Standard Power MOSFETs IRF340, IRF341, IRF342, IRF343 File Number 2307 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 8 A and 10 A, 350 V - 400 V N-CHANNEL ENHANCEMENT MODE Fosion = 0.55 O and 0.82 D Features: a SOA is power-dissipation limited m Nanosecond switching speeds a Linear transfer characteristics g High input impedance s a Majority carrier device $s 92CS8-33741 TERMINAL DIAGRAM The IRF340, IRF341, IRF342, and IRF343 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regula- TERMINAL DESIGNATION tors, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requir- DRAIN ing high speed and low gate-drive power. These types can SOURCE | (FLANGE) be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA metal (O O package. GATE 92CS- 37801 JEDEC TO-204AA Absolute Maximum Ratings Parameter (RF340 (RF341 IRF342 WRF343 Units Vos Drain - Source Voltage 400 350 400 350 v VpGR Drain - Gate Voltage (Rgg = 20 k2) | 400 350 400 350 Vv Ip @Tcr = 25C Continuous Brain Current 10 10 8.0 8.0 A Ip @ Te = 100C _ Continuous Drain Current 6.0 6.0 5.0 5.0 A lom Pulsed Drain Current @> 40 40 32 32 A Vos Gate - Source Voltage 20 v Pp @Tc = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) w/e IL Inductive Current, Clamped {See Fig. 15 and 16)L = 100uH A 40 l 40 l 32 | 32 T in: ion Tet Storage Femperature Range ~88 to 150 : c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s} C 3-104Standard Power MOSFETs IRF340, IRF341, IRF342, IRF343 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF340 _ _ ine342 | 40 | v Vgs = OV IRF341 IRF343 350 _ - v Ip = 250pA Vesith) Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Ves. Ip = 250nA Igsg_ _ Gate-Source Leakage Forward ALL = 100 nA Ves = 20V less Gate-Source Leakage Reverse ALL |-100 nA Veg = -20V loss Zero Gate Voltage Drain Current ALL - - 250 BA Vos = Max. Rating, Vgg = OV = [1000 [ 2A Vps = Max. Rating x 0.8, Vgg = OV, Te = 125C Ip(on) On-State Drain Current @) IRF340 IRF341 10 ~ - A Vos? 'pion) * Roston) max. Vas = 1V IRF342 |} 94 | _ _ A IRF343 . Rosion} Static Drain-Source On-State IRF340 _ Resistance IRF341 0.47 | 0.58 a V 40v,) 5.0A IRFS42 | _ foes} oso] 2 sees IRF343 . . Sts Forward Transconductance @) ALL 4.0 7.0 - $y) Vos 'bion) * Rosion) max. !p = 5.04 Ciss Input Capacitance ALL - 1250); pF Ves = OV, Vpg = 25V. f = 1.0 MHz Cosg Output Capacitance ALL = 300 pF See Fig. 10 Crs Reverse Transfer Capacitance ALL = 80 _ pF tdion) Turn-On Delay Time ALL =- 7 35 ns Vop = 175V, Ip = 5.0A, Zo = 4.70 tr Rise Time ALL - 5.0 15 ns See Fig. 17 tdloff) Turn-Off Delay Time ALL -_ 45 90 ns (MOSFET switching times are essentially tf Fall Time ALL _ 16 35 ns independent of operating temperature.} Q, Total Gate Charge Vv, = 10V, In = 12A,V = 0.8 Max. Rating. 9 | - D oS, (Gate-Source Plus Gate-Drain) Att 44 60 ne See Fig. 18 for test circuit. (Gate charge is essentially Ogs Gate-Source Charge ALL _ 18 97 nc independent of operating temperature.) Qga Gate-Drain (Miller) Charge ALL _ 23 35 nc Lp Internal Drain Inductance ALL - 5.0 nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. 0 Ls Internal Source Inductance ALL ~ 12.5 - nH Measured from the source pin, 6mm (0.26 in.) from header and source bonding pad, 7 Thermal Resistance Rihuc _ Junction-to-Case ALL = = 1.0 | C/W Rincs _ Case-to-Sink ALL = 0.1 = C/W Mounting surface flat, smooth, and greased. Rthya _ Junction-to-Ambient ALL = = 30 4 C/W Free Air Operation Source-Drain Diode Ratings and Characteristics is Continuous Source Current IRF340 _ _ 10 A Modified MOSFET symbol (Body Diode) IRF341 showing the integral IRF 342 reverse P-N junction rectifier. inrsaa | ~ | ~ | 80} A " ism Pulse Source Current IRF340 _ _ 40 A 6 (Body Diode) @ IRF341 $ IRF342 IRF343 ~ 7 32 A Vsp Diode Forward Voltage @) IRF340 _ _ 2.0 Vv Tc = 25C, Ig = 10A, Vag = OV IRF341 IRF342 _ = ORO = = IRF343 - 1.9 v Te = 25C, Ig = 8.0A, Vgg = OV ter Reverse Recovery Time ALL - 800 - ns Ty = 150 Cr lg = 10A, dig/dt = TO0A/us Qrr Reverse Recovered Charge ALL - 5.7 = aC Ty = 150C, Ip = 10A, dig/dt 100A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lp. Oty = 25C to 150C. @Pulse Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal tmpedance Curve (Fig. 5). 