REV. E
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
a
Dual Precision,
Low Power BiFET Op Amp
AD648
FEATURES
DC Performance
400 A max Quiescent Current
10 pA max Bias Current, Warmed Up (AD648B)
1 V max Offset Voltage (AD648B)
10 V/C max Drift (AD648B)
2 V p-p Noise, 0.1 Hz to 10 Hz
AC Performance
1.8 V/s Slew Rate
1 MHz Unity Gain Bandwidth
Available in Plastic Mini-DIP, CERDIP, and Plastic SOIC
Packages
MIL-STD-883B Parts Available
Surface Mount (SOIC) Package Available in Tape and
Reel in Accordance with EIA-481A Standard
Single Version: AD548
PRODUCT DESCRIPTION
The AD648 is a matched pair of low power, precision mono-
lithic operational amplifiers. It offers both low bias current
(10 pA max, warmed up) and low quiescent current (400 µA
max) and is fabricated with ion-implanted FET and laser wafer
trimming technologies. Input bias current is guaranteed over the
AD648’s entire common-mode voltage range.
The economical J grade has a maximum guaranteed offset
voltage of less than 2 mV and an offset voltage drift of less than
20 µV/°C. This level of dc precision is achieved using Analog’s
laser wafer drift trimming process. The combination of low
quiescent current and low offset voltage drift minimizes changes
in input offset voltage due to self-heating effects. Five grades are
offered over the commercial, industrial and military temperature
ranges.
The AD648 is recommended for any dual supply op amp
application requiring low power and excellent dc and ac per-
formance. In applications such as battery-powered, precision
instrument front ends and CMOS DAC buffers, the AD648’s
excellent combination of low input offset voltage and drift, low
bias current, and low 1/f noise reduces output errors. High
common-mode rejection (82 dB, min on the “B” grade) and
high open-loop gain ensures better than 12-bit linearity in high
impedance, buffer applications.
The AD648 is pinned out in a standard dual op amp configura-
tion and is available in seven performance grades. The AD648J
and AD648K are rated over the commercial temperature range
of 0°C to 70°C. The AD648 and AD648B are rated over the
industrial temperature range of –40°C to +85°C. The AD648S
and AD648T are rated over the military temperature range of
–55°C to +125°C and the AD648T* grade is available pro-
cessed to MIL-STD-883B, Rev. C.
The AD648 is available in an 8-lead plastic mini-DIP,
CERDIP, and SOIC.
*Not for new design, obsolete April 2002.
PRODUCT HIGHLIGHTS
1. A combination of low supply current, excellent dc and ac
performance and low drift makes the AD648 the ideal op
amp for high performance, low power applications.
2. The AD648 is pin compatible with industry standard dual
op amps such as the LF442, TL062, and AD642, enabling
designers to improve performance while achieving a reduc-
tion in power dissipation of up to 85%.
3. Guaranteed low input offset voltage (2 mV max) and drift
(20 µV/°C max) for the AD648J are achieved using Analog
Devices’ laser drift trimming technology.
4. Analog Devices specifies each device in the warmed-up
condition, insuring that the device will meet its published
specifications in actual use.
5. Matching characteristics are excellent for all grades. The
input offset voltage matching between amplifiers in the
AD648J is within 2 mV.
6. Crosstalk between amplifiers is less than –120 dB at 1 kHz.
CONNECTION DIAGRAM
Plastic Mini-Dip (N) Package,
Plastic SOIC (R) Package
and
CERDIP (Q) Package
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002
AD648–SPECIFICATIONS
(@ + 25C and V
S
= 15 V dc, unless otherwise noted.)
–2– REV. E
AD648J/A/S AD648K/B/T
Model Min Typ Max Min Typ Max Unit
INPUT OFFSET VOLTAGE
1
Initial Offset 0.75 2.0 0.3 1.0
T
MIN
to T
MAX
3.0/3.0/3.0 1.5/1.5/2.0 mV
vs. Temperature 20 10 µV/°C
vs. Supply 80 86 dB
vs. Supply, T
MIN
to T
MAX
76/76/76 80 dB
Long-Term Offset Stability 15 15 µV/month
INPUT BIAS CURREN
Either Input,
2
V
CM
= 0 5 20 3 10 pA
Either Input
2
at T
MAX
, V
CM
= 0 0.45/1.3/20 0.25/0.65/10 nA
Max Input Bias Current Over
Common-Mode Voltage Range 30 15 pA
Offset Current, V
CM
= 0 5 10 2 5 pA
Offset Current at T
MAX
0.25/0.7/10 0.15/0.35/5 nA
MATCHING CHARACTERISTICS
3
Input Offset Voltage 1.0 2.0 0.5 1.0 mV
Input Offset Voltage T
MIN
to T
MAX
3.0/3.0/3.0 1.5/1.5/2.0 mV
Input Offset Voltage vs. Temperature 8 5 µV/°C
Input Bias Current 10 5 pA
Crosstalk –120 –120 dB
INPUT IMPEDANCE
Differential 1 × 10
1 2
3 1 × 10
12
3pF
Common Mode 3 × 10
12
3 3 × 10
12
3pF
INPUT VOLTAGE RANGE
Differential
4
±20 ±20 V
Common Mode ±11 ±12 ±11 ±12 V
Common-Mode Rejection
V
CM
= ±10 V 76 82 dB
T
MIN
to T
MAX
76/76/76 82 dB
V
CM
= ±11 V 70 76 dB
T
MIN
to T
MAX
70/70/70 76 dB
INPUT VOLTAGE NOISE
Voltage 0.1 Hz to 10 Hz 2 2 µV p-p
f = 10 Hz 80 80 nV/Hz
f = 100 Hz 40 40 nV/Hz
f = 1 kHz 30 30 nV/Hz
f = 10 kHz 30 30 nV/Hz
INPUT CURRENT NOISE
f = 1 kHz 1.8 1.8 fA/Hz
FREQUENCY RESPONSE
Unity Gain, Small Signal 0.8 1.0 0.8 1.0 MHz
Full Power Response 30 30 kHz
Slew Rate, Unity Gain 1.0 1.8 1.0 1.8 V/µs
Settling Time to ±0.01% 8 8 µs
OPEN-LOOP GAIN
V
O
= ±10 V, R
L
10 k300 1000 300 1000 V/mV
T
MIN
to T
MAX
, R
L
10 k300/300/300 700 300 700 V/mV
V
O
= ±10 V, R
L
5 k150 500 150 500 V/mV
T
MIN
to T
MAX
, R
L
5 k150/150/150 300 150 300 V/mV
AD648J/A/S AD648K/B/T
Model Min Typ Max Min Typ Max Unit
OUTPUT CHARACTERISTICS
Voltage @ R
L
10 k,
T
MIN
to T
MAX
±12/±12/±12 ±13 ±12 ±13 V
Voltage @ R
L
5 k,
T
MIN
to T
MAX
±11/±11/±11 ±12 ±11 ±12 V
Short Circuit Current 15 15 mA
POWER SUPPLY
Rated Performance ±15 ±15 V
Operating Range ±4.5 ±18 ±4.5 ±18 V
Quiescent Current (Both Amplifiers) 340 400 340 400 µA
TEMPERATURE RANGE
Operating, Rated Performance
Commercial (0°C to 70°C) AD648J AD648K
Industrial (–40°C to +85°C) AD648A AD648B
Military (–55°C to +125°C) AD648S AD648T
PACKAGE OPTIONS
SOIC (R-8) AD648JR AD648KR
Plastic (N-8) AD648JN AD648KN
CERDIP (Q-8) AD648AQ
5
, AD648SQ
5
AD648BQ
5
, AD648TQ/883B
5
Tape and Reel AD648JR-REEL, AD648JR-REEL7 AD648KR-REEL, AD648KR-REEL7
NOTES
1
Input Offset Voltage specifications are guaranteed after five minutes of operation at T
A
= 25°C.
2
Bias Current specifications are guaranteed maximum at either input after five minutes of operation at T
A
= 25°C. For higher temperature, the current doubles
every 10°C.
3
Matching is defined as the difference between parameters of the two amplifiers.
4
Defined as voltages between inputs, such that neither exceeds ±10 V from ground.
5
Not for new design. Obsolete April 2002.
Specifications subject to change without notice.
AD648
REV. E –3–
SPECIFICATIONS
(Continued)
AD648
REV. E
–4–
WARNING!
ESD SENSITIVE DEVICE
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the AD648 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
ABSOLUTE MAXIMUM RATINGS
1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V
Internal Power Dissipation
2
. . . . . . . . . . . . . . . . . . . . 500 mW
Input Voltage
3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite
Differential Input Voltage . . . . . . . . . . . . . . . . . . +V
S
and –V
S
Storage Temperature Range (Q, H) . . . . . . . –65°C to +150°C
Storage Temperature Range (N, R) . . . . . . . . –65°C to +125°C
Operating Temperature Range
AD648J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
AD648A/B . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
AD648S/T . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C
NOTES
1
Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in
the operational section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2
Thermal Characteristics:
8-Pin Plastic Package: θ
JA
= 165°C/Watt
8-Pin CERDIP Package: θ
JC
= 22°C/Watt; θ
JA
= 110°C/Watt
8-Pin SOIC Package: θ
JC
= 42°C/Wat; θ
JA
= 160°C/Watt
3
For supply voltages less than ±18 V, the absolute maximum input voltage is equal
to the supply voltage.
AD648
REV. E –5–
Typical Performance Characteristics—
AD648
REV. E
–6–
AD648
REV. E –7–
APPLICATION NOTES
The AD648 is a pair of JFET-input op amps with a guaranteed
maximum I
B
of less than 10 pA, and offset and drift laser-
trimmed to 1.0 mV and 10 µV/°C, respectively (AD648B). AC
specs include 1 MHz bandwidth, 1.8 V/µs typical slew rate and
8 µs settling time for a 20 V step to ±0.01%—all at a supply
current less than 400 µA. To capitalize on the device’s perfor-
mance, a number of error sources should be considered.
The minimal power drain and low offset drift of the AD648
reduce self-heating or “warm-up” effects on input offset voltage,
making the AD648 ideal for on/off battery powered applica-
tions. The power dissipation due to the AD648’s 400 µA supply
current has a negligible effect on input current, but heavy out-
put loading will raise the chip temperature. Since a JFET’s
input current doubles for every 10°C rise in chip temperature,
this can be a noticeable effect.
The amplifier is designed to be functional with power supply
voltages as low as ±4.5 V. It will exhibit a higher input offset
voltage than at the rated supply voltage of ±15 V, due to power
supply rejection effects. Common-mode range extends from 3 V
more positive than the negative supply to 1 V more negative
than the positive supply. Designed to cleanly drive up to 10 k
and 100 pF loads, the AD648 will drive a 2 k load with reduced
open-loop gain.
Figure 21 shows the recommended crosstalk test circuit. A
typical value for crosstalk is –120 dB at 1 kHz.
Figure 21. Crosstalk Test Circuit
LAYOUT
To take full advantage of the AD648’s 10 pA max input current,
parasitic leakages must be kept below an acceptable level. The
practical limit of the resistance of epoxy or phenolic circuit
board material is between 1 × 10
12
and 3 × 10
12
. This can
result in an additional leakage of 5 pA between an input of 0 V
and a –15 V supply line. Teflon or a similar low leakage material
(with a resistance exceeding 10
17
) should be used to isolate
high impedance input lines from adjacent lines carrying high
voltages. The insulator should be kept clean, since contaminants
will degrade the surface resistance.
A metal guard completely surrounding the high impedance
nodes and driven by a voltage near the common-mode input
potential can also be used to reduce some parasitic leakages.
The guarding pattern in Figure 22 will reduce parasitic leakage
due to finite board surface resistance; but it will not compensate
for a low volume resistivity board.
Figure 22. Board Layout for Guarding Inputs
INPUT PROTECTION
The AD648 is guaranteed to withstand input voltages equal to
the power supply potential. Exceeding the negative supply volt-
age on either input will forward bias the substrate junction of
the chip. The induced current may destroy the amplifier due to
excess heat.
Input protection is required in applications such as a flame
detector in a gas chromatograph, where a very high potential
may be applied to the input terminals during a sensor fault
condition. Figures 23a and 23b show simple current limiting
schemes that can be used. R
PROTECT
should be chosen such that
the maximum overload current is 1.0 mA (for example 100 k
for a 100 V overload).
Figure 23a. Input Protection of l-to-V Converter
Figure 23b. Voltage Follower Input Protection Method
Figure 23b shows the recommended method for protecting a
voltage follower from excessive currents due to high voltage
breakdown. The protection resistor, R
P
, limits the input current.
A nominal value of 100 k will limit the input current to less
than 1 mA with a 100 volt input voltage applied.
The stray capacitance between the summing junction and
ground will produce a high-frequency roll-off with a corner
frequency equal to:
f
corner
=1
2πR
P
C
stray
Accordingly, a 100 k value for R
P
with a 3 pF C
stray
will cause
a 3 dB corner frequency to occur at 531 kHz.
AD648
REV. E
–8–
SIGN BIT BINARY NUMBER IN DAC REGISTER ANALOG OUTPUT
01111 1111 1111 +V
IN
(4095/4096)
00000 0000 0000 0 V
10000 0000 0000 0 V
11111 1111 1111 –V
IN
(4095/4096)
NOTE
SIGN BIT AT “0“ CONNECTS THE NONINVERTING INPUT OF
A2 TO ANALOG COMMON
Figure 25. Sign Magnitude Code Table
Figure 23c shows a diode clamp protection scheme for an I-to-V
converter using low leakage diodes. Because the diodes are
connected to the op amp’s summing junction, which is a virtual
ground, their leakage contribution is minimal.
Figure 23c. I-to-V Converter with Diode Input Protection
Exceeding the negative common-mode range on either input
terminal causes a phase reversal at the output, forcing the ampli-
fier output to the corresponding high or low state. Exceeding
the negative common mode on both inputs simultaneously
forces the output high. Exceeding the positive common-mode
range on a single input does not cause a phase reversal; but if
both inputs exceed the limit, the output will be forced high. In
all cases, normal amplifier operation is resumed when input
voltages are brought back within the common-mode range.
D/A CONVERTER BIPOLAR OUTPUT BUFFER
The circuit in Figure 24 provides 4 quadrant multiplication with
a resolution of 12 bits. The AD648 is used to convert the AD7545
CMOS DAC’s output current to a voltage and provides the
necessary level shifting to achieve a bipolar voltage output. The
circuit operates with a 12-bit plus sign input code. The transfer
function is shown in Figure 25.
The AD7592 is a fully protected dual CMOS SPDT switch with
data latches. R4 and R5 should match to within 0.01% to main-
tain the accuracy of the converter. A mismatch between R4 and
R5 introduces a gain error. Overall gain is trimmed by adjusting
R
IN
. The AD648’s low input offset voltage, low drift over tem-
perature, and excellent dynamics make it an attractive low
power output buffer.
The input offset voltage of the AD648 output amplifier results
in an output error voltage. This error voltage equals the input
offset voltage of the op amp times the noise gain of the amplifier.
That is:
VOS Output =VOS Input 1+RFB
R
O
R
FB
is the feedback resistor for the op amp, which is internal to
the DAC. R
O
is the DAC’s R-2R ladder output resistance. The
value of R
O
is code dependent. This has the effect of changing
the offset error voltage at the amplifier’s output. An output
amplifier with a sub millivolt input offset voltage is needed to
preserve the linearity of the DAC’s transfer function.
Figure 24. 12-Bit Plus Sign Magnitude D/A Converter
AD648
REV. E –9–
TEMP R
SH
V
OS
I
B
C(M)(V) (1 + R
F
/R
SH
) V
OS
(pA) I
B
R
F
TOTAL
–25 15,970 150 151 V0.30 30 V181 V
02,830 225 233 V2.26 262 V495 V
+25 500 300 360 V10.00 1.0 mV 1.36 mV
+50 88.5 375 800 V56.6 5.6 mV 6.40 mV
+75 15.6 450 3.33 mV 320 32 mV 35.3 mV
+85 7.8 480 6.63 mV 640 64 mV 70.6 mV
Figure 28. Photodiode Pre-Amp Errors Over Temperature
DUAL PHOTODIODE PREAMP
The performance of the dual photodiode preamp shown in
Figure 27 is enhanced by the AD648’s low input current, input
voltage offset, and offset voltage drift. Each photodiode sources
a current proportional to the incident light power on its surface.
R
F
converts the photodiode current to an output voltage equal
to R
F
× I
S
.
An error budget illustrating the importance of low amplifier
input current, voltage offset, and offset voltage drift to minimize
output voltage errors can be developed by considering the
equivalent circuit for the small (0.2 mm
2
area) photodiode
shown in Figure 27. The input current results in an error pro-
portional to the feedback resistance used. The amplifier’s offset
will produce an error proportional to the preamp’s noise gain
(1+R
F
/R
SH
), where R
SH
is the photodiode shunt resistance. The
amplifier’s input current will double with every 10°C rise in
temperature, and the photodiode’s shunt resistance halves with
every 10°C rise. The error budget in Figure 28 assumes a room
temperature photodiode R
SH
of 500 M, and the maximum
input current and input offset voltage specs of an AD648C.
The capacitance at the amplifier’s negative input (the sum of the
photodiode’s shunt capacitance, the op amp’s differential input
capacitance, stray capacitance due to wiring, etc.) will cause a
rise in the preamp’s noise gain over frequency. This can result in
excess noise over the bandwidth of interest. C
F
reduces the
noise gain “peaking” at the expense of signal bandwidth.
Figure 27. A Dual Photodiode Pre-Amp
The AD648 in this configuration provides a 700 kHz small signal
bandwidth and 1.8 V/µs typical slew rate. The 33 pF capacitor
across the feedback resistor optimizes the circuit’s response. The
oscilloscope photos in Figures 26a and 26b show small and
large signal outputs of the circuit in Figure 24. Upper traces
show the input signal V
IN
. Lower traces are the resulting output
voltage with the DAC’s digital input set to all 1s. The circuit
settles to ±0.01% for a 20 V input step in 14 µs.
Figure 26a. Response to
±
20 V p-p Reference Square
Wave
Figure 26b. Response to
±
100 mV p-p Reference Square
Wave
AD648
REV. E
–10–
INSTRUMENTATION AMPLIFIER
The AD648J’s maximum input current of 20 pA per amplifier
makes it an excellent building block for the high input impedance
instrumentation amplifier shown in Figure 29. Total current
drain for this circuit is under 600 µA. This configuration is
optimal for conditioning differential voltages from high imped-
ance sources.
The overall gain of the circuit is controlled by R
G
, resulting in
the following transfer function:
VOUT
VIN =1+(R3+R4)
R
G
Gains of 1 to 100 can be accommodated with gain nonlinearities
of less than 0.01%. The maximum input current is 30 pA over
the common-mode range, with a common-mode impedance of
over 1 × 10
12
. The capacitors C1, C2, C3 and C4 compensate
for peaking in the gain over frequency which is caused by input
capacitance.
To calibrate this circuit, first adjust trimmer R1 for common-
mode rejection with 10 V dc applied to the input pins. Next,
adjust R2 for zero offset at V
OUT
with both inputs grounded.
Trim the circuit a second time for optimal
performance.
The –3 dB small signal bandwidth for this low power instru-
mentation amplifier is 700 kHz for a gain of 1 and 10 kHz for a
gain of 100. The typical output slew rate is 1.8 V/µs.
Figure 29. Low Power Instrumentation Amplifier
AD648
REV. E –11–
LOG RATIO AMPLIFIER
Log ratio amplifiers are useful for a variety of signal conditioning
applications, such as linearizing exponential transducer outputs
and compressing analog signals having a wide dynamic range.
The AD648’s picoamp level input current and low input offset
voltage make it a good choice for the front end amplifier of the
log ratio circuit shown in Figure 30. This circuit produces an
output voltage equal to the log base 10 of the ratio of the input
currents I
1
and I
2
. Resistive inputs R1 and R2 are provided
for voltage inputs.
Input currents I
1
and I
2
set the collector currents of Q1 and Q2,
a matched pair of logging transistors. Voltages at points A and B
are developed according to the following familiar diode equation:
V
BE
= (kT/q) ln (I
C
/I
ES
)
In this equation, k is Boltzmann’s constant, T is absolute
temperature, q is an electron charge, and I
ES
is the reverse
saturation current of the logging transistors. The difference of
these two voltages is taken by the subtractor section and scaled
by a factor of approximately 16 by resistors R9, R10, and R8.
Temperature compensation is provided by resistors R8 and
R15,
which have a positive 3500 ppm/°C temperature coefficient.
The transfer function for the output voltage is:
V
OUT
= 1 V log
10
(I
2
/I
1
)
Frequency compensation is provided by R11, R12, C1, and C2.
Small signal bandwidth is approximately 300 kHz at input cur-
rents above 100 µA and will proportionally decrease with lower
signal levels. D1, D2, R13, and R14 compensate for the effects
of the two logging transistors’ ohmic emitter resistance.
To trim this circuit, set the two input currents to 10 µA and
adjust V
OUT
to zero by adjusting the potentiometer on A3. Then
set I
2
to 1 µA and adjust the scale factor such that the output
voltage is 1 V by trimming potentiometer R10. Offset adjust-
ment for A1 and A2 is provided to increase the accuracy of the
voltage inputs.
This circuit ensures a 1% log conformance error over an input
current range of 300 pA to l mA, with low level accuracy limited
by the AD648’s input current. The low level input voltage accu-
racy of this circuit is limited by the input offset voltage and drift
of the AD648.
Figure 30. Precision Log Ratio Amplifier
C00795–0–5/02(E)
PRINTED IN U.S.A.
–12–
OUTLINE DIMENSIONS
CERDIP (Q) Package
Dimensions shown in inches and (millimeters)
AD648
REV. E
Revision History
Location Page
Data Sheet changed from REV. C to REV. E.
Change to SOIC (R-8) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Deleted Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Deleted AD648C column from SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Deleted METALIZATION PHOTOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Deleted Metal Can from Figure 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Deleted TO-99 (H) from OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8-Lead SOIC (R) Package
Dimensions shown in millimeters and (inches)
0.25 (0.0098)
0.19 (0.0075)
1.27 (0.0500)
0.41 (0.0160)
0.50 (0.0196)
0.25 (0.0099) 45
8
0
1.75 (0.0688)
1.35 (0.0532)
SEATING
PLANE
0.25 (0.0098)
0.10 (0.0040)
85
41
5.00 (0.1968)
4.80 (0.1890)
PIN 1
0.1574 (4.00)
0.1497 (3.80)
1.27 (0.0500)
BSC
6.20 (0.2440)
5.80 (0.2284)
0.51 (0.0201)
0.33 (0.0130)
COPLANARITY
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MS-012 AA
Mini-DIP (N) Package
Dimensions shown in inches and (millimeters)