0 = Always uses MUX A input multiplexer settings
VCFG<2:0> VR+VR-
000 AVDD AVSS
001 External VREF+ pin AVSS
010 AVDD External VREF- pin
011 External VREF+ pin External VREF- pin
1xx AVDD AVSS
2010 Microchip Technology Inc. DS39951C-page 223
PIC24FJ64GA104 FAMILY
REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3
R/W-0 r-0 r-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADRC rr SAMC4 SAMC3 SAMC2 SAMC1 SAMC0
bit 15 bit 8
R/W
-0
R/W
-0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0
bit 7 bit 0
Legend: r = Reserved bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 ADRC: A/D Conversion Clock Source bit
1 = A/D internal RC clock
0 = Clock derived from system clock
bit 14-13 Reserved: Maintain as0
bit 12-8 SAMC<4:0>: Auto-Sample Time bits
11111 = 31 T
AD
·····
00001 = 1 TAD
00000 = 0 TAD (not recommended)
bit 7-0 ADCS<7:0>: A/D Conversion Clock Select bits
11111111 to 01000000 = Reserved
······
00111111 = 64 • TCY
······
00000001 = 2 • TCY
00000000 = TCY
PIC24FJ64GA104 FAMILY
DS39951C-page 224 2010 Microchip Technology Inc.
REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER
R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CH0NB CH0SB4(1,2) CH0SB3(1,2) CH0SB2(1,2) CH0SB1(1,2) CH0SB0(1,2)
bit 15 bit 8
R/W
-0
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CH0NA CH0SA4 CH0SA3 CH0SA2 CH0SA1 CH0SA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CH0NB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VR-
bit 14-13 Unimplemented: Read as ‘0
bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits(1,2)
11111 = Channel 0 positive input is reserved for CTMU use only(3)
1xxxx = Unimplemented; do not use.
01111 = Channel 0 positive input is internal band gap reference (VBG)
01110 = Channel 0 positive input is VBG/2
01101 = Channel 0 positive input is voltage regulator output (VDDCORE)
01100 = Channel 0 positive input is AN12
01011 = Channel 0 positive input is AN11
01010 = Channel 0 positive input is AN10
01001 = Channel 0 positive input is AN9
01000 = Channel 0 positive input is AN8
00111 = Channel 0 positive input is AN7
00110 = Channel 0 positive input is AN6
00101 = Channel 0 positive input is AN5
00100 = Channel 0 positive input is AN4
00011 = Channel 0 positive input is AN3
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0
bit 7 CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit
1 = Channel 0 negative input is AN1
0 = Channel 0 negative input is VR-
bit 6-5 Unimplemented: Read as ‘0
bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits
Implemented combinations are identical to those for CH0SB<4:0> (above).
Note 1: Combinations not shown here are unimplemented; do not use.
2: Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; do not use.
3: Selecting this internal channel allows the CTMU module to utilize the A/D Converter sample and hold
capacitor (CAD) for the smallest time measurements.
2010 Microchip Technology Inc. DS39951C-page 225
PIC24FJ64GA104 FAMILY
REGISTER 21-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER
R/W-0 R/W-0 R/W-0 R/W-0(1) R/W-0 R/W-0 R/W-0 R/W-0(1)
PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8
bit 15 bit 8
R/W
-0
(1) R/W-0(1) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 PCFG15: A/D Input Band Gap Reference Enable bit
1 = Internal band gap (VBG) reference channel is disabled
0 = Internal band gap reference channel is enabled
bit 14 PCFG14: A/D Input Half Band Gap Reference Enable bit
1 = Internal half band gap (VBG/2) reference channel is disabled
0 = Internal half band gap reference channel is enabled
bit 13 PCFG13: A/D Input Voltage Regulator Output Reference Enable bit
1 = Internal voltage regulator output (VDDCORE) reference channel is disabled
0 = Internal voltage regulator output reference channel is enabled
bit 12-0 PCFG<12:0>: Analog Input Pin Configuration Control bits(1)
1 = Pin for corresponding analog channel is configured in Digital mode; I/O port read is enabled
0 = Pin is configured in Analog mode; I/O port read is disabled, A/D samples pin voltage
Note 1: Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; leave these corresponding
bits set.
PIC24FJ64GA104 FAMILY
DS39951C-page 226 2010 Microchip Technology Inc.
REGISTER 21-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER
R/W-0 R/W-0 R/W-0 R/W-0(1) R/W-0 R/W-0 R/W-0 R/W-0
CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8(1)
bit 15 bit 8
R/W
-0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CSSL15: A/D Input Band Gap Scan Enable bit
1 = Internal band gap (VBG) channel is enabled for input scan
0 = Analog channel is disabled from input scan
bit 14 CSSL14: A/D Input Half Band Gap Scan Enable bit
1 = Internal half band gap (VBG/2) channel is enabled for input scan
0 = Analog channel is disabled from input scan
bit 13 CSSL13: A/D Input Voltage Regulator Output Scan Enable bit
1 = Internal voltage regulator output (VDDCORE) is enabled for input scan
0 = Analog channel is disabled from input scan
bit 12-0 CSSL<12:0>: A/D Input Pin Scan Selection bits(1)
1 = Corresponding analog channel is selected for input scan
0 = Analog channel is omitted from input scan
Note 1: Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; leave these corresponding
bits cleared.
2010 Microchip Technology Inc. DS39951C-page 227
PIC24FJ64GA104 FAMILY
EQUATION 21-1: A/D CONVERSION CLOCK PERIOD(1)
FIGURE 21-2: 10-BIT A/D CONVERTER ANALOG INPUT MODEL
Note 1: Based on TCY = 2 * TOSC, Doze mode and PLL are disabled.
TAD = TCY • (ADCS + 1)
TAD
TCY
ADCS = – 1
CPIN
VA
Rs ANx VT = 0.6V
VT = 0.6V ILEAKAGE
RIC 250Sampling
Switch
RSS
CHOLD
= ADC capacitance
VSS
VDD
= 4.4 pF (Typical)
500 nA
Legend: CPIN
VT
ILEAKAGE
RIC
RSS
CHOLD
= Input Capacitance
= Threshold Voltage
= Leakage Current at the pin due to
= Interconnect Resistance
= Sampling Switch Resistance
= Sample/Hold Capacitance (from DAC)
various junctions
Note: CPIN value depends on the device package and is not tested. The effect of CPIN is negligible if Rs 5 k.
RSS 5 k(Typical)
6-11 pF
(Typical)
PIC24FJ64GA104 FAMILY
DS39951C-page 228 2010 Microchip Technology Inc.
FIGURE 21-3: A/D TRANSFER FUNCTION
10 0000 0001 (513)
10 0000 0010 (514)
10 0000 0011 (515)
01 1111 1101 (509)
01 1111 1110 (510)
01 1111 1111 (511)
11 1111 1110 (1022)
11 1111 1111 (1023)
00 0000 0000 (0)
00 0000 0001 (1)
Output Code
10 0000 0000 (512)
(VINH – VINL)
VR-
VR+ – VR-
1024
512*(VR+ – VR-)
1024
VR+
VR- +
VR- +
1023*(VR+ – VR-)
1024
VR- +
0
(Binary (Decimal))
Voltage Level
2010 Microchip Technology Inc. DS39951C-page 229
PIC24FJ64GA104 FAMILY
22.0 TRIPLE COMPARATOR
MODULE
The triple comparator module provides three dual input
comparators. The inputs to the comparator can be con-
figured to use any one of four external analog inputs, as
well as voltage reference inputs from the voltage
reference generator and band gap reference.
The comparator outputs may be directly connected to
the CxOUT pins. When the respective COE equals1’,
the I/O pad logic makes the unsynchronized output of
the comparator available on the pin.
A simplified block diagram of the module in shown in
Figure 22-1. Diagrams of the possible individual
comparator configurations are shown in Figure 22-2.
Each comparator has its own control register,
CMxCON (Register 22-1), for enabling and configuring
its operation. The output and event status of all three
comparators are provided in the CMSTAT register
(Register 22-2).
FIGURE 22-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
associated “PIC24F Family Reference
Manual, Section 46. Scalable
Comparator Module” (DS39734)
C1
VIN-
VIN+
CXINB
CXINC
CXINA
CXIND
CVREF+
CVREF-
C2
VIN-
VIN+
C3
VIN-
VIN+
COE
C1OUT
Pin
CPOL
Trigger/Interrupt
Logic
CEVT
EVPOL<1:0>
COUT
Input
Select
Logic
CCH<1:0>
CREF
COE
C2OUT
Pin
CPOL
Trigger/Interrupt
Logic
CEVT
EVPOL<1:0>
COUT
COE
C3OUT
Pin
CPOL
Trigger/Interrupt
Logic
CEVT
EVPOL<1:0>
COUT
PIC24FJ64GA104 FAMILY
DS39951C-page 230 2010 Microchip Technology Inc.
FIGURE 22-2: INDIVIDUAL COMPARATOR CONFIGURATIONS
Cx
VIN-
VIN+Off (Read as0’)
Comparator Off
CEN = 0, CREF = x, CCH<1:0> = xx
Comparator CxINB > CxINA Compare
CEN = 1, CREF = 0, CCH<1:0> = 00
COE
CxOUT
Cx
VIN-
VIN+
COE
CXINB
CXINA
Comparator CxIND > CxINA Compare
CEN = 1, CREF = 0, CCH<1:0> = 10
Cx
VIN-
VIN+
COE
CxOUT
CXIND
CXINA
Comparator CxINC > CxINA Compare
CEN = 1, CREF = 0, CCH<1:0> = 01
Cx
VIN-
VIN+
COE
CXINC
CXINA
Comparator CVREF- > CxINA Compare
CEN = 1, CREF = 0, CCH<1:0> = 11
Cx
VIN-
VIN+
COE
CVREF-
CXINA
Comparator CxINB > CVREF+ Compare
CEN = 1, CREF = 1, CCH<1:0> = 00
Cx
VIN-
VIN+
COE
CXINB
CVREF+
Comparator CxIND > CVREF+ Compare
CEN = 1, CREF = 1, CCH<1:0> = 10
Cx
VIN-
VIN+
COE
CXIND
CVREF+
Comparator CxINC > CVREF+ Compare
CEN = 1, CREF = 1, CCH<1:0> = 01
Cx
VIN-
VIN+
COE
CXINC
CVREF+
Comparator CVREF- > CVREF+ Compare
CEN = 1, CREF = 1, CCH<1:0> = 11
Cx
VIN-
VIN+
COE
CVREF-
CVREF+
Pin
Pin
CxOUT
Pin
CxOUT
Pin
CxOUT
Pin
CxOUT
Pin
CxOUT
Pin
CxOUT
Pin
CxOUT
Pin
2010 Microchip Technology Inc. DS39951C-page 231
PIC24FJ64GA104 FAMILY
REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS
(COMPARATORS 1 THROUGH 3)
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R-0
CEN COE CPOL CEVT COUT
bit 15 bit 8
R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0
EVPOL1 EVPOL0 CREF CCH1 CCH0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CEN: Comparator Enable bit
1 = Comparator is enabled
0 = Comparator is disabled
bit 14 COE: Comparator Output Enable bit
1 = Comparator output is present on the CxOUT pin.
0 = Comparator output is internal only
bit 13 CPOL: Comparator Output Polarity Select bit
1 = Comparator output is inverted
0 = Comparator output is not inverted
bit 12-10 Unimplemented: Read as ‘0
bit 9 CEVT: Comparator Event bit
1 = Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are
disabled until the bit is cleared
0 = Comparator event has not occurred
bit 8 COUT: Comparator Output bit
When CPOL = 0:
1 =VIN+ > VIN-
0 =V
IN+ < VIN-
When CPOL = 1:
1 =VIN+ < VIN-
0 =V
IN+ > VIN-
bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
10 = Trigger/event/interrupt generated on transition of the comparator output:
If CPOL = 0 (non-inverted polarity):
High-to-low transition only.
If CPOL = 1 (inverted polarity):
Low-to-high transition only.
01 = Trigger/event/interrupt generated on transition of comparator output:
If CPOL = 0 (non-inverted polarity):
Low-to-high transition only.
If CPOL = 1 (inverted polarity):
High-to-low transition only.
00 = Trigger/event/interrupt generation is disabled
bit 5 Unimplemented: Read as0
PIC24FJ64GA104 FAMILY
DS39951C-page 232 2010 Microchip Technology Inc.
bit 4 CREF: Comparator Reference Select bits (non-inverting input)
1 = Non-inverting input connects to internal CVREF+ input reference voltage
0 = Non-inverting input connects to CxINA pin
bit 3-2 Unimplemented: Read as ‘0
bit 1-0 CCH<1:0>: Comparator Channel Select bits
11 = Inverting input of comparator connects to CVREF- input reference voltage
10 = Inverting input of comparator connects to CxIND pin
01 = Inverting input of comparator connects to CxINC pin
00 = Inverting input of comparator connects to CxINB pin
REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS
(COMPARATORS 1 THROUGH 3) (CONTINUED)
REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER
R/W-0 U-0 U-0 U-0 U-0 R-0 R-0 R-0
CMIDL C3EVT C2EVT C1EVT
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 R-0 R-0 R-0
C3OUT C2OUT C1OUT
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CMIDL: Comparator Stop in Idle Mode bit
1 = Discontinue operation of all comparators when device enters Idle mode
0 = Continue operation of all enabled comparators in Idle mode
bit 14-11 Unimplemented: Read as ‘0
bit 10 C3EVT: Comparator 3 Event Status bit (read-only)
Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9 C2EVT: Comparator 2 Event Status bit (read-only)
Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8 C1EVT: Comparator 1 Event Status bit (read-only)
Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3 Unimplemented: Read as ‘0
bit 2 C3OUT: Comparator 3 Output Status bit (read-only)
Shows the current output of Comparator 3 (CM3CON<8>).
bit 1 C2OUT: Comparator 2 Output Status bit (read-only)
Shows the current output of Comparator 2 (CM2CON<8>).
bit 0 C1OUT: Comparator 1 Output Status bit (read-only)
Shows the current output of Comparator 1 (CM1CON<8>).
2010 Microchip Technology Inc. DS39951C-page 233
PIC24FJ64GA104 FAMILY
23.0 COMPARATOR VOLTAGE
REFERENCE
23.1 Configuring the Comparator
Voltage Reference
The voltage reference module is controlled through the
CVRCON register (Register 23-1). The comparator
voltage reference provides two ranges of output
voltage, each with 16 distinct levels. The range to be
used is selected by the CVRR bit (CVRCON<5>). The
primary difference between the ranges is the size of the
steps selected by the CVREF Selection bits
(CVR<3:0>), with one range offering finer resolution.
The comparator reference supply voltage can come
from either VDD and VSS, or the external VREF+ and
VREF-. The voltage source is selected by the CVRSS
bit (CVRCON<4>).
The settling time of the comparator voltage reference
must be considered when changing the CVREF
output.
FIGURE 23-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
“PIC24F Family Reference Manual”,
Section 20. “Comparator Voltage
Reference Module” (DS39709).
16-to-1 MUX
CVR<3:0>
8R
R
CVREN
CVRSS = 0
AVDD
VREF+CVRSS = 1
8R
CVRSS = 0
VREF-CVRSS = 1
R
R
R
R
R
R
16 Steps
CVRR
AVSS
CVREFP
CVREF+
CVREF-
CVREFM<1:0>
VBG/6
VREF+
VBG
VBG/2
1
0
11
10
01
00
CVROE
CVREF
VREF+
PIC24FJ64GA104 FAMILY
DS39951C-page 234 2010 Microchip Technology Inc.
REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0
CVREFP CVREFM1 CVREFM0
bit 15 bit 8
R/W
-0
R/W
-0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-11 Unimplemented: Read as ‘0
bit 10 CVREFP: CVREF+ Reference Output Select bit
1 =Use V
REF+ input pin as CVREF+ reference output to comparators
0 = Use comparator voltage reference module’s generated output as CVREF+ reference output to
comparators
bit 9-8 CVREFM<1:0>: CVREF- Reference Output Select bits
11 =Use VREF+ input pin as CVREF- reference output to comparators
10 =Use V
BG/6 as CVREF- reference output to comparators
01 =Use V
BG as CVREF- reference output to comparators
00 =Use V
BG/2 as CVREF- reference output to comparators
bit 7 CVREN: Comparator Voltage Reference Enable bit
1 =CVREF circuit is powered on
0 =CV
REF circuit is powered down
bit 6 CVROE: Comparator VREF Output Enable bit
1 =CV
REF voltage level is output on CVREF pin
0 =CV
REF voltage level is disconnected from CVREF pin
bit 5 CVRR: Comparator VREF Range Selection bit
1 =CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size
0 =CV
RSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size
bit 4 CVRSS: Comparator VREF Source Selection bit
1 = Comparator reference source, CVRSRC = VREF+ – VREF-
0 = Comparator reference source, CVRSRC = AVDD – AVSS
bit 3-0 CVR<3:0>: Comparator VREF Value Selection (0 CVR<3:0> 15) bits
When CVRR = 1:
CVREF = (CVR<3:0>/24) (CVRSRC)
When CVRR = 0:
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)
2010 Microchip Technology Inc. DS39951C-page 235
PIC24FJ64GA104 FAMILY
24.0 CHARGE TIME
MEASUREMENT UNIT (CTMU)
The Charge Time Measurement Unit is a flexible
analog module that provides accurate differential time
measurement between pulse sources, as well as
asynchronous pulse generation. Its key features
include:
Four edge input trigger sources
Polarity control for each edge source
Control of edge sequence
Control of response to edges
Time measurement resolution of 1 nanosecond
Accurate current source suitable for capacitive
measurement
Together with other on-chip analog modules, the CTMU
can be used to precisely measure time, measure
capacitance, measure relative changes in capacitance
or generate output pulses that are independent of the
system clock. The CTMU module is ideal for interfacing
with capacitive-based sensors.
The CTMU is controlled through two registers:
CTMUCON and CTMUICON. CTMUCON enables the
module and controls edge source selection, edge
source polarity selection and edge sequencing. The
CTMUICON register controls the selection and trim of
the current source.
24.1 Measuring Capacitance
The CTMU module measures capacitance by generat-
ing an output pulse, with a width equal to the time
between edge events, on two separate input channels.
The pulse edge events to both input channels can be
selected from four sources: two internal peripheral
modules (OC1 and Timer1) and two external pins
(CTEDG1 and CTEDG2). This pulse is used with the
module’s precision current source to calculate
capacitance according to the relationship:
For capacitance measurements, the A/D Converter
samples an external capacitor (CAPP) on one of its
input channels after the CTMU output’s pulse. A Preci-
sion Resistor (RPR) provides current source calibration
on a second A/D channel. After the pulse ends, the
converter determines the voltage on the capacitor. The
actual calculation of capacitance is performed in
software by the application.
Figure 24-1 shows the external connections used for
capacitance measurements, and how the CTMU and
A/D modules are related in this application. This
example also shows the edge events coming from
Timer1, but other configurations using external edge
sources are possible. A detailed discussion on
measuring capacitance and time with the CTMU
module is provided in the PIC24F Family Reference
Manual”.
FIGURE 24-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR
CAPACITANCE MEASUREMENT
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
associated “PIC24F Family Reference
Manual”, Section 11. “Charge Time
Measurement Unit (CTMU)” (DS39724).
dV
dT
i = C •
A/D Converter
CTMU
ANx
CAPP
Output
Pulse
EDG1
EDG2
RPR
ANY
Timer1
Current Source
PIC24F Device
PIC24FJ64GA104 FAMILY
DS39951C-page 236 2010 Microchip Technology Inc.
24.2 Measuring Time
Time measurements on the pulse width can be similarly
performed using the A/D module’s internal capacitor
(CAD) and a precision resistor for current calibration.
Figure 24-2 shows the external connections used for
time measurements, and how the CTMU and A/D
modules are related in this application. This example
also shows both edge events coming from the external
CTEDG pins, but other configurations using internal
edge sources are possible. For the smallest time
measurements, select the internal A/D Channel 31,
CH0Sx <4:0>= 11111. This minimizes any stray capac-
itance that may otherwise be associated with using an
input pin, thus keeping the total capacitance to that of the
A/D Converter itself (4-5 pF). A detailed discussion on
measuring capacitance and time with the CTMU module
is provided in the “PIC24F Family Reference Manual”.
24.3 Pulse Generation and Delay
The CTMU module can also generate an output pulse
with edges that are not synchronous with the device’s sys-
tem clock. More specifically, it can generate a pulse with
a programmable delay from an edge event input to the
module.
When the module is configured for pulse generation
delay by setting the TGEN bit (CTMUCON<12>), the
internal current source is connected to the B input of
Comparator 2. A capacitor (CDELAY) is connected to
the Comparator 2 pin, C2INB, and the comparator volt-
age reference, CVREF, is connected to C2INA. CVREF
is then configured for a specific trip point. The module
begins to charge CDELAY when an edge event is
detected. When CDELAY charges above the CVREF trip
point, a pulse is output on CTPLS. The length of the
pulse delay is determined by the value of CDELAY and
the CVREF trip point.
Figure 24-3 shows the external connections for pulse
generation, as well as the relationship of the different
analog modules required. While CTEDG1 is shown as
the input pulse source, other options are available. A
detailed discussion on pulse generation with the CTMU
module is provided in the “PIC24F Family Reference
Manual”.
FIGURE 24-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME
MEASUREMENT
FIGURE 24-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE
DELAY GENERATION
A/D Converter
CTMU
CTEDG1
CTEDG2
ANx
Output
Pulse
EDG1
EDG2
CAD
RPR
Current Source
PIC24F Device
C2
CVREF
CTPLS
Current Source
Comparator
CTMU
CTEDG1
C2INB
CDELAY
EDG1
PIC24F Device
2010 Microchip Technology Inc. DS39951C-page 237
PIC24FJ64GA104 FAMILY
REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER
R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CTMUEN —CTMUSIDLTGEN
(1) EDGEN EDGSEQEN IDISSEN CTTRIG
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EDG2POL EDG2SEL1 EDG2SEL0 EDG1POL EDG1SEL1 EDG1SEL0 EDG2STAT EDG1STAT
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 CTMUEN: CTMU Enable bit
1 = Module is enabled
0 = Module is disabled
bit 14 Unimplemented: Read as ‘0
bit 13 CTMUSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12 TGEN: Time Generation Enable bit(1)
1 = Enables edge delay generation
0 = Disables edge delay generation
bit 11 EDGEN: Edge Enable bit
1 = Edges are not blocked
0 = Edges are blocked
bit 10 EDGSEQEN: Edge Sequence Enable bit
1 = Edge 1 event must occur before Edge 2 event can occur
0 = No edge sequence is needed
bit 9 IDISSEN: Analog Current Source Control bit
1 = Analog current source output is grounded
0 = Analog current source output is not grounded
bit 8 CTTRIG: Trigger Control bit
1 = Trigger output is enabled
0 = Trigger output is disabled
bit 7 EDG2POL: Edge 2 Polarity Select bit
1 = Edge 2 is programmed for a positive edge response
0 = Edge 2 is programmed for a negative edge response
bit 6-5 EDG2SEL<1:0>: Edge 2 Source Select bits
11 = CTED1 pin
10 = CTED2 pin
01 = OC1 module
00 = Timer1 module
bit 4 EDG1POL: Edge 1 Polarity Select bit
1 = Edge 1 is programmed for a positive edge response
0 = Edge 1 is programmed for a negative edge response
Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more
information, see Section 10.4 “Peripheral Pin Select (PPS)”.
PIC24FJ64GA104 FAMILY
DS39951C-page 238 2010 Microchip Technology Inc.
bit 3-2 EDG1SEL<1:0>: Edge 1 Source Select bits
11 = CTED1 pin
10 = CTED2 pin
01 = OC1 module
00 = Timer1 module
bit 1 EDG2STAT: Edge 2 Status bit
1 = Edge 2 event has occurred
0 = Edge 2 event has not occurred
bit 0 EDG1STAT: Edge 1 Status bit
1 = Edge 1 event has occurred
0 = Edge 1 event has not occurred
REGISTER 24-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)
Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more
information, see Section 10.4 “Peripheral Pin Select (PPS)”.
REGISTER 24-2: CTMUICON: CTMU CURRENT CONTROL REGISTER
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
ITRIM5 ITRIM4 ITRIM3 ITRIM2 ITRIM1 ITRIM0 IRNG1 IRNG0
bit 15 bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-10 ITRIM<5:0>: Current Source Trim bits
011111 = Maximum positive change from nominal current
011110
. . . . .
000001 = Minimum positive change from nominal current
000000 = Nominal current output specified by IRNG<1:0>
111111 = Minimum negative change from nominal current
. . . . .
100010
100001 = Maximum negative change from nominal current
bit 9-8 IRNG<1:0>: Current Source Range Select bits
11 = 100 Base Current
10 = 10 Base Current
01 = Base current level (0.55 A nominal)
00 = Current source is disabled
bit 7-0 Unimplemented: Read as ‘0
2010 Microchip Technology Inc. DS39951C-page 239
PIC24FJ64GA104 FAMILY
25.0 SPECIAL FEATURES
PIC24FJ64GA104 family devices include several
features intended to maximize application flexibility and
reliability, and minimize cost through elimination of
external components. These are:
Flexible Configuration
Watchdog Timer (WDT)
Code Protection
JTAG Boundary Scan Interface
In-Circuit Serial Programming
In-Circuit Emulation
25.1 Configuration Bits
The Configuration bits can be programmed (read as ‘0’),
or left unprogrammed (read as1’), to select various
device configurations. These bits are mapped starting at
program memory location F80000h. A detailed explana-
tion of the various bit functions is provided in
Register 25-1 through Register 25-6.
Note that address F80000h is beyond the user program
memory space. In fact, it belongs to the configuration
memory space (800000h-FFFFFFh) which can only be
accessed using table reads and table writes.
25.1.1 CONSIDERATIONS FOR
CONFIGURING PIC24FJ64GA104
FAMILY DEVICES
In PIC24FJ64GA104 family devices, the configuration
bytes are implemented as volatile memory. This means
that configuration data must be programmed each time
the device is powered up. Configuration data is stored in
the three words at the top of the on-chip program mem-
ory space, known as the Flash Configuration Words.
Their specific locations are shown in Table 25-1. These
are packed representations of the actual device Config-
uration bits, whose actual locations are distributed
among several locations in configuration space. The
configuration data is automatically loaded from the Flash
Configuration Words to the proper Configuration
registers during device Resets.
When creating applications for these devices, users
should always specifically allocate the location of the
Flash Configuration Word for configuration data. This is
to make certain that program code is not stored in this
address when the code is compiled.
The upper byte of all Flash Configuration Words in pro-
gram memory should always be ‘1111 1111’. This
makes them appear to be NOP instructions in the
remote event that their locations are ever executed by
accident. Since Configuration bits are not implemented
in the corresponding locations, writing ‘1’s to these
locations has no effect on device operation.
TABLE 25-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ64GA104 FAMILY
DEVICES
Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information, refer to the
following sections of the “PIC24F Family
Reference Manual”:
Section 9. “Watchdog Timer (WDT)”
(DS39697)
Section 32. “High-Level Device
Integration”
(DS39719)
Section 33. “Programming and
Diagnostics”
(DS39716)
Note: Configuration data is reloaded on all types
of device Resets.
Note: Performing a page erase operation on the
last page of program memory clears the
Flash Configuration Words, enabling code
protection as a result. Therefore, users
should avoid performing page erase
operations on the last page of program
memory.
Device
Configuration Word Addresses
1234
PIC24FJ32GA10x 57FEh 57FCh 57FAh 57F8h
PIC24FJ64GA10x ABFEh ABFCh ABFAh ABF8h
PIC24FJ64GA104 FAMILY
DS39951C-page 240 2010 Microchip Technology Inc.
REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1
U-1 U-1 U-1 U-1 U-1 U-1 U-1 U-1
bit 23 bit 16
r-x R/PO-1 R/PO-1 R/PO-1 R/PO-1 U-1 R/PO-1 R/PO-1
rJTAGEN
(1) GCP GWRP DEBUG ICS1 ICS0
bit 15 bit 8
R/PO-1R/PO-1 U-1 R/PO-1R/PO-1R/PO-1R/PO-1R/PO-1
FWDTEN WINDIS
FWPSA WDTPS3 WDTPS2 WDTPS1 WDTPS0
bit 7 bit 0
Legend: r = Reserved bit
R = Readable bit PO = Program Once bit U = Unimplemented bit, read as0
-n = Value when device is unprogrammed ‘1’ = Bit is set ‘0’ = Bit is cleared
bit 23-16 Unimplemented: Read as ‘1
bit 15 Reserved: The value is unknown; program as ‘0
bit 14 JTAGEN: JTAG Port Enable bit(1)
1 = JTAG port is enabled
0 = JTAG port is disabled
bit 13 GCP: General Segment Program Memory Code Protection bit
1 = Code protection is disabled
0 = Code protection is enabled for the entire program memory space
bit 12 GWRP: General Segment Code Flash Write Protection bit
1 = Writes to program memory are allowed
0 = Writes to program memory are disabled
bit 11 DEBUG: Background Debugger Enable bit
1 = Device resets into Operational mode
0 = Device resets into Debug mode
bit 10 Unimplemented: Read as ‘1
bit 9-8 ICS<1:0>: Emulator Pin Placement Select bits
11 = Emulator functions are shared with PGEC1/PGED1
10 = Emulator functions are shared with PGEC2/PGED2
01 = Emulator functions are shared with PGEC3/PGED3
00 = Reserved; do not use
bit 7 FWDTEN: Watchdog Timer Enable bit
1 = Watchdog Timer is enabled
0 = Watchdog Timer is disabled
bit 6 WINDIS: Windowed Watchdog Timer Disable bit
1 = Standard Watchdog Timer is enabled
0 = Windowed Watchdog Timer is enabled; FWDTEN must be ‘1
bit 5 Unimplemented: Read as1
bit 4 FWPSA: WDT Prescaler Ratio Select bit
1 = Prescaler ratio of 1:128
0 = Prescaler ratio of 1:32
Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming™ (ICSP™). It cannot be
modified while connected through the JTAG interface.
2010 Microchip Technology Inc. DS39951C-page 241
PIC24FJ64GA104 FAMILY
bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits
1111 = 1:32,768
1110 = 1:16,384
1101 = 1:8,192
1100 = 1:4,096
1011 = 1:2,048
1010 = 1:1,024
1001 = 1:512
1000 = 1:256
0111 = 1:128
0110 = 1:64
0101 = 1:32
0100 = 1:16
0011 = 1:8
0010 = 1:4
0001 = 1:2
0000 = 1:1
REGISTER 25-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)
Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming™ (ICSP™). It cannot be
modified while connected through the JTAG interface.
PIC24FJ64GA104 FAMILY
DS39951C-page 242 2010 Microchip Technology Inc.
REGISTER 25-2: CW2: FLASH CONFIGURATION WORD 2
U-1 U-1 U-1 U-1 U-1 U-1 U-1 U-1
bit 23 bit 16
R/PO-1 U-1 U-1 U-1 U-1 R/PO-1 R/PO-1 R/PO-1
IESO FNOSC2 FNOSC1 FNOSC0
bit 15 bit 8
R/PO-1 R/PO-1 R/PO-1 R/PO-1 U-1 R/PO-1 R/PO-1 R/PO-1
FCKSM1 FCKSM0
OSCIOFCN IOL1WAY
I2C1SEL
POSCMD1 POSCMD0
bit 7 bit 0
Legend:
R = Readable bit PO = Program Once bit U = Unimplemented bit, read as0
-n = Value when device is unprogrammed ‘1’ = Bit is set ‘0’ = Bit is cleared
bit 23-16 Unimplemented: Read as ‘1
bit 15 IESO: Internal External Switchover bit
1 = IESO mode (Two-Speed Start-up) is enabled
0 = IESO mode (Two-Speed Start-up) is disabled
bit 14-11 Unimplemented: Read as ‘1
bit 10-8 FNOSC<2:0>: Initial Oscillator Select bits
111 = Fast RC Oscillator with Postscaler (FRCDIV)
110 = Reserved
101 = Low-Power RC Oscillator (LPRC)
100 = Secondary Oscillator (SOSC)
011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)
010 = Primary Oscillator (XT, HS, EC)
001 = Fast RC Oscillator with Postscaler and PLL module (FRCPLL)
000 = Fast RC Oscillator (FRC)
bit 7-6 FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits
1x = Clock switching and Fail-Safe Clock Monitor are disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5 OSCIOFCN: OSCO Pin Configuration bit
If POSCMD<1:0> = 11 or 00:
1 = OSCO/CLKO/RA3 functions as CLKO (FOSC/2)
0 = OSCO/CLKO/RA3 functions as port I/O (RC15)
If POSCMD<1:0> = 10 or 01:
OSCIOFCN has no effect on OSCO/CLKO/RA3.
bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit
1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been
completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been
completed
bit 3 Unimplemented: Read as1
bit 2 I2C1SEL: I2C1 Pin Select bit
1 = Use default SCL1/SDA1 pins
0 = Use alternate SCL1/SDA1 pins
bit 1-0 POSCMD<1:0>: Primary Oscillator Configuration bits
11 = Primary Oscillator is disabled
10 = HS Oscillator mode is selected
01 = XT Oscillator mode is selected
00 = EC Oscillator mode is selected
2010 Microchip Technology Inc. DS39951C-page 243
PIC24FJ64GA104 FAMILY
REGISTER 25-3: CW3: FLASH CONFIGURATION WORD 3
U-1 U-1 U-1 U-1 U-1 U-1 U-1 U-1
bit 23 bit 16
R/PO-1 R/PO-1 R/PO-1 U-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1
WPEND WPCFG WPDIS WUTSEL1 WUTSEL0 SOSCSEL1(1) SOSCSEL0(1)
bit 15 bit 8
U-1 U-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1
WPFP5 WPFP4 WPFP3 WPFP2 WPFP1 WPFP0
bit 7 bit 0
Legend:
R = Readable bit PO = Program Once bit U = Unimplemented bit, read as ‘0
-n = Value when device is unprogrammed 1’ = Bit is set ‘0’ = Bit is cleared
bit 23-16 Unimplemented: Read as ‘1
bit 15 WPEND: Segment Write Protection End Page Select bit
1 = Protected code segment lower boundary is at the bottom of program memory (000000h); upper
boundary is the code page specified by WPFP<8:0>
0 = Protected code segment upper boundary is at the last page of program memory; lower boundary
is the code page specified by WPFP<8:0>
bit 14 WPCFG: Configuration Word Code Page Protection Select bit
1 = Last page (at the top of program memory) and Flash Configuration Words are not protected
0 = Last page and Flash Configuration Words are code-protected
bit 13 WPDIS: Segment Write Protection Disable bit
1 = Segmented code protection is disabled
0 = Segmented code protection is enabled; protected segment defined by WPEND, WPCFG and
WPFPx Configuration bits
bit 12 Unimplemented: Read as ‘1
bit 11-10 WUTSEL<1:0>: Voltage Regulator Standby Mode Wake-up Time Select bits
11 = Default regulator start-up time used
01 = Fast regulator start-up time used
x0 = Reserved; do not use
bit 9-8 SOSCSEL<1:0>: Secondary Oscillator Power Mode Select bits(1)
11 = SOSC pins are in default (high drive strength) oscillator mode
01 = SOSC pins are in Low-Power (low drive strength) Oscillator mode
00 = SOSC pins have digital I/O functions (RA4, RB4); SCLKI can be used
10 = Reserved
bit 7-6 Unimplemented: Read as ‘1
bit 5-0 WPFP5:WPFP0: Protected Code Segment Boundary Page bits
Designates the 512 instruction page that is the boundary of the protected code segment, starting with
Page 9 at the bottom of program memory.
If WPEND = 1:
Last address of designated code page is the upper boundary of the segment.
If WPEND = 0:
First address of designated code page is the lower boundary of the segment.
Note 1: Digital functions on the SOSCI and SOSCO pins are only available when configured in Digital I/O mode
(‘00’).
PIC24FJ64GA104 FAMILY
DS39951C-page 244 2010 Microchip Technology Inc.
REGISTER 25-4: CW4: FLASH CONFIGURATION WORD 4
U-1 U-1 U-1 U-1 U-1 U-1 U-1 U-1
bit 23 bit 16
U-1 U-1 U-1 U-1 U-1 U-1 U-1 U-1
bit 15 bit 8
R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1
DSWDTEN DSBOREN RTCOSC DSWDTOSC DSWDTPS3 DSWDTPS2 DSWDTPS1 DSWDTPS0
bit 7 bit 0
Legend:
R = Readable bit PO = Program Once bit U = Unimplemented bit, read as0
-n = Value when device is unprogrammed ‘1’ = Bit is set ‘0’ = Bit is cleared
bit 23-8 Unimplemented: Read as ‘1
bit 7 DSWDTEN: Deep Sleep Watchdog Timer Enable bit
1 = DSWDT is enabled
0 = DSWDT is disabled
bit 6 DSBOREN: Deep Sleep BOR Enable bit
1 = BOR is enabled in Deep Sleep
0 = BOR is disabled in Deep Sleep (does not affect Sleep mode)
bit 5 RTCOSC: RTCC Reference Clock Select bit
1 = RTCC uses SOSC as reference clock
0 = RTCC uses LPRC as reference clock
bit 4 DSWDTOSC: DSWDT Reference Clock Select bit
1 = DSWDT uses LPRC as reference clock
0 = DSWDT uses SOSC as reference clock
bit 3-0 DSWDTPS<3:0>: DSWDT Postscale select bits
The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms.
1111 = 1:2,147,483,648 (25.7 days)
1110 = 1:536,870,912 (6.4 days)
1101 = 1:134,217,728 (38.5 hours)
1100 = 1:33,554,432 (9.6 hours)
1011 = 1:8,388,608 (2.4 hours)
1010 = 1:2,097,152 (36 minutes)
1001 = 1:524,288 (9 minutes)
1000 = 1:131,072 (135 seconds)
0111 = 1:32,768 (34 seconds)
0110 = 1:8,192 (8.5 seconds)
0101 = 1:2,048 (2.1 seconds)
0100 = 1:512 (528 ms)
0011 = 1:128 (132 ms)
0010 = 1:32 (33 ms)
0001 = 1:8 (8.3 ms)
0000 = 1:2 (2.1 ms)
2010 Microchip Technology Inc. DS39951C-page 245
PIC24FJ64GA104 FAMILY
REGISTER 25-5: DEVID: DEVICE ID REGISTER
UUUUUUUU
bit 23 bit 16
RRRRRRRR
FAMID7 FAMID6 FAMID5 FAMID4 FAMID3 FAMID2 FAMID1 FAMID0
bit 15 bit 8
RRRRRRRR
DEV7 DEV6 DEV5 DEV4 DEV3 DEV2 DEV1 DEV0
bit 7 bit 0
Legend: R = Read-Only bit U = Unimplemented bit
bit 23-16 Unimplemented: Read as ‘1
bit 15-8 FAMID<7:0>: Device Family Identifier bits
01000010 = PIC24FJ64GA104 family
bit 7-0 DEV<7:0>: Individual Device Identifier bits
00000010 = PIC24FJ32GA102
00000110 = PIC24FJ64GA102
00001010 = PIC24FJ32GA104
00001110 = PIC24FJ64GA104
REGISTER 25-6: DEVREV: DEVICE REVISION REGISTER
UUUUUUUU
bit 23 bit 16
UUUUUUUU
bit 15 bit 8
UUUURRRR
REV3 REV2 REV1 REV0
bit 7 bit 0
Legend: R = Read-only bit U = Unimplemented bit
bit 23-4 Unimplemented: Read as ‘0
bit 3-0 REV<3:0>: Minor Revision Identifier bits
Encodes revision number of the device (sequential number only; no major/minor fields).
PIC24FJ64GA104 FAMILY
DS39951C-page 246 2010 Microchip Technology Inc.
25.2 On-Chip Voltage Regulator
All PIC24FJ64GA104 family devices power their core
digital logic at a nominal 2.5V. This may create an issue
for designs that are required to operate at a higher
typical voltage, such as 3.3V. To simplify system
design, all devices in the PIC24FJ64GA104 family
incorporate an on-chip regulator that allows the device
to run its core logic from VDD.
The regulator is controlled by the DISVREG pin. Tying V
SS
to the pin enables the regulator, which in turn, provides
power to the core from the other V
DD
pins. When the reg-
ulator is enabled, a low-ESR capacitor (such as ceramic)
must be connected to the V
DDCORE
/V
CAP
pin
(Figure 25-1). This helps to maintain the stability of the
regulator. The recommended value for the Filter Capacitor
(C
EFC
) is provided in
Section 28.1 “DC Characteristics
.
If
DIS
VREG is tied to VDD, the regulator is disabled. In
this case, separate power for the core logic, at a nomi-
nal 2.5V, must be supplied to the device on the
VDDCORE/VCAP pin to run the I/O pins at higher voltage
levels, typically 3.3V. Alternatively, the VDDCORE/VCAP
and VDD pins can be tied together to operate at a lower
nominal voltage. Refer to Figure 25-1 for possible
configurations.
25.2.1 VOLTAGE REGULATOR TRACKING
MODE AND LOW-VOLTAGE
DETECTION
When it is enabled, the on-chip regulator provides a
constant voltage of 2.5V nominal to the digital core
logic.
The regulator can provide this level from a VDD of about
2.5V, all the way up to the device’s VDDMAX. It does not
have the capability to boost VDD levels below 2.5V. In
order to prevent “brown-out” conditions when the volt-
age drops too low for the regulator, the regulator enters
Tracking mode. In Tracking mode, the regulator output
follows VDD with a typical voltage drop of 100 mV.
When the device enters Tracking mode, it is no longer
possible to operate at full speed. To provide information
about when the device enters Tracking mode, the
on-chip regulator includes a simple, Low-Voltage
Detect circuit. When VDD drops below full-speed oper-
ating voltage, the circuit sets the Low-Voltage Detect
Interrupt Flag, LVDIF (IFS4<8>). This can be used to
generate an interrupt and put the application into a
Low-Power Operational mode or trigger an orderly
shutdown.
Low-Voltage Detection is only available when the
regulator is enabled.
FIGURE 25-1: CONNECTIONS FOR THE
ON-CHIP REGULATOR
25.2.2 ON-CHIP REGULATOR AND POR
When the voltage regulator is enabled, it takes approxi-
mately 10 s for it to generate output. During this time,
designated as TPM, code execution is disabled. TPM is
applied every time the device resumes operation after
any power-down, including Sleep mode. TPM is
determined by the setting of the PMSLP bit (RCON<8>)
and the WUTSEL Configuration bits (CW3<11:10>).
If the regulator is disabled, a separate Power-up Timer
(PWRT) is automatically enabled. The PWRT adds a
fixed delay of 64 ms nominal delay at device start-up
(POR or BOR only).
Note: For more information on TPM, see
Section 28.0 “Electrical Characteristics”.
VDD
DISVREG
VDDCORE/VCAP
VSS
3.3V(1)
2.5V(1)
Regulator Disabled (DISVREG tied to VDD):
VDD
DISVREG
VDDCORE/VCAP
VSS
2.5V(1)
Regulator Disabled (VDD tied to VDDCORE):
VDD
DISVREG
VDDCORE/VCAP
VSS
PIC24FJ64GA104
CEFC
3.3V
(10 F typ)
Regulator Enabled (DISVREG tied to VSS):
Note 1: These are typical operating voltages. Refer
to Section 28.1 “DC Characteristics” for
the full operating ranges of VDD and
VDDCORE.
PIC24FJ64GA104
PIC24FJ64GA104
2010 Microchip Technology Inc. DS39951C-page 247
PIC24FJ64GA104 FAMILY
When waking up from Sleep with the regulator
disabled, TPM is used to determine the wake-up time.
To decrease the device wake-up time when operating
with the regulator disabled, the PMSLP bit can be set.
25.2.3 ON-CHIP REGULATOR AND BOR
When the on-chip regulator is enabled,
PIC24FJ64GA104 family devices also have a simple
brown-out capability. If the voltage supplied to the
regulator is inadequate to maintain the tracking level, the
regulator Reset circuitry will generate a Brown-out
Reset. This event is captured by the BOR flag bit
(RCON<1>). The brown-out voltage specifications are
provided in Section 28.0 “Electrical Characteristics”.
25.2.4 POWER-UP REQUIREMENTS
The on-chip regulator is designed to meet the power-up
requirements for the device. If the application does not
use the regulator, then strict power-up conditions must
be adhered to. While powering up, VDDCORE must
never exceed VDD by 0.3 volts.
25.2.5 VOLTAGE REGULATOR STANDBY
MODE
When enabled, the on-chip regulator always consumes
a small incremental amount of current over IDD/IPD,
including when the device is in Sleep mode, even
though the core digital logic does not require power. To
provide additional savings in applications where power
resources are critical, the regulator automatically
places itself into Standby mode whenever the device
goes into Sleep mode by removing power from the
Flash program memory. This feature is controlled by
the PMSLP bit (RCON<8>). By default, this bit is
cleared, which enables Standby mode.
For PIC24FJ64GA104 family devices, the time
required for regulator wake-up from Standby mode is
controlled by the WUTSEL<1:0> Configuration bits
(CW3<11:10>). The default wake-up time for all
devices is 190 s, which is a Legacy mode provided to
match older PIC24F device wake-up times.
Implementing the WUTSEL Configuration bits provides
a fast wake-up option. When WUTSEL<1:0> = 01, the
regulator wake-up time is TPM, 10 s.
When the regulator’s Standby mode is turned off
(PMSLP = 1), Flash program memory stays powered in
Sleep mode. That enables device wake-up without wait-
ing for TPM. With PMSLP set, however, the power
consumption, while in Sleep mode, will be approximately
40 A higher than what it would be if the regulator was
allowed to enter Standby mode.
25.3 Watchdog Timer (WDT)
For PIC24FJ64GA104 family devices, the WDT is
driven by the LPRC Oscillator. When the WDT is
enabled, the clock source is also enabled.
The nominal WDT clock source from LPRC is 31 kHz.
This feeds a prescaler that can be configured for either
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.
The prescaler is set by the FWPSA Configuration bit.
With a 31 kHz input, the prescaler yields a nominal
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or
4 ms in 7-bit mode.
A variable postscaler divides down the WDT prescaler
output and allows for a wide range of time-out periods.
The postscaler is controlled by the WDTPS<3:0>
Configuration bits (CW1<3:0>), which allow the selec-
tion of a total of 16 settings, from 1:1 to 1:32,768. Using
the prescaler and postscaler time-out periods, ranges
from 1 ms to 131 seconds can be achieved.
The WDT, prescaler and postscaler are reset:
On any device Reset
On the completion of a clock switch, whether
invoked by software (i.e., setting the OSWEN bit
after changing the NOSC bits) or by hardware
(i.e., Fail-Safe Clock Monitor)
When a PWRSAV instruction is executed
(i.e., Sleep or Idle mode is entered)
When the device exits Sleep or Idle mode to
resume normal operation
•By a CLRWDT instruction during normal execution
If the WDT is enabled, it will continue to run during
Sleep or Idle modes. When the WDT time-out occurs,
the device will wake the device and code execution will
continue from where the PWRSAV instruction was
executed. The corresponding SLEEP or IDLE bits
(RCON<3:2>) will need to be cleared in software after
the device wakes up.
The WDT Flag bit, WDTO (RCON<4>), is not auto-
matically cleared following a WDT time-out. To detect
subsequent WDT events, the flag must be cleared in
software.
Note: For more information, see Section 28.0
“Electrical Characteristics”.
Note: The CLRWDT and PWRSAV instructions
clear the prescaler and postscaler counts
when executed.
PIC24FJ64GA104 FAMILY
DS39951C-page 248 2010 Microchip Technology Inc.
25.3.1 WINDOWED OPERATION
The Watchdog Timer has an optional Fixed Window
mode of operation. In this Windowed mode, CLRWDT
instructions can only reset the WDT during the last 1/4
of the programmed WDT period. A CLRWDT instruction
is executed before that window causes a WDT Reset;
this is similar to a WDT time-out.
Windowed WDT mode is enabled by programming the
WINDIS Configuration bit (CW1<6>) to0’.
25.3.2 CONTROL REGISTER
The WDT is enabled or disabled by the FWDTEN
Configuration bit. When the FWDTEN Configuration bit
is set, the WDT is always enabled.
The WDT can be optionally controlled in software when
the FWDTEN Configuration bit has been programmed
to ‘0’. The WDT is enabled in software by setting the
SWDTEN control bit (RCON<5>). The SWDTEN
control bit is cleared on any device Reset. The WDT
software option allows the user to enable the WDT for
critical code segments, and disable the WDT during
non-critical segments, for maximum power savings.
FIGURE 25-2: WDT BLOCK DIAGRAM
25.4 Deep Sleep Watchdog Timer
(DSWDT)
PIC24FJ64GA104 family devices have both a WDT
module and a DSWDT module. The latter runs, if
enabled, when a device is in Deep Sleep and is driven
by either the SOSC or LPRC Oscillator. The clock
source is selected by the DSWDTOSC (CW4<4>)
Configuration bit.
The DSWDT can be configured to generate a time-out
at 2.1 ms to 25.7 days by selecting the respective
postscaler.The postscaler can be selected by the
Configuration bits, DSWDTPS<3:0> (CW4<3:0>).
When the DSWDT is enabled, the clock source is also
enabled. DSWDT is one of the sources that can wake
the device from Deep Sleep mode.
25.5 Program Verification and
Code Protection
PIC24FJ64GA104 family devices provide two compli-
mentary methods to protect application code from
overwrites and erasures. These also help to protect the
device from inadvertent configuration changes during
run time.
25.5.1 GENERAL SEGMENT PROTECTION
For all devices in the PIC24FJ64GA104 family, the
on-chip program memory space is treated as a single
block, known as the General Segment (GS). Code pro-
tection for this block is controlled by one Configuration
bit, GCP. This bit inhibits external reads and writes to
the program memory space. It has no direct effect in
normal execution mode.
Write protection is controlled by the GWRP bit in the
Configuration Word. When GWRP is programmed to
0’, internal write and erase operations to program
memory are blocked.
LPRC Input WDT Overflow
Wake From Sleep
31 kHz
Prescaler Postscaler
FWPSA
SWDTEN
FWDTEN
Reset
All Device Resets
Sleep or Idle Mode
LPRC Control
CLRWDT Instr.
PWRSAV Instr.
(5-bit/7-bit) 1:1 to 1:32.768
WDTPS<3:0>
1 ms/4 ms
Exit Sleep or
Idle Mode
WDT
Counter
Transition to
New Clock Source
2010 Microchip Technology Inc. DS39951C-page 249
PIC24FJ64GA104 FAMILY
25.5.2 CODE SEGMENT PROTECTION
In addition to global General Segment protection, a
separate subrange of the program memory space can
be individually protected against writes and erases.
This area can be used for many purposes where a
separate block of erase and write-protected code is
needed, such as bootloader applications. Unlike
common boot block implementations, the specially
protected segment in the PIC24FJ64GA104 family
devices can be located by the user anywhere in the
program space and configured in a wide range of sizes.
Code segment protection provides an added level of
protection to a designated area of program memory, by
disabling the NVM safety interlock, whenever a write or
erase address falls within a specified range. It does not
override General Segment protection controlled by the
GCP or GWRP bits. For example, if GCP and GWRP
are enabled, enabling segmented code protection for
the bottom half of program memory does not undo
General Segment protection for the top half.
The size and type of protection for the segmented code
range are configured by the WPFPx, WPEND, WPCFG
and WPDIS bits in Configuration Word 3. Code seg-
ment protection is enabled by programming the WPDIS
bit (= 0). The WPFP bits specify the size of the segment
to be protected by specifying the 512-word code page
that is the start or end of the protected segment. The
specified region is inclusive, therefore, this page will
also be protected.
The WPEND bit determines if the protected segment
uses the top or bottom of the program space as a
boundary. Programming WPEND (= 0) sets the bottom
of program memory (000000h) as the lower boundary
of the protected segment. Leaving WPEND unpro-
grammed (= 1) protects the specified page through the
last page of implemented program memory, including
the Configuration Word locations.
A separate bit, WPCFG, is used to independently protect
the last page of program space, including the Flash Con-
figuration Words. Programming WPCFG (= 0) protects
the last page, regardless of the other bit settings. This
may be useful in circumstances where write protection is
needed for both a code segment in the bottom of
memory, as well as the Flash Configuration Words.
The various options for segment code protection are
shown in Table 25-2.
25.5.3 CONFIGURATION REGISTER
PROTECTION
The Configuration registers are protected against
inadvertent or unwanted changes, or reads in two
ways. The primary protection method is the same as
that of the RP registers – shadow registers contain a
complimentary value which is constantly compared
with the actual value.
To safeguard against unpredictable events, Configura-
tion bit changes resulting from individual cell level
disruptions (such as ESD events) will cause a parity
error and trigger a device Reset.
The data for the Configuration registers is derived from
the Flash Configuration Words in program memory.
When the GCP bit is set, the source data for device
configuration is also protected as a consequence. Even
if General Segment protection is not enabled, the
device configuration can be protected by using the
appropriate code cement protection setting.
TABLE 25-2: SEGMENT CODE PROTECTION CONFIGURATION OPTIONS
Segment Configuration Bits
Write/Erase Protection of Code Segment
WPDIS WPEND WPCFG
1x1No additional protection enabled; all program memory protection is configured
by GCP and GWRP
1x0Last code page protected, including Flash Configuration Words
010Addresses from the first address of code page are defined by WPFP<5:0>
through the end of implemented program memory (inclusive) are protected,
including Flash Configuration Words
000Address, 000000h, through the last address of code page, defined by
WPFP<5:0> (inclusive) is protected
011Addresses from first address of code page, defined by WPFP<5:0> through the
end of implemented program memory (inclusive), are protected, including Flash
Configuration Words
001Addresses from first address of code page, defined by WPFP<5:0> through the
end of implemented program memory (inclusive), are protected
PIC24FJ64GA104 FAMILY
DS39951C-page 250 2010 Microchip Technology Inc.
25.6 JTAG Interface
PIC24FJ64GA104 family devices implement a JTAG
interface, which supports boundary scan device
testing.
25.7 In-Circuit Serial Programming
PIC24FJ64GA104 family microcontrollers can be seri-
ally programmed while in the end application circuit.
This is simply done with two lines for clock (PGECx)
and data (PGEDx), and three other lines for power,
ground and the programming voltage. This allows
customers to manufacture boards with unprogrammed
devices and then program the microcontroller just
before shipping the product. This also allows the most
recent firmware or a custom firmware to be
programmed.
25.8 In-Circuit Debugger
When MPLAB® ICD 2 is selected as a debugger, the
in-circuit debugging functionality is enabled. This func-
tion allows simple debugging functions when used with
MPLAB IDE. Debugging functionality is controlled
through the PGECx (Emulation/Debug Clock) and
PGEDx (Emulation/Debug Data) pins.
To use the in-circuit debugger function of the device,
the design must implement ICSP connections to
MCLR, VDD, VSS and the PGECx/PGEDx pin pair des-
ignated by the ICS Configuration bits. In addition, when
the feature is enabled, some of the resources are not
available for general use. These resources include the
first 80 bytes of data RAM and two I/O pins.
2010 Microchip Technology Inc. DS39951C-page 251
PIC24FJ64GA104 FAMILY
26.0 DEVELOPMENT SUPPORT
The PIC® microcontrollers and dsPIC® digital signal
controllers are supported with a full range of software
and hardware development tools:
Integrated Development Environment
- MPLAB® IDE Software
Compilers/Assemblers/Linkers
- MPLAB C Compiler for Various Device
Families
- HI-TECH C for Various Device Families
- MPASMTM Assembler
-MPLINK
TM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
Simulators
- MPLAB SIM Software Simulator
•Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
In-Circuit Debuggers
- MPLAB ICD 3
- PICkit™ 3 Debug Express
Device Programmers
- PICkit™ 2 Programmer
- MPLAB PM3 Device Programmer
Low-Cost Demonstration/Development Boards,
Evaluation Kits, and Starter Kits
26.1 MPLAB Integrated Development
Environment Software
The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16/32-bit
microcontroller market. The MPLAB IDE is a Windows®
operating system-based application that contains:
A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- In-Circuit Emulator (sold separately)
- In-Circuit Debugger (sold separately)
A full-featured editor with color-coded context
A multiple project manager
Customizable data windows with direct edit of
contents
High-level source code debugging
Mouse over variable inspection
Drag and drop variables from source to watch
windows
Extensive on-line help
Integration of select third party tools, such as
IAR C Compilers
The MPLAB IDE allows you to:
Edit your source files (either C or assembly)
One-touch compile or assemble, and download to
emulator and simulator tools (automatically
updates all project information)
Debug using:
- Source files (C or assembly)
- Mixed C and assembly
- Machine code
MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
PIC24FJ64GA104 FAMILY
DS39951C-page 252 2010 Microchip Technology Inc.
26.2 MPLAB C Compilers for Various
Device Families
The MPLAB C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC18,
PIC24 and PIC32 families of microcontrollers and the
dsPIC30 and dsPIC33 families of digital signal control-
lers. These compilers provide powerful integration
capabilities, superior code optimization and ease of
use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
26.3 HI-TECH C for Various Device
Families
The HI-TECH C Compiler code development systems
are complete ANSI C compilers for Microchip’s PIC
family of microcontrollers and the dsPIC family of digital
signal controllers. These compilers provide powerful
integration capabilities, omniscient code generation
and ease of use.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
The compilers include a macro assembler, linker, pre-
processor, and one-step driver, and can run on multiple
platforms.
26.4 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.
The MPASM Assembler features include:
Integration into MPLAB IDE projects
User-defined macros to streamline
assembly code
Conditional assembly for multi-purpose
source files
Directives that allow complete control over the
assembly process
26.5 MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
Efficient linking of single libraries instead of many
smaller files
Enhanced code maintainability by grouping
related modules together
Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
26.6 MPLAB Assembler, Linker and
Librarian for Various Device
Families
MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC devices. MPLAB C Compiler uses
the assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command line interface
Rich directive set
Flexible macro language
MPLAB IDE compatibility
2010 Microchip Technology Inc. DS39951C-page 253
PIC24FJ64GA104 FAMILY
26.7 MPLAB SIM Software Simulator
The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC® DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool.
26.8 MPLAB REAL ICE In-Circuit
Emulator System
MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs PIC® Flash MCUs and dsPIC® Flash DSCs
with the easy-to-use, powerful graphical user interface of
the MPLAB Integrated Development Environment (IDE),
included with each kit.
The emulator is connected to the design engineer’s PC
using a high-speed USB 2.0 interface and is connected
to the target with either a connector compatible with in-
circuit debugger systems (RJ11) or with the new high-
speed, noise tolerant, Low-Voltage Differential Signal
(LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB IDE. In upcoming releases of
MPLAB IDE, new devices will be supported, and new
features will be added. MPLAB REAL ICE offers signifi-
cant advantages over competitive emulators including
low-cost, full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, a rugge-
dized probe interface and long (up to three meters) inter-
connection cables.
26.9 MPLAB ICD 3 In-Circuit Debugger
System
MPLAB ICD 3 In-Circuit Debugger System is Micro-
chip's most cost effective high-speed hardware
debugger/programmer for Microchip Flash Digital Sig-
nal Controller (DSC) and microcontroller (MCU)
devices. It debugs and programs PIC® Flash microcon-
trollers and dsPIC® DSCs with the powerful, yet easy-
to-use graphical user interface of MPLAB Integrated
Development Environment (IDE).
The MPLAB ICD 3 In-Circuit Debugger probe is con-
nected to the design engineer's PC using a high-speed
USB 2.0 interface and is connected to the target with a
connector compatible with the MPLAB ICD 2 or MPLAB
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all
MPLAB ICD 2 headers.
26.10 PICkit 3 In-Circuit Debugger/
Programmer and
PICkit 3 Debug Express
The MPLAB PICkit 3 allows debugging and program-
ming of PIC® and dsPIC® Flash microcontrollers at a
most affordable price point using the powerful graphical
user interface of the MPLAB Integrated Development
Environment (IDE). The MPLAB PICkit 3 is connected
to the design engineer's PC using a full speed USB
interface and can be connected to the target via an
Microchip debug (RJ-11) connector (compatible with
MPLAB ICD 3 and MPLAB REAL ICE). The connector
uses two device I/O pins and the reset line to imple-
ment in-circuit debugging and In-Circuit Serial Pro-
gramming™.
The PICkit 3 Debug Express include the PICkit 3, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
PIC24FJ64GA104 FAMILY
DS39951C-page 254 2010 Microchip Technology Inc.
26.11 PICkit 2 Development
Programmer/Debugger and
PICkit 2 Debug Express
The PICkit™ 2 Development Programmer/Debugger is
a low-cost development tool with an easy to use inter-
face for programming and debugging Microchip’s Flash
families of microcontrollers. The full featured
Windows® programming interface supports baseline
(PIC10F, PIC12F5xx, PIC16F5xx), midrange
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit
microcontrollers, and many Microchip Serial EEPROM
products. With Microchip’s powerful MPLAB Integrated
Development Environment (IDE) the PICkit™ 2
enables in-circuit debugging on most PIC® microcon-
trollers. In-Circuit-Debugging runs, halts and single
steps the program while the PIC microcontroller is
embedded in the application. When halted at a break-
point, the file registers can be examined and modified.
The PICkit 2 Debug Express include the PICkit 2, demo
board and microcontroller, hookup cables and CDROM
with user’s guide, lessons, tutorial, compiler and
MPLAB IDE software.
26.12 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modu-
lar, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an MMC card for file
storage and data applications.
26.13 Demonstration/Development
Boards, Evaluation Kits, and
Starter Kits
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully func-
tional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™ demon-
stration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart battery management, SEEVAL®
evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
2010 Microchip Technology Inc. DS39951C-page 255
PIC24FJ64GA104 FAMILY
27.0 INSTRUCTION SET SUMMARY
The PIC24F instruction set adds many enhancements
to the previous PIC® MCU instruction sets, while main-
taining an easy migration from previous PIC MCU
instruction sets. Most instructions are a single program
memory word. Only three instructions require two
program memory locations.
Each single-word instruction is a 24-bit word divided
into an 8-bit opcode, which specifies the instruction
type and one or more operands, which further specify
the operation of the instruction. The instruction set is
highly orthogonal and is grouped into four basic
categories:
Word or byte-oriented operations
Bit-oriented operations
Literal operations
Control operations
Table 27-1 shows the general symbols used in
describing the instructions. The PIC24F instruction set
summary in Table 27-2 lists all of the instructions, along
with the status flags affected by each instruction.
Most word or byte-oriented W register instructions
(including barrel shift instructions) have three
operands:
The first source operand, which is typically a
register ‘Wb’ without any address modifier
The second source operand, which is typically a
register ‘Ws’ with or without an address modifier
The destination of the result, which is typically a
register ‘Wd’ with or without an address modifier
However, word or byte-oriented file register instructions
have two operands:
The file register specified by the value, ‘f’
The destination, which could either be the file
register, ‘f’, or the W0 register, which is denoted
as ‘WREG’
Most bit-oriented instructions (including simple
rotate/shift instructions) have two operands:
The W register (with or without an address
modifier) or file register (specified by the value of
‘Ws’ or ‘f’)
The bit in the W register or file register (specified
by a literal value or indirectly by the contents of
register, ‘Wb’)
The literal instructions that involve data movement may
use some of the following operands:
A literal value to be loaded into a W register or file
register (specified by the value of ‘k’)
The W register or file register where the literal
value is to be loaded (specified by ‘Wb’ or ‘f’)
However, literal instructions that involve arithmetic or
logical operations use some of the following operands:
The first source operand, which is a register ‘Wb’
without any address modifier
The second source operand, which is a literal
value
The destination of the result (only if not the same
as the first source operand), which is typically a
register ‘Wd’ with or without an address modifier
The control instructions may use some of the following
operands:
A program memory address
The mode of the table read and table write
instructions
All instructions are a single word, except for certain
double-word instructions, which were made
double-word instructions so that all the required infor-
mation is available in these 48 bits. In the second word,
the 8 MSbs are ‘0’s. If this second word is executed as
an instruction (by itself), it will execute as a NOP.
Most single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles, with the additional instruction cycle(s) executed
as a NOP. Notable exceptions are the BRA (uncondi-
tional/computed branch), indirect CALL/GOTO, all table
reads and writes, and RETURN/RETFIE instructions,
which are single-word instructions but take two or three
cycles.
Certain instructions that involve skipping over the sub-
sequent instruction require either two or three cycles if
the skip is performed, depending on whether the
instruction being skipped is a single-word or two-word
instruction. Moreover, double-word moves require two
cycles. The double-word instructions execute in two
instruction cycles.
Note: This chapter is a brief summary of the
PIC24F instruction set architecture, and is
not intended to be a comprehensive
reference source.
PIC24FJ64GA104 FAMILY
DS39951C-page 256 2010 Microchip Technology Inc.
TABLE 27-1: SYMBOLS USED IN OPCODE DESCRIPTIONS
Field Description
#text Means literal defined by “text
(text) Means “content of text
[text] Means “the location addressed by text
{ } Optional field or operation
<n:m> Register bit field
.b Byte mode selection
.d Double-Word mode selection
.S Shadow register select
.w Word mode selection (default)
bit4 4-bit bit selection field (used in word addressed instructions) {0...15}
C, DC, N, OV, Z MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr Absolute address, label or expression (resolved by the linker)
f File register address {0000h...1FFFh}
lit1 1-bit unsigned literal {0,1}
lit4 4-bit unsigned literal {0...15}
lit5 5-bit unsigned literal {0...31}
lit8 8-bit unsigned literal {0...255}
lit10 10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode
lit14 14-bit unsigned literal {0...16383}
lit16 16-bit unsigned literal {0...65535}
lit23 23-bit unsigned literal {0...8388607}; LSB must be ‘0
None Field does not require an entry, may be blank
PC Program Counter
Slit10 10-bit signed literal {-512...511}
Slit16 16-bit signed literal {-32768...32767}
Slit6 6-bit signed literal {-16...16}
Wb Base W register {W0..W15}
Wd Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }
Wdo Destination W register 
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }
Wm,Wn Dividend, Divisor working register pair (direct addressing)
Wn One of 16 working registers {W0..W15}
Wnd One of 16 destination working registers {W0..W15}
Wns One of 16 source working registers {W0..W15}
WREG W0 (working register used in file register instructions)
Ws Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }
Wso Source W register { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }
2010 Microchip Technology Inc. DS39951C-page 257
PIC24FJ64GA104 FAMILY
TABLE 27-2: INSTRUCTION SET OVERVIEW
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
ADD ADD f f = f + WREG 1 1 C, DC, N, OV, Z
ADD f,WREG WREG = f + WREG 1 1 C, DC, N, OV, Z
ADD #lit10,Wn Wd = lit10 + Wd 1 1 C, DC, N, OV, Z
ADD Wb,Ws,Wd Wd = Wb + Ws 1 1 C, DC, N, OV, Z
ADD Wb,#lit5,Wd Wd = Wb + lit5 1 1 C, DC, N, OV, Z
ADDC ADDC f f = f + WREG + (C) 1 1 C, DC, N, OV, Z
ADDC f,WREG WREG = f + WREG + (C) 1 1 C, DC, N, OV, Z
ADDC #lit10,Wn Wd = lit10 + Wd + (C) 1 1 C, DC, N, OV, Z
ADDC Wb,Ws,Wd Wd = Wb + Ws + (C) 1 1 C, DC, N, OV, Z
ADDC Wb,#lit5,Wd Wd = Wb + lit5 + (C) 1 1 C, DC, N, OV, Z
AND AND f f = f .AND. WREG 1 1 N, Z
AND f,WREG WREG = f .AND. WREG 1 1 N, Z
AND #lit10,Wn Wd = lit10 .AND. Wd 1 1 N, Z
AND Wb,Ws,Wd Wd = Wb .AND. Ws 1 1 N, Z
AND Wb,#lit5,Wd Wd = Wb .AND. lit5 1 1 N, Z
ASR ASR f f = Arithmetic Right Shift f 1 1 C, N, OV, Z
ASR f,WREG WREG = Arithmetic Right Shift f 1 1 C, N, OV, Z
ASR Ws,Wd Wd = Arithmetic Right Shift Ws 1 1 C, N, OV, Z
ASR Wb,Wns,Wnd Wnd = Arithmetic Right Shift Wb by Wns 1 1 N, Z
ASR Wb,#lit5,Wnd Wnd = Arithmetic Right Shift Wb by lit5 1 1 N, Z
BCLR BCLR f,#bit4 Bit Clear f 1 1 None
BCLR Ws,#bit4 Bit Clear Ws 1 1 None
BRA BRA C,Expr Branch if Carry 1 1 (2) None
BRA GE,Expr Branch if Greater than or Equal 1 1 (2) None
BRA GEU,Expr Branch if Unsigned Greater than or Equal 1 1 (2) None
BRA GT,Expr Branch if Greater than 1 1 (2) None
BRA GTU,Expr Branch if Unsigned Greater than 1 1 (2) None
BRA LE,Expr Branch if Less than or Equal 1 1 (2) None
BRA LEU,Expr Branch if Unsigned Less than or Equal 1 1 (2) None
BRA LT,Expr Branch if Less than 1 1 (2) None
BRA LTU,Expr Branch if Unsigned Less than 1 1 (2) None
BRA N,Expr Branch if Negative 1 1 (2) None
BRA NC,Expr Branch if Not Carry 1 1 (2) None
BRA NN,Expr Branch if Not Negative 1 1 (2) None
BRA NOV,Expr Branch if Not Overflow 1 1 (2) None
BRA NZ,Expr Branch if Not Zero 1 1 (2) None
BRA OV,Expr Branch if Overflow 1 1 (2) None
BRA Expr Branch Unconditionally 1 2 None
BRA Z,Expr Branch if Zero 1 1 (2) None
BRA Wn Computed Branch 1 2 None
BSET BSET f,#bit4 Bit Set f 1 1 None
BSET Ws,#bit4 Bit Set Ws 1 1 None
BSW BSW.C Ws,Wb Write C bit to Ws<Wb> 1 1 None
BSW.Z Ws,Wb Write Z bit to Ws<Wb> 1 1 None
BTG BTG f,#bit4 Bit Toggle f 1 1 None
BTG Ws,#bit4 Bit Toggle Ws 1 1 None
BTSC BTSC f,#bit4 Bit Test f, Skip if Clear 1 1
(2 or 3)
None
BTSC Ws,#bit4 Bit Test Ws, Skip if Clear 1 1
(2 or 3)
None
PIC24FJ64GA104 FAMILY
DS39951C-page 258 2010 Microchip Technology Inc.
BTSS BTSS f,#bit4 Bit Test f, Skip if Set 1 1
(2 or 3)
None
BTSS Ws,#bit4 Bit Test Ws, Skip if Set 1 1
(2 or 3)
None
BTST BTST f,#bit4 Bit Test f 1 1 Z
BTST.C Ws,#bit4 Bit Test Ws to C 1 1 C
BTST.Z Ws,#bit4 Bit Test Ws to Z 1 1 Z
BTST.C Ws,Wb Bit Test Ws<Wb> to C 1 1 C
BTST.Z Ws,Wb Bit Test Ws<Wb> to Z 1 1 Z
BTSTS BTSTS f,#bit4 Bit Test then Set f 1 1 Z
BTSTS.C Ws,#bit4 Bit Test Ws to C, then Set 1 1 C
BTSTS.Z Ws,#bit4 Bit Test Ws to Z, then Set 1 1 Z
CALL CALL lit23 Call Subroutine 2 2 None
CALL Wn Call Indirect Subroutine 1 2 None
CLR CLR f f = 0x0000 1 1 None
CLR WREG WREG = 0x0000 1 1 None
CLR Ws Ws = 0x0000 1 1 None
CLRWDT CLRWDT Clear Watchdog Timer 1 1 WDTO, Sleep
COM COM f f = f 11N, Z
COM f,WREG WREG = f 11N, Z
COM Ws,Wd Wd = Ws 11N, Z
CP CP f Compare f with WREG 1 1 C, DC, N, OV, Z
CP Wb,#lit5 Compare Wb with lit5 1 1 C, DC, N, OV, Z
CP Wb,Ws Compare Wb with Ws (Wb – Ws) 1 1 C, DC, N, OV, Z
CP0 CP0 f Compare f with 0x0000 1 1 C, DC, N, OV, Z
CP0 Ws Compare Ws with 0x0000 1 1 C, DC, N, OV, Z
CPB CPB f Compare f with WREG, with Borrow 1 1 C, DC, N, OV, Z
CPB Wb,#lit5 Compare Wb with lit5, with Borrow 1 1 C, DC, N, OV, Z
CPB Wb,Ws Compare Wb with Ws, with Borrow
(Wb – Ws – C)
1 1 C, DC, N, OV, Z
CPSEQ CPSEQ Wb,Wn Compare Wb with Wn, Skip if = 1 1
(2 or 3)
None
CPSGT CPSGT Wb,Wn Compare Wb with Wn, Skip if > 1 1
(2 or 3)
None
CPSLT CPSLT Wb,Wn Compare Wb with Wn, Skip if < 1 1
(2 or 3)
None
CPSNE CPSNE Wb,Wn Compare Wb with Wn, Skip if 11
(2 or 3)
None
DAW DAW.B Wn Wn = Decimal Adjust Wn 1 1 C
DEC DEC f f = f – 1 1 1 C, DC, N, OV, Z
DEC f,WREG WREG = f – 1 1 1 C, DC, N, OV, Z
DEC Ws,Wd Wd = Ws – 1 1 1 C, DC, N, OV, Z
DEC2 DEC2 f f = f – 2 1 1 C, DC, N, OV, Z
DEC2 f,WREG WREG = f – 2 1 1 C, DC, N, OV, Z
DEC2 Ws,Wd Wd = Ws – 2 1 1 C, DC, N, OV, Z
DISI DISI #lit14 Disable Interrupts for k Instruction Cycles 1 1 None
DIV DIV.SW Wm,Wn Signed 16/16-bit Integer Divide 1 18 N, Z, C, OV
DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N, Z, C, OV
DIV.UW Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N, Z, C, OV
DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N, Z, C, OV
EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None
FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C
FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C
TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
2010 Microchip Technology Inc. DS39951C-page 259
PIC24FJ64GA104 FAMILY
GOTO GOTO Expr Go to Address 2 2 None
GOTO Wn Go to Indirect 1 2 None
INC INC f f = f + 1 1 1 C, DC, N, OV, Z
INC f,WREG WREG = f + 1 1 1 C, DC, N, OV, Z
INC Ws,Wd Wd = Ws + 1 1 1 C, DC, N, OV, Z
INC2 INC2 f f = f + 2 1 1 C, DC, N, OV, Z
INC2 f,WREG WREG = f + 2 1 1 C, DC, N, OV, Z
INC2 Ws,Wd Wd = Ws + 2 1 1 C, DC, N, OV, Z
IOR IOR f f = f .IOR. WREG 1 1 N, Z
IOR f,WREG WREG = f .IOR. WREG 1 1 N, Z
IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N, Z
IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N, Z
IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N, Z
LNK LNK #lit14 Link Frame Pointer 1 1 None
LSR LSR f f = Logical Right Shift f 1 1 C, N, OV, Z
LSR f,WREG WREG = Logical Right Shift f 1 1 C, N, OV, Z
LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C, N, OV, Z
LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N, Z
LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N, Z
MOV MOV f,Wn Move f to Wn 1 1 None
MOV [Wns+Slit10],Wnd Move [Wns + Slit10] to Wnd 1 1 None
MOV f Move f to f 1 1 N, Z
MOV f,WREG Move f to WREG 1 1 N, Z
MOV #lit16,Wn Move 16-bit Literal to Wn 1 1 None
MOV.b #lit8,Wn Move 8-bit Literal to Wn 1 1 None
MOV Wn,f Move Wn to f 1 1 None
MOV Wns,[Wns+Slit10] Move Wns to [Wns + Slit10] 1 1
MOV Wso,Wdo Move Ws to Wd 1 1 None
MOV WREG,f Move WREG to f 1 1 N, Z
MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None
MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None
MUL MUL.SS Wb,Ws,Wnd {Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws) 1 1 None
MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws) 1 1 None
MUL.US Wb,Ws,Wnd {Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws) 1 1 None
MUL.UU Wb,Ws,Wnd {Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws) 1 1 None
MUL.SU Wb,#lit5,Wnd {Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5) 1 1 None
MUL.UU Wb,#lit5,Wnd {Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5) 1 1 None
MUL f W3:W2 = f * WREG 1 1 None
NEG NEG f f = f + 1 1 1 C, DC, N, OV, Z
NEG f,WREG WREG = f + 1 1 1 C, DC, N, OV, Z
NEG Ws,Wd Wd = Ws + 1 1 1 C, DC, N, OV, Z
NOP NOP No Operation 1 1 None
NOPR No Operation 1 1 None
POP POP f Pop f from Top-of-Stack (TOS) 1 1 None
POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None
POP.D Wnd Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) 1 2 None
POP.S Pop Shadow Registers 1 1 All
PUSH PUSH f Push f to Top-of-Stack (TOS) 1 1 None
PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None
PUSH.D Wns Push W(ns):W(ns + 1) to Top-of-Stack (TOS) 1 2 None
PUSH.S Push Shadow Registers 1 1 None
TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
PIC24FJ64GA104 FAMILY
DS39951C-page 260 2010 Microchip Technology Inc.
PWRSAV PWRSAV #lit1 Go into Sleep or Idle mode 1 1 WDTO, Sleep
RCALL RCALL Expr Relative Call 1 2 None
RCALL Wn Computed Call 1 2 None
REPEAT REPEAT #lit14 Repeat Next Instruction lit14 + 1 times 1 1 None
REPEAT Wn Repeat Next Instruction (Wn) + 1 times 1 1 None
RESET RESET Software Device Reset 1 1 None
RETFIE RETFIE Return from Interrupt 1 3 (2) None
RETLW RETLW #lit10,Wn Return with Literal in Wn 1 3 (2) None
RETURN RETURN Return from Subroutine 1 3 (2) None
RLC RLC f f = Rotate Left through Carry f 1 1 C, N, Z
RLC f,WREG WREG = Rotate Left through Carry f 1 1 C, N, Z
RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C, N, Z
RLNC RLNC f f = Rotate Left (No Carry) f 1 1 N, Z
RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N, Z
RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N, Z
RRC RRC f f = Rotate Right through Carry f 1 1 C, N, Z
RRC f,WREG WREG = Rotate Right through Carry f 1 1 C, N, Z
RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C, N, Z
RRNC RRNC f f = Rotate Right (No Carry) f 1 1 N, Z
RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N, Z
RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N, Z
SE SE Ws,Wnd Wnd = Sign-Extended Ws 1 1 C, N, Z
SETM SETM f f = FFFFh 1 1 None
SETM WREG WREG = FFFFh 1 1 None
SETM Ws Ws = FFFFh 1 1 None
SL SL f f = Left Shift f 1 1 C, N, OV, Z
SL f,WREG WREG = Left Shift f 1 1 C, N, OV, Z
SL Ws,Wd Wd = Left Shift Ws 1 1 C, N, OV, Z
SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N, Z
SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N, Z
SUB SUB f f = f – WREG 1 1 C, DC, N, OV, Z
SUB f,WREG WREG = f – WREG 1 1 C, DC, N, OV, Z
SUB #lit10,Wn Wn = Wn – lit10 1 1 C, DC, N, OV, Z
SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 C, DC, N, OV, Z
SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 C, DC, N, OV, Z
SUBB SUBB f f = f – WREG – (C) 1 1 C, DC, N, OV, Z
SUBB f,WREG WREG = f – WREG – (C) 1 1 C, DC, N, OV, Z
SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 C, DC, N, OV, Z
SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 C, DC, N, OV, Z
SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 C, DC, N, OV, Z
SUBR SUBR f f = WREG – f 1 1 C, DC, N, OV, Z
SUBR f,WREG WREG = WREG – f 1 1 C, DC, N, OV, Z
SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 C, DC, N, OV, Z
SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 C, DC, N, OV, Z
SUBBR SUBBR f f = WREG – f – (C) 1 1 C, DC, N, OV, Z
SUBBR f,WREG WREG = WREG – f – (C) 1 1 C, DC, N, OV, Z
SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 C, DC, N, OV, Z
SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 C, DC, N, OV, Z
SWAP SWAP.b Wn Wn = Nibble Swap Wn 1 1 None
SWAP Wn Wn = Byte Swap Wn 1 1 None
TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
2010 Microchip Technology Inc. DS39951C-page 261
PIC24FJ64GA104 FAMILY
TBLRDH TBLRDH Ws,Wd Read Prog<23:16> to Wd<7:0> 1 2 None
TBLRDL TBLRDL Ws,Wd Read Prog<15:0> to Wd 1 2 None
TBLWTH TBLWTH Ws,Wd Write Ws<7:0> to Prog<23:16> 1 2 None
TBLWTL TBLWTL Ws,Wd Write Ws to Prog<15:0> 1 2 None
ULNK ULNK Unlink Frame Pointer 1 1 None
XOR XOR f f = f .XOR. WREG 1 1 N, Z
XOR f,WREG WREG = f .XOR. WREG 1 1 N, Z
XOR #lit10,Wn Wd = lit10 .XOR. Wd 1 1 N, Z
XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 N, Z
XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 N, Z
ZE ZE Ws,Wnd Wnd = Zero-Extend Ws 1 1 C, Z, N
TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)
Assembly
Mnemonic Assembly Syntax Description # of
Words
# of
Cycles
Status Flags
Affected
PIC24FJ64GA104 FAMILY
DS39951C-page 262 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 263
PIC24FJ64GA104 FAMILY
28.0 ELECTRICAL CHARACTERISTICS
This section provides an overview of the PIC24FJ64GA104 family electrical characteristics. Additional information will
be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the PIC24FJ64GA104 family are listed below. Exposure to these maximum rating
conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other
conditions above the parameters indicated in the operation listings of this specification, is not implied.
Absolute Maximum Ratings(†)
Ambient temperature under bias.............................................................................................................-40°C to +135°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V
Voltage on any combined analog and digital pin, and MCLR, with respect to VSS ........................ -0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to VSS .................................................................................. -0.3V to +6.0V
Voltage on VDDCORE with respect to VSS ................................................................................................. -0.3V to +3.0V
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin (Note 1)................................................................................................................250 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk by all ports .......................................................................................................................200 mA
Maximum current sourced by all ports (Note 1)....................................................................................................200 mA
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 28-1).
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
PIC24FJ64GA104 FAMILY
DS39951C-page 264 2010 Microchip Technology Inc.
28.1 DC Characteristics
FIGURE 28-1: PIC24FJ64GA104 FAMILY VOLTAGE/FREQUENCY GRAPH (INDUSTRIAL)
FIGURE 28-2: PIC24FJ64GA104 FAMILY VOLTAGE/FREQUENCY GRAPH
(EXTENDED TEMPERATURE)
Frequency
Voltage (VDDCORE)(1)
3.00V
2.00V
32 MHz
2.75V
2.50V
2.35V
2.75V
16 MHz
2.35V
For frequencies between 16 MHz and 32 MHz, FMAX = (45.7 MHz/V) * (VDDCORE – 2V) + 16 MHz.
Note 1: When the voltage regulator is disabled, VDD and VDDCORE must be maintained so that
VDDCOREVDD3.6V.
PIC24FJ64GA104 Family
Frequency
Voltage (VDDCORE)(1)
3.00V
2.00V
24 MHz
2.75V
2.50V
2.25V
2.75V
2.35V
For frequencies between 16 MHz and 24 MHz, FMAX = (22.9 MHz/V) * (VDDCORE – 2V) + 16 MHz.
Note 1: When the voltage regulator is disabled, VDD and VDDCORE must be maintained so that
VDDCOREVDD3.6V.
16 MHz
PIC24FJ64GA104 Family
2010 Microchip Technology Inc. DS39951C-page 265
PIC24FJ64GA104 FAMILY
TABLE 28-1: THERMAL OPERATING CONDITIONS
Rating Symbol Min Typ Max Unit
PIC24FJ64GA104 Family:
Operating Junction Temperature Range TJ-40 +140 °C
Operating Ambient Temperature Range TA-40 +125 °C
Power Dissipation:
Internal Chip Power Dissipation:
PINT = VDD x (IDD IOH)PDPINT + PI/OW
I/O Pin Power Dissipation:
PI/O = ({VDD – VOH} x IOH) + (VOL x IOL)
Maximum Allowed Power Dissipation PDMAX (TJ – TA)/JA W
TABLE 28-2: THERMAL PACKAGING CHARACTERISTICS
Characteristic Symbol Typ Max Unit Notes
Package Thermal Resistance, 300 mil SOIC JA 49 °C/W (Note 1)
Package Thermal Resistance, 6x6x0.9 mm QFN JA 33.7 °C/W (Note 1)
Package Thermal Resistance, 8x8x1 mm QFN JA 28 °C/W (Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP JA 39.3 °C/W (Note 1)
Note 1: Junction to ambient thermal resistance; Theta-JA (JA) numbers are achieved by package simulations.
PIC24FJ64GA104 FAMILY
DS39951C-page 266 2010 Microchip Technology Inc.
TABLE 28-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic Min Typ(1) Max Units Conditions
Operating Voltage
DC10 Supply Voltage
VDD 2.2 3.6 V Regulator enabled
VDD VDDCORE 3.6 V Regulator disabled
VDDCORE 2.0 2.75 V Regulator disabled
DC12 VDR RAM Data Retention
Voltage(2)
1.5 V
DC16 VPOR VDD Start Voltage
to Ensure Internal
Power-on Reset Signal
VSS ——V
DC17 SVDD VDD Rise Rate
to Ensure Internal
Power-on Reset Signal
0.05 V/ms 0-3.3V in 0.1s
0-2.5V in 60 ms
DC18 VBOR Brown-out Reset
Voltage
—2.05V
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
2: This is the limit to which VDD can be lowered without losing RAM data.
2010 Microchip Technology Inc. DS39951C-page 267
PIC24FJ64GA104 FAMILY
TABLE 28-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Operating Current (IDD)(2)
DC21 0.24 0.395 mA -40°C
2.0V(3)
0.5 MIPS
DC21a 0.25 0.395 mA +25°C
DC21b 0.25 0.395 mA +85°C
DC21f 0.3 0.395 mA +125°C
DC21c 0.44 0.78 mA -40°C
3.3V(4)
DC21d 0.41 0.78 mA +25°C
DC21e 0.41 0.78 mA +85°C
DC21g 0.6 0.78 mA +125°C
DC20 0.5 0.75 mA -40°C
2.0V(3)
1 MIPS
DC20a 0.5 0.75 mA +25°C
DC20b 0.5 0.75 mA +85°C
DC20c 0.6 0.75 mA +125°C
DC20d 0.75 1.4 mA -40°C
3.3V(4)
DC20e 0.75 1.4 mA +25°C
DC20f 0.75 1.4 mA +85°C
DC20g 1.0 1.4 mA +125°C
DC23 2.0 3.0 mA -40°C
2.0V(3)
4 MIPS
DC23a 2.0 3.0 mA +25°C
DC23b 2.0 3.0 mA +85°C
DC23c 2.4 3.0 mA +125°C
DC23d 2.9 4.2 mA -40°C
3.3V(4)
DC23e 2.9 4.2 mA +25°C
DC23f 2.9 4.2 mA +85°C
DC23g 3.5 4.2 mA +125°C
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an
impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven
with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD.
MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are
operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.
3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).
4: On-chip voltage regulator is enabled (DISVREG is tied to VSS). Low-Voltage Detect (LVD) and Brown-out
Detect (BOD) are enabled.
PIC24FJ64GA104 FAMILY
DS39951C-page 268 2010 Microchip Technology Inc.
DC24 10.5 15.5 mA -40°C
2.5V(3)
16 MIPS
DC24a 10.5 15.5 mA +25°C
DC24b 10.5 15.5 mA +85°C
DC24c 11.3 15.5 mA +125°C
DC24d 11.3 15.5 mA -40°C
3.3V(4)
DC24e 11.3 15.5 mA +25°C
DC24f 11.3 15.5 mA +85°C
DC24g 11.3 15.5 mA +125°C
DC31 15.0 18.0 A -40°C
2.0V(3)
LPRC (31 kHz)
DC31a 15.0 19.0 A+25°C
DC31b 20.0 36.0 A+85°C
DC31c 42.0 55.0 A +125°C
DC31d 57.0 120.0 A -40°C
3.3V(4)
DC31e 57.0 125.0 A+25°C
DC31f 95.0 160.0 A+85°C
DC31g 114.0 180.0 A +125°C
TABLE 28-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD) (CONTINUED)
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Operating Current (IDD)(2)
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an
impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven
with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD.
MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are
operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.
3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).
4: On-chip voltage regulator is enabled (DISVREG is tied to VSS). Low-Voltage Detect (LVD) and Brown-out
Detect (BOD) are enabled.
2010 Microchip Technology Inc. DS39951C-page 269
PIC24FJ64GA104 FAMILY
TABLE 28-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Idle Current (IIDLE)(2)
DC41 67 100 A-40°C
2.0V(3)
0.5 MIPS
DC41a 68 100 A+25°C
DC41b 74 100 A+85°C
DC41f 102 120 A+125
°C
DC41c 166 265 A-40°C
3.3V(4)
DC41d 167 265 A+25°C
DC41e 177 265 A+85°C
DC41g 225 285 A+125
°C
DC40 125 180 A-40°C
2.0V(3)
1 MIPS
DC40a 125 180 A+25°C
DC40b 125 180 A+85°C
DC40c 167 200 A+125°C
DC40d 210 350 A-40°C
3.3V(4)
DC40e 210 350 A+25°C
DC40f 210 350 A+85°C
DC40g 305 370 A+125
°C
DC43 0.5 0.6 mA -40°C
2.0V(3)
4 MIPS
DC43a 0.5 0.6 mA +25°C
DC43b 0.5 0.6 mA +85°C
DC43c 0.54 0.62 mA +125°C
DC43d 0.75 0.95 mA -40°C
3.3V(4)
DC43e 0.75 0.95 mA +25°C
DC43f 0.75 0.95 mA +85°C
DC43g 0.8 0.97 mA +125°C
DC47 2.6 3.3 mA -40°C
2.5V(3)
16 MIPS
DC47a 2.6 3.3 mA +25°C
DC47b 2.6 3.3 mA +85°C
DC47f 2.7 3.4 mA +125°C
DC47c 2.9 3.5 mA -40°C
3.3V(4)
DC47d 2.9 3.5 mA +25°C
DC47e 2.9 3.5 mA +85°C
DC47g 3.0 3.6 mA +125°C
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and
are not tested.
2: Base IIDLE current is measured with the core off, OSCI driven with external square wave from rail to rail. All I/O
pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral
modules are operating and all of the Peripheral Module Disable (PMD) bits are set.
3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).
4: On-chip voltage regulator is enabled (DISVREG is tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect
(BOD) are enabled.
PIC24FJ64GA104 FAMILY
DS39951C-page 270 2010 Microchip Technology Inc.
DC50 0.8 1.0 mA -40°C
2.0V(3)
FRC (4 MIPS)
DC50a 0.8 1.0 mA +25°C
DC50b 0.8 1.0 mA +85°C
DC50c 0.9 1.1 mA +125°C
DC50d 1.1 1.3 mA -40°C
3.3V(4)
DC50e 1.1 1.3 mA +25°C
DC50f 1.1 1.3 mA +85°C
DC50g 1.2 1.4 mA +125°C
DC51 2.4 8.0 A-40°C
2.0V(3)
LPRC (31 kHz)
DC51a 2.2 8.0 A+25°C
DC51b 7.2 21 A+85°C
DC51c 35 50 A+125°C
DC51d 38 55 A-40°C
3.3V(4)
DC51e 44 60 A+25°C
DC51f 70 100 A+85°C
DC51g 96 150 A+125
°C
TABLE 28-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Idle Current (IIDLE)(2)
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and
are not tested.
2: Base IIDLE current is measured with the core off, OSCI driven with external square wave from rail to rail. All I/O
pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral
modules are operating and all of the Peripheral Module Disable (PMD) bits are set.
3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).
4: On-chip voltage regulator is enabled (DISVREG is tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect
(BOD) are enabled.
2010 Microchip Technology Inc. DS39951C-page 271
PIC24FJ64GA104 FAMILY
TABLE 28-6: DC CHARACTERISTICS: POWER-DOWN BASE CURRENT (IPD)
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Power-Down Current (IPD)(2)
DC60 0.05 1.0 A-40°C
2.0V(3)
Base Power-Down Current(5)
DC60a 0.2 1.0 A+25°C
DC60i 2.0 6.5 A+60°C
DC60b 3.5 12 A+85°C
DC60m 29.9 50 A +125°C
DC60c 0.1 1.0 A-40°C
2.5V(3)
DC60d 0.4 1.0 A+25°C
DC60j 2.5 15 A+60°C
DC60e 4.2 25 A+85°C
DC60n 36.2 75 A +125°C
DC60f 3.3 9.0 A-40°C
3.3V(4)
DC60g 3.3 10 A+25°C
DC60k 5.0 20 A+60°C
DC60h 7.0 30 A+85°C
DC60p 39.2 80 A +125°C
DC70c 0.003 0.2 A-40°C
2.5V(4)
Base Deep Sleep Current
DC70d 0.02 0.2 A+25°C
DC70j 0.2 0.35 A+60°C
DC70e 0.51 1.5 A+85°C
DC70a 6.1 12 A +125°C
DC70f 0.01 0.3 A-40°C
3.3V(4)
DC70g 0.04 0.3 A+25°C
DC70k 0.2 0.5 A+60°C
DC70h 0.71 2.0 A+85°C
DC70b 7.2 16 A +125°C
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
2: Base IPD is measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are
configured as inputs and pulled high. WDT, etc., are all switched off, PMSLP bit is clear and the Peripheral
Module Disable (PMD) bits for all unused peripherals are set.
3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).
4: On-chip voltage regulator is enabled (DISVREG is tied to VSS). Low-Voltage Detect (LVD) and Brown-out
Detect (BOD) are enabled.
5: The current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
PIC24FJ64GA104 FAMILY
DS39951C-page 272 2010 Microchip Technology Inc.
TABLE 28-7: DC CHARACTERISTICS: POWER-DOWN PERIPHERAL
MODULE CURRENT (IPD)
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is 0(2)
DC61 0.2 0.7 A-40°C
2.0V(3)
31 kHz LPRC Oscillator with
RTCC, WDT, DSWDT or
Timer 1: ILPRC(5)
DC61a 0.2 0.7 A+25°C
DC61i 0.2 0.7 A+60°C
DC61b 0.23 0.7 A+85°C
DC61m 0.3 1.0 A +125°C
DC61c 0.25 0.9 A-40°C
2.5V(3)
DC61d 0.25 0.9 A+25°C
DC61j 0.25 0.9 A+60°C
DC61e 0.28 0.9 A+85°C
DC61p 0.5 1.2 A +125°C
DC61f 0.6 1.5 A-40°C
3.3V(4)
DC61g 0.6 1.5 A+25°C
DC61k 0.6 1.5 A+60°C
DC61h 0.8 1.5 A+85°C
DC61n 1.0 1.7 A +125°C
DC62 0.5 1.0 A-40°C
2.0V(3)
Low drive strength, 32 kHz Crystal
with RTCC, DSWDT or
Timer1: ISOSC;
SOSCSEL = 01
DC62a 0.5 1.0 A+25°C
DC62i 0.5 1.0 A+60°C
DC62b 0.5 1.3 A+85°C
DC62m 0.6 1.6 A +125°C
DC62c 0.7 1.5 A-40°C
2.5V(3)
DC62d 0.7 1.5 A+25°C
DC62j 0.7 1.5 A+60°C
DC62e 0.7 1.8 A+85°C
DC62n 0.8 2.1 A +125°C
DC62f 1.5 2.0 A-40°C
3.3V(4)
DC62g 1.5 2.0 A+25°C
DC62k 1.5 2.0 A+60°C
DC62h 1.5 2.5 A+85°C
DC62p 1.9 3.0 A +125°C
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
2: Peripheral IPD deltas are measured with the device in Sleep mode (all peripherals and clocks shut down).
All I/Os are configured as inputs and pulled high. Only the peripheral or clock being measured is enabled.
PMSLP bit is clear and the Peripheral Module Disable bits (PMD) for all unused peripherals are set.
3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).
4: On-chip voltage regulator is enabled (DISVREG is tied to VSS). Low-Voltage Detect (LVD) and Brown-out
Detect (BOD) are enabled.
5: The current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
2010 Microchip Technology Inc. DS39951C-page 273
PIC24FJ64GA104 FAMILY
DC63 1.8 2.3 A-40°C
2.0V(3)
32 kHz Crystal with RTCC,
DSWDT or Timer1: ISOSC;
SOSCSEL = 11(5)
DC63a 1.8 2.7 A+25°C
DC63i 1.8 3.0 A+60°C
DC63b 1.8 3.0 A+85°C
DC63m 2.2 3.3 A +125°C
DC63c 2 2.7 A-40°C
2.5V(3)
DC63d 2 2.9 A+25°C
DC63j 2 3.2 A+60°C
DC63e 2 3.5 A+85°C
DC63n 2.5 3.8 A +125°C
DC63f 2.25 3.0 A-40°C
3.3V(4)
DC63g 2.25 3.0 A+25°C
DC63k 2.25 3.3 A+60°C
DC63h 2.25 3.5 A+85°C
DC63p 2.8 4.0 A +125°C
DC71c 0.001 0.25 A-40°C
2.5V(4)
Deep Sleep BOR: IDSBOR
DC71d 0.03 0.25 A+25°C
DC71j 0.05 0.60 A+60°C
DC71e 0.08 2.0 A+85°C
DC71a 3.9 10 A +125°C
DC71f 0.001 0.50 A-40°C
3.3V(4)
DC71g 0.03 0.50 A+25°C
DC71k 0.05 0.75 A+60°C
DC71h 0.08 2.5 A+85°C
DC71b 3.9 12.5 A +125°C
TABLE 28-7: DC CHARACTERISTICS: POWER-DOWN PERIPHERAL
MODULE CURRENT (IPD) (CONTINUED)
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Parameter
No. Typical(1) Max Units Conditions
Power-Down Current (IPD): PMD Bits are Set, PMSLP Bit is 0(2)
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance
only and are not tested.
2: Peripheral IPD deltas are measured with the device in Sleep mode (all peripherals and clocks shut down).
All I/Os are configured as inputs and pulled high. Only the peripheral or clock being measured is enabled.
PMSLP bit is clear and the Peripheral Module Disable bits (PMD) for all unused peripherals are set.
3: On-chip voltage regulator is disabled (DISVREG is tied to VDD).
4: On-chip voltage regulator is enabled (DISVREG is tied to VSS). Low-Voltage Detect (LVD) and Brown-out
Detect (BOD) are enabled.
5: The current is the additional current consumed when the module is enabled. This current should be
added to the base IPD current.
PIC24FJ64GA104 FAMILY
DS39951C-page 274 2010 Microchip Technology Inc.
TABLE 28-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise
stated)
Operating temperature -40°C T
A +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Sym Characteristic Min Typ(1) Max Units Conditions
VIL Input Low Voltage(4)
DI10 I/O Pins with ST Buffer VSS —0.2VDD V
DI11 I/O Pins with TTL Buffer VSS —0.15 VDD V
DI15 MCLR VSS —0.2VDD V
DI16 OSC1 (XT mode) VSS —0.2VDD V
DI17 OSC1 (HS mode) VSS —0.2VDD V
DI18 I/O Pins with I2C™ Buffer: VSS —0.3VDD V
DI19 I/O Pins with SMBus Buffer: VSS 0.8 V SMBus enabled
VIH Input High Voltage(4)
DI20 I/O Pins with ST Buffer:
with Analog Functions,
Digital Only
0.8 VDD
0.8 VDD
VDD
5.5
V
V
DI21 I/O Pins with TTL Buffer:
with Analog Functions,
Digital Only
0.25 VDD + 0.8
0.25 VDD + 0.8
VDD
5.5
V
V
DI25 MCLR 0.8 VDD —VDD V
DI26 OSC1 (XT mode) 0.7 VDD —VDD V
DI27 OSC1 (HS mode) 0.7 VDD —VDD V
DI28 I/O Pins with I2C Buffer:
with Analog Functions,
Digital Only
0.7 VDD
0.7 VDD
VDD
5.5
V
V
DI29 I/O Pins with SMBus Buffer:
with Analog Functions,
Digital Only
2.1
2.1
VDD
5.5
V
V
2.5V VPIN VDD
DI30 ICNPU CNx Pull-up Current 50 250 400 AVDD = 3.3V, VPIN = VSS
IIL Input Leakage Current(2,3)
DI50 I/O Ports +50 nA VSS VPIN VDD,
Pin at high-impedance
DI51 Analog Input Pins +50 nA VSS VPIN VDD,
Pin at high-impedance
DI55 MCLR ——
+50 nA VSS VPIN VDD
DI56 OSC1 +50 nA VSS VPIN VDD,
XT and HS modes
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
3: Negative current is defined as current sourced by the pin.
4: Refer to Table 1-2 for I/O pins buffer types.
2010 Microchip Technology Inc. DS39951C-page 275
PIC24FJ64GA104 FAMILY
TABLE 28-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Sym Characteristic Min Typ(1) Max Units Conditions
VOL Output Low Voltage
DO10 I/O Ports 0.4 V IOL = 8.5 mA, VDD = 3.6V
——0.4VI
OL = 5.0 mA, VDD = 2.0V
DO16 I/O Ports ——0.4VIOL = 8.0 mA, VDD = 3.6V, 125°C
——0.4VI
OL = 4.5 mA, VDD = 2.0V, 125°C
VOH Output High Voltage
DO20 I/O Ports 3.0 V IOH = -3.0 mA, VDD = 3.6V
2.4 V IOH = -6.0 mA, VDD = 3.6V
1.65 V IOH = -1.0 mA, VDD = 2.0V
1.4 V IOH = -3.0 mA, VDD = 2.0V
DO26 I/O Ports 3.0 V IOH = -2.5 mA, VDD = 3.6V, 125°C
1.65 V IOH = -0.5 mA, VDD = 2.0V, 125°C
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
TABLE 28-10: DC CHARACTERISTICS: PROGRAM MEMORY
DC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless
otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Sym Characteristic Min Typ(1) Max Units Conditions
D130 EPCell Endurance 10,000 E/W -40C to +85C
D131 VPR VDD for Read VMIN —3.6VVMIN = Minimum
operating voltage
VPEW Supply Voltage for Self-Timed Writes
D132A VDDCORE 2.25 3.6 V
D132B VDD 2.35 3.6 V
D133A TIW Self-Timed Write Cycle Time 3 ms
D133B TIE Self-Timed Page Erase Time 40 ms
D134 TRETD Characteristic Retention 20 Year Provided no other
specifications are violated
D135 IDDP Supply Current during Programming 7 mA
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
PIC24FJ64GA104 FAMILY
DS39951C-page 276 2010 Microchip Technology Inc.
TABLE 28-11: COMPARATOR SPECIFICATIONS
TABLE 28-12: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS
TABLE 28-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS
Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)
Param
No. Symbol Characteristic Min Typ Max Units Comments
D300 VIOFF Input Offset Voltage* 20 40 mV
D301 VICM Input Common Mode Voltage* 0 VDD V
D302 CMRR Common Mode Rejection
Ratio*
55 dB
300 TRESP Response Time*(1) 150 400 ns
301 TMC2OV Comparator Mode Change to
Output Valid*
—— 10s
* Parameters are characterized but not tested.
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from
VSS to VDD.
Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)
Param
No. Symbol Characteristic Min Typ Max Units Comments
VRD310 CVRES Resolution VDD/24 VDD/32 LSb
VRD311 CVRAA Absolute Accuracy AVDD – 1.5 LSb
VRD312 CVRUR Unit Resistor Value (R) 2k
VR310 TSET Settling Time(1) —— 10s
Note 1: Settling time measured while CVRR = 1 and CVR<3:0> bits transition from0000’ to ‘1111’.
Operating Conditions: -40°C < T
A < +85°C (unless otherwise stated)
Param
No. Symbol Characteristics Min Typ Max Units Comments
VBG Band Gap Reference Voltage 1.14 1.2 1.26 V
TBG Band Gap Reference Start-up
Time
—1ms
VRGOUT Regulator Output Voltage 2.35 2.5 2.75 V
CEFC External Filter Capacitor Value 4.7 10 F Series resistance < 3 Ohm
recommended;
< 5 Ohm required.
2010 Microchip Technology Inc. DS39951C-page 277
PIC24FJ64GA104 FAMILY
28.2 AC Characteristics and Timing Parameters
The information contained in this section defines the PIC24FJ64GA104 family AC characteristics and timing parameters.
TABLE 28-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC
FIGURE 28-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
TABLE 28-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial and
-40°C TA +125°C for Extended
Operating voltage VDD range as described in Section 28.1 “DC Characteristics”.
Param
No. Symbol Characteristic Min Typ(1) Max Units Conditions
DO50 COSC2 OSCO/CLKO Pin 15 pF In XT and HS modes when
external clock is used to drive
OSCI.
DO56 CIO All I/O Pins and OSCO 50 pF EC mode.
DO58 CBSCLx, SDAx 400 pF In I2C™ mode.
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
VDD/2
CL
RL
Pin
Pin
VSS
VSS
CL
RL= 464
CL= 50 pF for all pins except OSCO
15 pF for OSCO output
Load Condition 1 – for all pins except OSCO Load Condition 2 for OSCO
PIC24FJ64GA104 FAMILY
DS39951C-page 278 2010 Microchip Technology Inc.
FIGURE 28-4: EXTERNAL CLOCK TIMING
OSCI
CLKO
Q4 Q1 Q2 Q3 Q4 Q1
OS20
OS25
OS30 OS30
OS40 OS41
OS31
OS31
Q1 Q2 Q3 Q4 Q2 Q3
TABLE 28-16: EXTERNAL CLOCK TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.50 to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Sym Characteristic Min Typ(1) Max Units Conditions
OS10 FOSC External CLKI Frequency
(External clocks allowed
only in EC mode)
DC
4
DC
4
32
8
24
6
MHz
MHz
MHz
MHz
EC, -40°C TA +85°C
ECPLL, -40°C TA +85°C
EC, -40°C T
A +125°C
ECPLL, -40°C TA +125°C
Oscillator Frequency 3
3
10
31
3
10
10
8
32
33
6
24
MHz
MHz
MHz
kHz
MHz
MHz
XT
XTPLL, -40°C T
A +85°C
HS, -40°C T
A +85°C
SOSC
XTPLL, -40°C TA +125°C
HS, -40°C T
A +125°C
OS20 T
OSC TOSC = 1/FOSC See parameter OS10
for FOSC value
OS25 TCY Instruction Cycle Time(2) 62.5 DC ns
OS30 TosL,
To s H
External Clock in (OSCI)
High or Low Time
0.45 x T
OSC ——nsEC
OS31 TosR,
To s F
External Clock in (OSCI)
Rise or Fall Time
20 ns EC
OS40 TckR CLKO Rise Time(3) 6 10 ns
OS41 TckF CLKO Fall Time(3) 6 10 ns
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values
are based on characterization data for that particular oscillator type under standard operating conditions
with the device executing code. Exceeding these specified limits may result in an unstable oscillator
operation and/or higher than expected current consumption. All devices are tested to operate at “Min.”
values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the
“Max.” cycle time limit is “DC” (no clock) for all devices.
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for
the Q1-Q2 period (1/2 T
CY) and high for the Q3-Q4 period (1/2 TCY).
2010 Microchip Technology Inc. DS39951C-page 279
PIC24FJ64GA104 FAMILY
TABLE 28-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Sym Characteristic(1) Min Typ(2) Max Units Conditions
OS50 FPLLI PLL Input Frequency
Range
3
3
8
6
MHz
MHz
ECPLL, HSPLL, XTPLL
modes, -40°C TA +85°C
ECPLL, HSPLL, XTPLL
modes, -40°C TA +125°C
OS51 FSYS PLL Output Frequency
Range
8
8
32
24
MHz
MHz
-40°C TA +85°C
-40°C TA +125°C
OS52 TLOCK PLL Start-up Time
(Lock Time)
—— 2ms
OS53 DCLK CLKO Stability (Jitter) -2 1 2 % Measured over 100 ms period
Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only
and are not tested.
TABLE 28-18: INTERNAL RC OSCILLATOR SPECIFICATIONS
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C TA +125°C for Extended
Param
No. Sym Characteristic(1) Min Typ Max Units Conditions
TFRC FRC Start-up Time 15 s
TLPRC LPRC Start-up Time 500 s
TABLE 28-19: INTERNAL RC OSCILLATOR ACCURACY
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Characteristic Min Typ Max Units Conditions
F20 FRC Accuracy @ 8 MHz(1,3) -1.25 +0.25 1.0 % -40°C TA +85°C, 3.0V VDD 3.6V
F21 LPRC Accuracy @ 31 kHz(2) -15 15 % -40°C TA +85°C, 3.0V VDD 3.6V
Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.
2: Change of LPRC frequency as VDD changes.
3: To achieve this accuracy, physical stress applied to the microcontroller package (ex: by flexing the PCB)
must be kept to a minimum.
PIC24FJ64GA104 FAMILY
DS39951C-page 280 2010 Microchip Technology Inc.
FIGURE 28-5: CLKO AND I/O TIMING CHARACTERISTICS
Note: Refer to Figure 28-3 for load conditions.
I/O Pin
(Input)
I/O Pin
(Output)
DI35
Old Value New Value
DI40
DO31
DO32
TABLE 28-20: CLKO AND I/O TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Sym Characteristic Min Typ(1) Max Units Conditions
DO31 TIOR Port Output Rise Time 10 25 ns
DO32 TIOF Port Output Fall Time 10 25 ns
DI35 TINP INTx pin High or Low
Time (output)
20 ns
DI40 TRBP CNx High or Low Time
(input)
2—TCY
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
TABLE 28-21: RESET, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C T
A +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic Min. Typ(1) Max. Units Conditions
SY10 TmcL MCLR Pulse Width (low) 2 s
SY11 TPWRT Power-up Timer Period 64 ms
SY12 TPOR Power-on Reset Delay 2 s
SY13 TIOZ I/O High-Impedance from MCLR
Low or Watchdog Timer Reset
100 ns
SY25 TBOR Brown-out Reset Pulse Width 1 sVDD VBOR
TRST Internal State Reset Time 50 s
TDSWU Wake-up from Deep Sleep Time 200 s Based on full discharge of
10 F capacitor on VCAP.
Includes TPOR and TRST.
TPM —10s Sleep wake-up with PMSLP = 0
and WUTSEL<1:0> = 11
—190s
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.
2010 Microchip Technology Inc. DS39951C-page 281
PIC24FJ64GA104 FAMILY
TABLE 28-22: ADC MODULE SPECIFICATIONS
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C for Industrial
-40°C T
A +125°C for Extended
Param
No. Symbol Characteristic Min. Typ Max. Units Conditions
Device Supply
AD01 AVDD Module VDD Supply Greater of
VDD – 0.3
or 2.0
—Lesser of
VDD + 0.3
or 3.6
V
AD02 AVSS Module VSS Supply VSS – 0.3 VSS + 0.3 V
Reference Inputs
AD05 VREFH Reference Voltage High AVSS + 1.7 AVDD V
AD06 VREFL Reference Voltage Low AVSS —AVDD – 1.7 V
AD07 VREF Absolute Reference
Voltage
AVSS – 0.3 AVDD + 0.3 V
AD08 IVREF Reference Voltage Input
Current
——1.25mA(Note 3)
AD09 ZVREF Reference Input
Impedance
—10K (Note 4)
Analog Input
AD10 VINH-VINL Full-Scale Input Span VREFL —VREFH V(Note 2)
AD11 VIN Absolute Input Voltage AVSS – 0.3 AVDD + 0.3 V
AD12 VINL Absolute VINL Input
Voltage
AVSS – 0.3 AVDD/2 V
AD13 Leakage Current ±0.001 ±0.610 AV
INL = AVSS = VREFL = 0V,
AVDD = VREFH = 3V,
Source Impedance = 2.5 k
AD17 RIN Recommended Impedance
of Analog Voltage Source
2.5K 10-bit
ADC Accuracy
AD20b NRResolution 10 bits
AD21b INL Integral Nonlinearity ±1 <±2 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3V
AD22b DNL Differential Nonlinearity ±0.5 <±1.25 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3V
AD23b GERR Gain Error ±1 ±3 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3V
AD24b EOFF Offset Error ±1 ±2 LSb VINL = AVSS = VREFL = 0V,
AVDD = VREFH = 3V
AD25b Monotonicity(1) Guaranteed
Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.
2: Measurements taken with external VREF+ and VREF- are used as the ADC voltage reference.
3: External reference voltage is applied to the VREF+/- pins. IVREF is current during conversion at 3.3V, 25°C.
Parameter is for design guidance only and is not tested.
4: Impedance during sampling at 3.3V, 25°C. Parameter is for design guidance only and is not tested.
PIC24FJ64GA104 FAMILY
DS39951C-page 282 2010 Microchip Technology Inc.
TABLE 28-23: ADC CONVERSION TIMING REQUIREMENTS(1)
AC CHARACTERISTICS
Standard Operating Conditions: 2.0V to 3.6V
(unless otherwise stated)
Operating temperature -40°C TA +85°C
-40°C TA +125°C for Extended
Param
No. Symbol Characteristic Min. Typ Max. Units Conditions
Clock Parameters
AD50 TAD ADC Clock Period 75 ns TCY = 75 ns, AD1CON3
in default state
AD51 tRC ADC Internal RC Oscillator
Period
250 ns
Conversion Rate
AD55 tCONV Conversion Time 12 TAD
AD56 FCNV Throughput Rate 500 ksps AVDD > 2.7V
AD57 tSAMP Sample Time 1 TAD
Clock Parameters
AD61 tPSS Sample Start Delay from setting
Sample bit (SAMP)
2—3TAD
Note 1: Because the sample capacitors will eventually lose charge, clock rates below 10 kHz can affect linearity
performance, especially at elevated temperatures.
2010 Microchip Technology Inc. DS39951C-page 283
PIC24FJ64GA104 FAMILY
29.0 PACKAGING INFORMATION
29.1 Package Marking Information
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
28-Lead SOIC (.300”)
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
YYWWNNN
Example
PIC24FJ32GA102/SO
1010017
3
e
28-Lead QFN
XXXXXXXX
XXXXXXXX
YYWWNNN
Example
28-Lead SPDIP
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
YYWWNNN
Example
24FJ32GA
102/ML
1010017
3
e
-I/SP
PIC24FJ32GA102
1010017
3
e
28-Lead SSOP
XXXXXXXXXXXX
XXXXXXXXXXXX
YYWWNNN
Example
PIC24FJ32GA
102-I/SS
1010017
3
e
PIC24FJ64GA104 FAMILY
DS39951C-page 284 2010 Microchip Technology Inc.
XXXXXXXXXX
44-Lead QFN
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
24FJ32GA
Example
104-I/ML
1010017
44-Lead TQFP
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
Example
24FJ32GA
104-I/PT
1010017
3
e
3
e
2010 Microchip Technology Inc. DS39951C-page 285
PIC24FJ64GA104 FAMILY
29.2 Package Details
The following sections give the technical details of the packages.
 !"
#$%&''())$
*
  !"#$%!&'(!%&! %(%")%%%"
 *  ) !%"
+ & "%,-.
/01 / & %#%! ))%!%% 
,21 $& '! !)%!%%'$$&%!  
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
4% 55,,
& 5&% 6 67 8
6!&($ 6 9
% :./0
7;% 9  
%"$$    .
0%%* + ,2
7<"% , :/0
,# ""<"% , +:. + 
75% :/0
,# ""5%  +:. + 
0%%<"% ( + + +.
0%%5% 5 . .. 
0%%%,# "" =  > >
DEXPOSED D2
e
b
K
E2
E
L
N
NOTE 1
1
2
2
1
N
A
A1
A3
TOP VIEW BOTTOM VIEW
PAD
  ) 0./
PIC24FJ64GA104 FAMILY
DS39951C-page 286 2010 Microchip Technology Inc.
 !"
#$%&''())$
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
2010 Microchip Technology Inc. DS39951C-page 287
PIC24FJ64GA104 FAMILY
+,)+,-.&'% !+,/("
*
  !"#$%!&'(!%&! %(%")%%%"
 ?$%0% %
+ &  ","%!"&"$ %!  "$ %!   %#".&& "
 & "%,-.
/01 / & %#%! ))%!%% 
,21 $& '! !)%!%%'$$&%!  
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
4% 55,,
& 5&% 6 67 8
6!&($ 6 9
% /0
7;% > > :.
""**  . > >
%"$$?   > +
7<"% , +/0
""*<"% , ./0
75% /0
0&$@%A . > .
2%5% 5  > 
2%% 5 ,2
2% IB > 9B
5"* 9 > ++
5"<"% ( + > .
"$% D.B > .B
"$%/%%& E.B > .B
c
h
h
L
L1
A2
A1
A
NOTE 1
123
b
e
E
E1
D
φ
β
α
N
  ) 0./
PIC24FJ64GA104 FAMILY
DS39951C-page 288 2010 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2010 Microchip Technology Inc. DS39951C-page 289
PIC24FJ64GA104 FAMILY
+)) 0/))+1%% !+0/"
*
  !"#$%!&'(!%&! %(%")%%%"
 ?$%0% %
+ &  ","%!"&"$ %!  "$ %!   %#"C "
 & "%,-.
/01 / & %#%! ))%!%% 
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
4% 60;,
& 5&% 6 67 8
6!&($ 6 9
% /0
%% > > 
""**   +. .
/ %%  . > >
!"%!"<"% ,  + ++.
""*<"% ,  9. .
75% +. +:. 
%% 5  + .
5"* 9  .
45"<"% (  . 
5)5"<"% (  9 
7)? / > > +
NOTE 1
N
12
D
E1
eB
c
E
L
A2
eb
b1
A1
A
3
  ) 0/
PIC24FJ64GA104 FAMILY
DS39951C-page 290 2010 Microchip Technology Inc.
22 !"
*
  !"#$%!&'(!%&! %(%")%%%"
 *  ) !%"
+ & "%,-.
/01 / & %#%! ))%!%% 
,21 $& '! !)%!%%'$$&%!  
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
4% 55,,
& 5&% 6 67 8
6!&($ 6 
% :./0
7;% 9  
%"$$    .
0%%* + ,2
7<"% , 9/0
,# ""<"% , :+ :. :9
75% 9/0
,# ""5%  :+ :. :9
0%%<"% ( . + +9
0%%5% 5 +  .
0%%%,# "" =  > >
DEXPOSED
PAD
D2
e
b
K
L
E2
2
1
N
NOTE 1
2
1
E
N
BOTTOM VIEW
TOP VIEW
A3 A1
A
  ) 0+/
2010 Microchip Technology Inc. DS39951C-page 291
PIC24FJ64GA104 FAMILY
22 !"
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
PIC24FJ64GA104 FAMILY
DS39951C-page 292 2010 Microchip Technology Inc.
223$)435%5%5 &%%!3"
*
  !"#$%!&'(!%&! %(%")%%%"
 0&$ % %D E&
+ &  ","%!"&"$ %!  "$ %!   %#".&& "
 & "%,-.
/01 / & %#%! ))%!%% 
,21 $& '! !)%!%%'$$&%!  
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
4% 55,,
& 5&% 6 67 8
6!&($5" 6 
5"% 9/0
7;% > > 
""**  .  .
%"$$  . > .
2%5% 5 . : .
2%% 5 ,2
2% IB +.B B
7<"% , /0
75% /0
""*<"% , /0
""*5%  /0
5"*  > 
5"<"% ( + + .
"$% DB B +B
"$%/%%& EB B +B
A
E
E1
D
D1
e
b
NOTE 1 NOTE 2
N
123
c
A1
L
A2
L1
α
φ
β
  ) 0:/
2010 Microchip Technology Inc. DS39951C-page 293
PIC24FJ64GA104 FAMILY
223$)435%5%5 &%%!3"
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
PIC24FJ64GA104 FAMILY
DS39951C-page 294 2010 Microchip Technology Inc.
+$6)+,)++'&1% !++,"
*
  !"#$%!&'(!%&! %(%")%%%"
 &  ","%!"&"$ %!  "$ %!   %#"&& "
+ & "%,-.
/01 / & %#%! ))%!%% 
,21 $& '! !)%!%%'$$&%!  
* 2%& %!%*") '  %*$%%"%
%%133)))&&3*
4% 55,,
& 5&% 6 67 8
6!&($ 6 9
% :./0
7;% > > 
""**  :. . 9.
%"$$  . > >
7<"% ,  9 9
""*<"% , . .+ .:
75%   .
2%5% 5 .. . .
2%% 5 .,2
5"*  > .
2% IB B 9B
5"<"% (  > +9
L
L1
c
A2
A1
A
E
E1
D
N
12
NOTE 1 b
e
φ
  ) 0+/
2010 Microchip Technology Inc. DS39951C-page 295
PIC24FJ64GA104 FAMILY
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC24FJ64GA104 FAMILY
DS39951C-page 296 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 297
PIC24FJ64GA104 FAMILY
APPENDIX A: REVISION HISTORY
Revision A (August 2009)
Original data sheet for the PIC24FJ64GA104 family of
devices.
Revision B (October 2009)
Corrected Section 10.3 “Input Change Notification”
regarding the number of ICN inputs and the availability
of pull-downs.
Updated Section 10.4.2 “Available Peripherals” by
removing the Timer 1 clock input from Table 10-2.
Updated Section 28.1 “DC Characteristics” as
follows:
Added new specifications to Tables 29-4 and 29-5
for IDD and IIDLE at 0.5 MIPS operation.
Updated Table 29-4 with revised maximum IDD
specifications for 1 MIP and 4 MIPS.
Renumbered the parameters for the delta IPD
current (32 kHz, SOSCEL = 11) from DC62n to
DC63n.
Revision C (August 2010)
This revision includes the following updates:
Pin Diagrams
Updated Pin 7 and Pin 14 in 28-Pin SPDIP, SOIC.
Updated the device name, Pin13 and Pin 23, in
28-Pin QFN.
Removed IEC5, IFS5 and IPC21 rows from Table 4-5.
Updated CLKDIV bit details in Table 4-23.
Removed JTAG from Flash programming list in
Section 5.0 “Flash Program Memory”.
Updated Section 10.4.5 “Considerations for
Peripheral Pin Selection” as follows:
Replaced the code in Example 10-2.
Added the new code as Example 10-3.
Updated shaded note in Section 20.0 “32-Bit Pro-
grammable Cyclic Redundancy Check (CRC)
Generator” and Section 22.0 “Triple Comparator
Module”.
Updated Section 28.1 “DC Characteristics” as
follows:
Updated the device name in Table 28-1.
Added the “125°C data” in
Table 28-4,Table 28-5,Table 28-6 and Table 28-7.
Updated Min and Typ columns of DC16 in
Table 28-3.
Added rows, AD08 and AD09, in Table 28-22.
Added Figure 28-2.
Added the 28-pin SSOP package to Section 29.0
“Packaging Information”.
PIC24FJ64GA104 FAMILY
DS39951C-page 298 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 299
PIC24FJ64GA104 FAMILY
INDEX
A
A/D Converter
Analog Input Model ................................................... 227
Transfer Function...................................................... 228
AC Characteristics
ADC Specifications ................................................... 281
Capacitive Loading Requirements on
Output Pins ....................................................... 277
CLKO and I/O Timing................................................ 280
Conversion Requirements ........................................ 282
External Clock Requirements ................................... 278
Internal RC Oscillator Accuracy ................................ 279
Internal RC Oscillator Specifications......................... 279
Load Conditions and Requirements for
Timing Specifications ....................................... 277
PLL Clock Timing Specifications............................... 279
Reset, Power-up Timer and Brown-out
Reset Timing..................................................... 280
Temperature and Voltage Specifications .................. 277
Alternate Interrupt Vector Table (AIVT) .............................. 65
Assembler
MPASM Assembler................................................... 252
B
Block Diagrams
10-Bit High-Speed A/D Converter............................. 220
16-Bit Asynchronous Timer3 and Timer5 ................. 147
16-Bit Synchronous Timer2 and Timer4 ................... 147
16-Bit Timer1 Module................................................ 143
32-Bit Timer2/3 and Timer4/5 ................................... 146
8-Bit Multiplexed Address and Data
Application Example ......................................... 200
Accessing Program Memory Using
Table Instructions .............................................. 49
Addressable PSP Example....................................... 198
Addressing for Table Registers................................... 51
CALL Stack Frame...................................................... 47
Comparator Voltage Reference ................................ 233
CPU Programmer’s Model .......................................... 27
CRC Module ............................................................. 213
CRC Shift Engine...................................................... 213
CTMU Connections and Internal Configuration
for Capacitance Measurement.......................... 235
CTMU Typical Connections and Internal
Configuration for Pulse Delay Generation ........ 236
CTMU Typical Connections and Internal
Configuration for Time Measurement ............... 236
Data Access From Program Space Address
Generation .......................................................... 48
I2C Module ................................................................ 176
Individual Comparator Configurations....................... 230
Input Capture ............................................................ 151
LCD Control Example, Byte Mode ............................ 200
Legacy PSP Example ............................................... 198
Master Mode, Demultiplexed Addressing ................. 198
Master Mode, Fully Multiplexed Addressing ............. 199
Master Mode, Partially Multiplexed Addressing ........ 199
Multiplexed Addressing Application Example ........... 199
On-Chip Regulator Connections ............................... 246
Output Compare (16-Bit Mode)................................. 156
Parallel EEPROM Example, 16-Bit Data .................. 200
Parallel EEPROM Example, 8-Bit Data .................... 200
Partially Multiplexed Addressing Application
Example ........................................................... 199
PIC24F CPU Core...................................................... 26
PIC24FJ64GA104 Family (General)........................... 12
PMP Module Overview ............................................. 191
PSV Operation............................................................ 50
Reset System ............................................................. 59
RTCC........................................................................ 201
Shared I/O Port Structure ......................................... 121
SPI Master, Frame Master Connection .................... 173
SPI Master, Frame Slave Connection ...................... 173
SPI Master/Slave Connection
(Enhanced Buffer Modes)................................. 172
SPI Master/Slave Connection (Standard Mode)....... 172
SPI Slave, Frame Master Connection ...................... 173
SPI Slave, Frame Slave Connection ........................ 173
SPIx Module (Enhanced Mode)................................ 167
SPIx Module (Standard Mode) ................................. 166
System Clock............................................................ 101
Triple Comparator Module........................................ 229
UART (Simplified)..................................................... 183
Watchdog Timer (WDT)............................................ 248
C
C Compilers
MPLAB C18.............................................................. 252
Charge Time Measurement Unit. See CTMU.
Code Examples
Basic Sequence for Clock Switching ........................ 107
Configuring UART1 Input and Output
Functions (PPS), ‘C’ ......................................... 128
Configuring UART1 Input and Output
Functions (PPS), Assembly.............................. 128
Erasing a Program Memory Block, ‘C’........................ 55
Erasing a Program Memory Block, Assembly ............ 54
I/O Port Write/Read .................................................. 122
Initiating a Programming Sequence, ‘C’ ..................... 56
Initiating a Programming Sequence, Assembly.......... 56
Loading the Write Buffers, ‘C’..................................... 56
Loading the Write Buffers, Assembly ......................... 55
PWRSAV Instruction Syntax .................................... 111
Setting the RTCWREN Bit........................................ 202
Single-Word Flash Programming, ‘C’ ......................... 57
Single-Word Flash Programming, Assembly.............. 57
Code Protection ................................................................ 248
Code Segment.......................................................... 249
Code Segment Protection
Configuration Options....................................... 249
Configuration Register .............................................. 249
General Segment ..................................................... 248
Comparator Voltage Reference ........................................ 233
Configuring ............................................................... 233
Configuration Bits ............................................................. 239
Core Features....................................................................... 9
CPU
Arithmetic Logic Unit (ALU) ........................................ 29
Control Registers........................................................ 28
Core Registers............................................................ 27
Programmer’s Model .................................................. 25
PIC24FJ64GA104 FAMILY
DS39951C-page 300 2010 Microchip Technology Inc.
CRC
Registers................................................................... 215
Typical Operation......................................................215
User Interface ........................................................... 214
Data .................................................................. 214
Polynomial ........................................................ 214
CTMU
Measuring Capacitance ............................................235
Measuring Time ........................................................ 236
Pulse Generation and Delay ..................................... 236
Customer Change Notification Service ............................. 303
Customer Notification Service........................................... 303
Customer Support ............................................................. 303
D
Data Memory
Address Space............................................................ 33
Memory Map ............................................................... 33
Near Data Space ........................................................ 34
SFR Space.................................................................. 34
Software Stack............................................................47
Space Organization and Alignment ............................ 34
DC Characteristics
Comparator Specifications........................................ 276
Comparator Voltage Reference Specifications ......... 276
I/O Pin Input Specifications....................................... 274
I/O Pin Output Specifications ....................................275
Idle Current ............................................................... 269
Internal Voltage Regulator Specifications ................. 276
Operating Current ..................................................... 267
Power-Down Base Current .......................................271
Power-Down Peripheral Module Current (IPD) .......... 272
Program Memory ...................................................... 275
Temperature and Voltage Specifications .................. 266
Deep Sleep Watchdog Timer (DSWDT) ........................... 248
Development Support ....................................................... 251
DISVREG Pin....................................................................246
E
Electrical Characteristics
Absolute Maximum Ratings ...................................... 263
Thermal Operating Conditions .................................. 265
Thermal Packaging ................................................... 265
V/F Graph (Extended Temperature) ......................... 264
V/F Graph (Industrial) ............................................... 264
Equations
A/D Conversion Clock Period ................................... 227
Baud Rate Reload Calculation.................................. 177
Calculating the PWM Period ..................................... 159
Calculation for Maximum PWM Resolution............... 159
Relationship Between Device and SPI
Clock Speed...................................................... 174
UART Baud Rate with BRGH = 0 ............................. 184
UART Baud Rate with BRGH = 1 ............................. 184
Errata .................................................................................... 8
Examples
Baud Rate Error Calculation (BRGH = 0) ................. 184
F
Flash Configuration Words ................................. 32, 239–244
Flash Program Memory ...................................................... 51
and Table Instructions ................................................ 51
Enhanced ICSP Operation ......................................... 52
JTAG Operation.......................................................... 52
Programming Algorithm .............................................. 54
RTSP Operation ......................................................... 52
Single-Word Programming ......................................... 57
I
I/O Ports
Analog Input Voltage Considerations ....................... 122
Analog Port Pins Configuration................................. 122
Input Change Notification ......................................... 123
Open-Drain Configuration......................................... 122
Parallel (PIO) ............................................................ 121
Peripheral Pin Select ................................................ 123
Pull-ups and Pull-Downs........................................... 123
I2C
Clock Rates .............................................................. 177
Communicating as Master in a Single
Master Environment ......................................... 175
Reserved Addresses ................................................ 177
Setting Baud Rate When Operating as
Bus Master ....................................................... 177
Slave Address Masking ............................................ 177
Input Capture
32-Bit Mode .............................................................. 152
Operations ................................................................ 152
Synchronous and Trigger Modes.............................. 151
Input Capture with Dedicated Timers ............................... 151
Instruction Based Power-Saving Modes........................... 111
Deep Sleep....................................................... 112, 119
Idle............................................................................ 112
Sleep ........................................................................ 111
Instruction Set
Overview................................................................... 257
Summary .................................................................. 255
Symbols Used in Opcode Descriptions .................... 256
Inter-Integrated Circuit. See I2C. ...................................... 175
Internet Address ............................................................... 303
Interrupt Vector Table (IVT) ................................................ 65
Interrupts
Control and Status Registers...................................... 68
Implemented Vectors.................................................. 67
Reset Sequence ......................................................... 65
Setup and Service Procedures................................... 99
Trap Vectors ............................................................... 66
Vector Table ............................................................... 66
J
JTAG Interface.................................................................. 250
M
Microchip Internet Web Site.............................................. 303
MPLAB ASM30 Assembler, Linker, Librarian ................... 252
MPLAB Integrated Development
Environment Software .............................................. 251
MPLAB PM3 Device Programmer .................................... 254
MPLAB REAL ICE In-Circuit Emulator System ................ 253
MPLINK Object Linker/MPLIB Object Librarian ................ 252
2010 Microchip Technology Inc. DS39951C-page 301
PIC24FJ64GA104 FAMILY
N
Near Data Space ................................................................ 34
O
Oscillator Configuration
Bit Values for Clock Selection................................... 102
Clock Switching......................................................... 106
Sequence.......................................................... 107
Control Registers ...................................................... 103
CPU Clocking Scheme ............................................. 102
Initial Configuration on POR ..................................... 102
Reference Clock Output............................................ 108
Secondary Oscillator (SOSC) ................................... 108
Output Compare
32-Bit Mode............................................................... 155
Operations ................................................................ 157
Subcycle Resolution ................................................. 160
Synchronous and Trigger Modes.............................. 155
Output Compare with Dedicated Timers........................... 155
P
Packaging ......................................................................... 283
Details ....................................................................... 285
Marking ..................................................................... 283
Parallel Master Port. See PMP. ........................................ 191
Peripheral Module Disable Bits......................................... 119
Peripheral Pin Select (PPS).............................................. 123
Available Peripherals and Pins ................................. 123
Configuration Control Changes................................. 126
Considerations for Use ............................................. 127
Function Priority ........................................................ 123
Input Mapping ........................................................... 124
Output Mapping ........................................................ 125
Pinout Descriptions ............................................................. 13
Power-Saving Features .................................................... 111
Clock Frequency and Clock Switching...................... 111
Product Identification System ........................................... 305
Program Memory
Access Using Table Instructions................................. 49
Address Space............................................................ 31
Addressing Space....................................................... 47
Flash Configuration Words ......................................... 32
Memory Maps ............................................................. 31
Organization................................................................ 32
Program Space Visibility ............................................. 50
Program Space Visibility (PSV) .......................................... 50
Program Verification ......................................................... 248
Pulse-Width Modulation (PWM) Mode .............................. 158
Pulse-Width Modulation. See PWM.
PWM
Duty Cycle and Period .............................................. 159
R
Reader Response ............................................................. 304
Register Maps
A/D Converter ............................................................. 43
Comparators ............................................................... 45
CPU Core.................................................................... 35
CRC ............................................................................ 44
CTMU.......................................................................... 43
Deep Sleep ................................................................. 46
I2C............................................................................... 41
ICN.............................................................................. 36
Input Capture .............................................................. 39
Interrupt Controller ...................................................... 37
NVM............................................................................ 46
Output Compare ......................................................... 40
Pad Configuration....................................................... 43
Parallel Master/Slave Port .......................................... 44
Peripheral Pin Select .................................................. 45
PMD............................................................................ 46
PORTA ....................................................................... 42
PORTB ....................................................................... 42
PORTC ....................................................................... 42
RTCC.......................................................................... 44
SPI.............................................................................. 42
System........................................................................ 46
Timers......................................................................... 38
UART.......................................................................... 41
Registers
AD1CHS (A/D Input Select)...................................... 224
AD1CON1 (A/D Control 1)........................................ 221
AD1CON2 (A/D Control 2)........................................ 222
AD1CON3 (A/D Control 3)........................................ 223
AD1CSSL (A/D Input Scan Select)........................... 226
AD1PCFG (A/D Port Configuration) ......................... 225
ALCFGRPT (Alarm Configuration) ........................... 205
ALMINSEC (Alarm Minutes and
Seconds Value) ................................................ 209
ALMTHDY (Alarm Month and Day Value) ................ 208
ALWDHR (Alarm Weekday and Hours Value) ......... 208
CLKDIV (Clock Divider) ............................................ 105
CMSTAT (Comparator Module Status) .................... 232
CMxCON (Comparator x Control) ............................ 231
CORCON (CPU Control) ............................................ 29
CORCON (CPU Core Control) ................................... 69
CRCCON1 (CRC Control 1) ..................................... 216
CRCCON2 (CRC Control 2) ..................................... 217
CRCXORH (CRC XOR Polynomial, High Byte) ....... 218
CRCXORL (CRC XOR Polynomial, Low Byte)......... 217
CTMUCON (CTMU Control)..................................... 237
CTMUICON (CTMU Current Control)....................... 238
CVRCON (Comparator Voltage
Reference Control) ........................................... 234
CW1 (Flash Configuration Word 1) .......................... 240
CW2 (Flash Configuration Word 2) .......................... 242
CW3 (Flash Configuration Word 3) .......................... 243
DEVID (Device ID).................................................... 245
DEVREV (Device Revision)...................................... 245
DSCON (Deep Sleep Control).................................. 117
DSWAKE (Deep Sleep Wake-up Source) ................ 118
I2CxCON (I2Cx Control) ........................................... 178
I2CxMSK (I2Cx Slave Mode Address Mask)............ 182
I2CxSTAT (I2Cx Status) ........................................... 180
ICxCON1 (Input Capture x Control 1)....................... 153
ICxCON2 (Input Capture x Control 2)....................... 154
IEC0 (Interrupt Enable Control 0) ............................... 77
IEC1 (Interrupt Enable Control 1) ............................... 78
IEC2 (Interrupt Enable Control 2) ............................... 79
IEC3 (Interrupt Enable Control 3) ............................... 80
IEC4 (Interrupt Enable Control 4) ............................... 81
IFS0 (Interrupt Flag Status 0) ..................................... 72
IFS1 (Interrupt Flag Status 1) ..................................... 73
IFS2 (Interrupt Flag Status 2) ..................................... 74
IFS3 (Interrupt Flag Status 3) ..................................... 75
IFS4 (Interrupt Flag Status 4) ..................................... 76
INTCON1 (Interrupt Control 1) ................................... 70
INTCON2 (Interrupt Control 2) ................................... 71
INTTREG (Interrupt Control and Status) .................... 98
IPC0 (Interrupt Priority Control 0) ............................... 82
PIC24FJ64GA104 FAMILY
DS39951C-page 302 2010 Microchip Technology Inc.
IPC1 (Interrupt Priority Control 1) ...............................83
IPC10 (Interrupt Priority Control 10) ........................... 92
IPC11 (Interrupt Priority Control 11) ........................... 93
IPC12 (Interrupt Priority Control 12) ........................... 94
IPC15 (Interrupt Priority Control 15) ........................... 95
IPC16 (Interrupt Priority Control 16) ........................... 96
IPC18 (Interrupt Priority Control 18) ........................... 97
IPC19 (Interrupt Priority Control 19) ........................... 97
IPC2 (Interrupt Priority Control 2) ...............................84
IPC3 (Interrupt Priority Control 3) ...............................85
IPC4 (Interrupt Priority Control 4) ...............................86
IPC5 (Interrupt Priority Control 5) ...............................87
IPC6 (Interrupt Priority Control 6) ...............................88
IPC7 (Interrupt Priority Control 7) ...............................89
IPC8 (Interrupt Priority Control 8) ...............................90
IPC9 (Interrupt Priority Control 9) ...............................91
MINSEC (RTCC Minutes and Seconds Value) ......... 207
MTHDY (RTCC Month and Day Value) .................... 206
NVMCON (Flash Memory Control) ............................. 53
OCxCON1 (Output Compare x Control 1) ................ 161
OCxCON2 (Output Compare x Control 2) ................ 163
OSCCON (Oscillator Control) ................................... 103
OSCTUN (FRC Oscillator Tune) ............................... 106
PADCFG1 (Pad Configuration Control) ............ 197, 204
PMADDR (Parallel Port Address) ............................. 195
PMAEN (Parallel Port Enable) .................................. 195
PMCON (Parallel Port Control) ................................. 192
PMMODE (Parallel Port Mode)................................. 194
PMSTAT (Parallel Port Status) ................................. 196
RCFGCAL (RTCC Calibration and
Configuration) ................................................... 203
RCON (Reset Control) ................................................60
REFOCON (Reference Oscillator Control)................ 109
RPINR0 (Peripheral Pin Select Input 0).................... 129
RPINR1 (Peripheral Pin Select Input 1).................... 129
RPINR11 (Peripheral Pin Select Input 11)................ 132
RPINR18 (Peripheral Pin Select Input 18)................ 133
RPINR19 (Peripheral Pin Select Input 19)................ 133
RPINR20 (Peripheral Pin Select Input 20)................ 134
RPINR21 (Peripheral Pin Select Input 21)................ 134
RPINR22 (Peripheral Pin Select Input 22)................ 135
RPINR23 (Peripheral Pin Select Input 23)................ 135
RPINR3 (Peripheral Pin Select Input 3).................... 130
RPINR4 (Peripheral Pin Select Input 4).................... 130
RPINR7 (Peripheral Pin Select Input 7).................... 131
RPINR8 (Peripheral Pin Select Input 8).................... 131
RPINR9 (Peripheral Pin Select Input 9).................... 132
RPOR0 (Peripheral Pin Select Output 0) .................. 136
RPOR1 (Peripheral Pin Select Output 1) .................. 136
RPOR10 (Peripheral Pin Select Output 10).............. 141
RPOR11 (Peripheral Pin Select Output 11).............. 141
RPOR12 (Peripheral Pin Select Output 12).............. 142
RPOR2 (Peripheral Pin Select Output 2) .................. 137
RPOR3 (Peripheral Pin Select Output 3) .................. 137
RPOR4 (Peripheral Pin Select Output 4) .................. 138
RPOR5 (Peripheral Pin Select Output 5) .................. 138
RPOR6 (Peripheral Pin Select Output 6) .................. 139
RPOR7 (Peripheral Pin Select Output 7) .................. 139
RPOR8 (Peripheral Pin Select Output 8) .................. 140
RPOR9 (Peripheral Pin Select Output 9) .................. 140
SPIxCON1 (SPIx Control 1)...................................... 170
SPIxCON2 (SPIx Control 2)...................................... 171
SPIxSTAT (SPIx Status and Control) ....................... 168
SR (ALU STATUS) ............................................... 28, 69
T1CON (Timer1 Control)........................................... 144
TxCON (Timer2 and Timer4 Control) ....................... 148
TyCON (Timer3 and Timer5 Control) ....................... 149
UxMODE (UARTx Mode).......................................... 186
UxSTA (UARTx Status and Control)......................... 188
WKDYHR (RTCC Weekday and Hours Value)......... 207
YEAR (RTCC Year Value)........................................ 206
Resets
BOR (Brown-out Reset).............................................. 59
Clock Source Selection............................................... 61
CM (Configuration Mismatch Reset)........................... 59
Deep Sleep BOR (DSBOR) ........................................ 63
Delay Times................................................................ 62
Device Times.............................................................. 61
IOPUWR (Illegal Opcode Reset) ................................ 59
MCLR (Pin Reset)....................................................... 59
POR (Power-on Reset)............................................... 59
RCON Flags Operation............................................... 61
SFR States ................................................................. 63
SWR (RESET Instruction) .......................................... 59
TRAPR (Trap Conflict Reset) ..................................... 59
UWR (Uninitialized W Register Reset) ....................... 59
WDT (Watchdog Timer Reset) ................................... 59
Revision History................................................................ 297
RTCC
Alarm Configuration .................................................. 210
Alarm Mask Settings (figure) .................................... 211
Calibration ................................................................ 210
Clock Source Selection............................................. 202
Register Mapping...................................................... 202
Source Clock ............................................................ 201
Write Lock................................................................. 202
S
Selective Peripheral Control ............................................. 119
Serial Peripheral Interface. See SPI.
SFR Space ......................................................................... 34
Software Simulator (MPLAB SIM) .................................... 253
Software Stack.................................................................... 47
Special Features................................................................. 10
SPI
T
Timer1............................................................................... 143
Timer2/3 and Timer4/5 ..................................................... 145
Timing Diagrams
CLKO and I/O Characteristics .................................. 280
External Clock........................................................... 278
Triple Comparator............................................................. 229
U
UART ................................................................................ 183
Baud Rate Generator (BRG) .................................... 184
IrDA Support............................................................. 185
Operation of UxCTS and UxRTS Pins...................... 185
Receiving
8-Bit or 9-Bit Data Mode................................... 185
Transmitting
8-Bit Data Mode................................................ 185
9-Bit Data Mode................................................ 185
Break and Sync Sequence ............................... 185
Universal Asynchronous Receiver Transmitter. See UART.
2010 Microchip Technology Inc. DS39951C-page 303
PIC24FJ64GA104 FAMILY
V
VDDCORE/VCAP Pin............................................................ 246
Voltage Regulator (On-Chip) ............................................ 246
and BOR ................................................................... 247
and POR ................................................................... 246
Power-up Requirements ........................................... 247
Standby Mode........................................................... 247
Tracking Mode .......................................................... 246
W
Watchdog Timer (WDT).................................................... 247
Control Register........................................................ 248
Windowed Operation ................................................ 248
WWW Address ................................................................. 303
WWW, On-Line Support ....................................................... 8
PIC24FJ64GA104 FAMILY
DS39951C-page 304 2010 Microchip Technology Inc.
NOTES:
2010 Microchip Technology Inc. DS39951C-page 305
PIC24FJ64GA104 FAMILY
THE MICROCHIP WEB SITE
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com, click on Customer Change
Notification and follow the registration instructions.
CUSTOMER SUPPORT
Users of Microchip products can receive assistance
through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Development Systems Information Line
Customers should contact their distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://support.microchip.com
PIC24FJ64GA104 FAMILY
DS39951C-page 306 2010 Microchip Technology Inc.
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To: Technical Publications Manager
RE: Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
Application (optional):
Would you like a reply? Y N
Device: Literature Number:
Questions:
FAX: (______) _________ - _________
DS39951CPIC24FJ64GA104 Family
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
2010 Microchip Technology Inc. DS39951C-page 307
PIC24FJ64GA104 FAMILY
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
DS39951C-page 308 2010 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
WORLDWIDE SALES AND SERVICE
07/15/10