3-105Standard Power MOSFETs IRF340, IRF341, IRF342, IRF343 26 us PULSE 20 ig, ORAIN CURRENT (AMPERES) 0 20 40 60 80 100 Vps, ORAIN-TO-SOURCE VOLTAGE (VOLTS} Fig. 1 Typical Output Characteristics 80 ys PULSE TEST Ip, ORAIN CURRENT (AMPERES) 0 2 4 6 8 10 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics NORMALIZED EFFECTIVE TRANSIENT MPEDANCE (PER UNIT) SINGLE PULSE (TRANSIENT THERMAL THERMAL I o & Zthyctt/RinJe, 3 2 2 2 5 4 2 5 93 2 S & Ip, ORAIN CURRENT (AMPERES) !p, DRAIN CURRENT (AMPERES) Ty Ty= Ty = 1259C us PULSE TEST 1 I Vos > !o(on) x Ros(on) max. Q 2 4 6 8 10 Vgg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics 100 AREA IS LIMITED 50 FY iRF340, 1 IRF342, 20 1RF340, | 10 ' 4 5 2 1.0 Te = 25C 9.5 F ty= 150C MAX. Rene = 1.0 KW n2 [_ SINGLE PULSE IRFSAN, 3 I IRF340, 2 o4 102 5 10 20 80 100 200 S00 Vpg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 4 Maximum Safe Operating Area PL fat bet 1. DUTY FACTOR, D = ir . 2. PER UNIT BASE = Rynyc = 1.0 DEG. C/W. 3. Tym - Te = Pom Ztnclt). 2 5 10-1 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-106Standard Power MOSFETs 80 ys PULSE TEST 1 1 1 Vos > '!n(on) x Rpstan) max. a n Sty, TRANSCONDUCTANCE (SIEMENS) wo 0 5 10 15 20 28 Ip, DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.25 1.16 > a 2s we a 0.85 BV oss, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) 0,75 Al 0 0 40 80 120 Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature 2000 Cigg = Cys + Cga, Cus SHO Cress = Cog Cys Cad 9s & gi Coss = Cas + 1600 oss = Gds gs * Cgd = Cas + Cog S = 1200 3 z < e 3 < S 800 oC 400 0 10 15 20 3 30 3540 45 Vps. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 160 50 IRF340, IRF341, IRF342, IRF343 Ty = 1509C ior, REVERSE DRAIN CURRENT (AMPERES) 0 1 2 3 4 5 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage 25 2.0 wn (NORMALIZED) s 0.5 Aips(on). DRAIN-TO-SOURCE ON-STATE RESISTANCE 0 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Ip = 124 FOR TEST CIRCUIT FIGURE 18 Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) 0 2a 40 60 80 Gg, TOTAL GATE CHARGE (nf) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-107Standard Power MOSFETs IRF340, IRF341, IRF342, IRF343 _ 16 T T T T T TT g Ros(onj MEASURED WITH CURRENT PULSE OF = | 2.0us DURATION. INITIAL Ty = 25C. (HEATING 2 EFFECT OF 2.0 us PULSE IS MINIMAL.) | Z Ves= w/ e112 : Ui, uw a 3 Af Ves = 20v 4 uw yo x 3 08 eo Qo Fe z PA ft wc a _ 504 t a a oc 0 10 20 30 40 Ig, DRAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current 140 120 z = 100 Zz s = 30 & a a = 60 w = Qo a 24 6 So @ 20 40 60 80 6100120140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve ADJUST AL TO OBTAIN SPECIFIED Ip Ves PULSE ] | GENERATOR source J] \ IMPEGANCE Fig. 17 Switching Time Test Circuit 3-108 (RF342, Ip, ORAIN CURRENT (AMPERES) 0 2 50 75 100 125 180 Tp, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature VARY tp TO OBTAIN REQUIRED PEAK 1, E,=O5BVggg Ec = 0.75 BV gg Fig. 15 -- Clamped Inductive Test Circuit \ V+ He Fig. 16 -- Clamped Inductive Waveforms o *Yos (ISOLATED SUPPLY) CURRENT REGULATOR SAME TYPE Vos CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit