5-332
FAST AND LS TTL DATA
4-BIT ARITHMETIC
LOGIC UNIT
The SN54/74LS181 is a 4-bit Arithmetic Logic Unit (ALU) which can
perform all the possible 16 logic, operations on two variables and a variety of
arithmetic operations.
Provides 16 Arithmetic Operations Add, Subtract, Compare, Double,
Plus Twelve Other Arithmetic Operations
Provides all 16 Logic Operations of Two Variables Exclusive — OR,
Compare, AND, NAND, OR, NOR, Plus Ten other Logic Operations
Full Lookahead for High Speed Arithmetic Operation on Long Words
Input Clamp Diodes
NOTE:
The Flatpak version
has the same pinouts
(Connection Diagram) as
the Dual In-Line Package.
CONNECTION DIAGRAM DIP (TOP VIEW)
     
 
 

   

PIN NAMES LOADING (Note a)
HIGH LOW
A0A3, B0B3
S0S3
M
Cn
F0F3
A = B
G
P
Cn+4
Operand (Active LOW) Inputs
Function — Select Inputs
Mode Control Input
Carry Input
Function (Active LOW) Outputs
Comparator Output
Carry Generator (Active LOW)
Output
Carry Propagate (Active LOW)
Output
Carry Output
1.5 U.L.
2.0 U.L.
0.5 U.L.
2.5 U.L.
10 U.L.
Open Collector
10 U.L.
10 U.L.
10 U.L.
0.75 U.L.
1.0 U.L.
0.25 U.L.
1.25 U.L.
5 (2.5) U.L.
5 (2.5) U.L.
10 U.L.
5 U.L.
5 (2.5) U.L.
NOTES:
a. 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.
b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74)
b. Temperature Ranges.
SN54/74LS181
4-BIT ARITHMETIC
LOGIC UNIT
LOW POWER SCHOTTKY
ORDERING INFORMATION
SN54LSXXXJ Ceramic
SN74LSXXXN Plastic
LOGIC SYMBOL
 
  
 




     
24
1
J SUFFIX
CERAMIC
CASE 623-05
24
1
N SUFFIX
PLASTIC
CASE 649-03
5-333
FAST AND LS TTL DATA
SN54/74LS181
LOGIC DIAGRAM

  
 
  
 
  

FUNCTIONAL DESCRIPTION
The SN54/74LS181 is a 4-bit high speed parallel Arithmetic
Logic Unit (ALU). Controlled by the four Function Select Inputs
(S0 . . . S3) and the Mode Control Input (M), it can perform all
the 16 possible logic operations or 16 different arithmetic
operations on active HIGH or active LOW operands. The
Function Table lists these operations.
When the Mode Control Input (M) is HIGH, all internal
carries are inhibited and the device performs logic operations
on the individual bits as listed. When the Mode Control Input is
LOW, the carries are enabled and the device performs
arithmetic operations on the two 4-bit words. The device
incorporates full internal carry lookahead and provides for
either ripple carry between devices using the Cn+4 output, or
for carry lookahead between packages using the signals P
(Carry Propagate) and G (Carry Generate), P and G are not
affected by carry in. When speed requirements are not
stringent, the LS181 can be used in a simple ripple carry mode
by connecting the Carry Output (Cn+4) signal to the Carry Input
(Cn) of the next unit. For high speed operation the LS181 is
used in conjunction with the 9342 or 93S42 carry lookahead
circuit. One carry lookahead package is required for each
group of the four LS181 devices. Carry lookahead can be
provided at various levels and offers high speed capability
over extremely long word lengths.
The A = B output from the LS181 goes HIGH when all four F
outputs are HIGH and can be used to indicate logic
equivalence over four bits when the unit is in the subtract
mode. The A = B output is open collector and can be
wired-AND with other A = B outputs to give a comparison for
more then four bits. The A = B signal can also be used with the
Cn+4 signal to indicate A>B and A<B.
The Function Table lists the arithmetic operations that are
performed without a carry in. An incoming carry adds a one to
each operation. Thus, select code LHHL generates A minus B
minus 1 (2s complement notation) without a carry in and
generates A minus B when a carry is applied. Because
subtraction is actually performed by complementary addition
(1s complement), a carry out means borrow; thus a carry is
generated when there is no underflow and no carry is
generated when there is underflow.
As indicated, the LS181 can be used with either active LOW
inputs producing active LOW outputs or with active HIGH
inputs producing active HIGH outputs. For either case the
table lists the operations that are performed to the operands
labeled inside the logic symbol.
5-334
FAST AND LS TTL DATA
SN54/74LS181
FUNCTION TABLE
MODE SELECT
INPUTS ACTIVE LOW INPUTS
& OUTPUTS ACTIVE HIGH INPUTS
& OUTPUTS
S3S2S1S0LOGIC
(M = H) ARITHMETIC**
(M = L) (Cn = L) LOGIC
(M = H) ARITHMETIC**
(M = L) (Cn = H)
L L L L A A minus 1 A A
L L L H AB AB minus 1 A + B A + B
L L H L A + B AB minus 1 AB A + B
L L H H Logical 1 minus 1 Logical 0 minus 1
L H L L A + B A plus (A + B) AB A plus AB
L H L H B AB plus (A + B) B (A + B) plus AB
L H H L A B A minus B minus 1 A B A minus B minus 1
L H H H A + B A + B AB AB minus 1
H L L L AB A plus (A + B) A + B A plus AB
H L L H A B A plus B A B A plus B
H L H L B AB plus (A + B) B (A + B) plus AB
H L H H A + B A + B AB AB minus 1
H H L L Logical 0 A plus A* Logical 1 A plus A*
H H L H AB AB plus A A + B (A + B) plus A
H H H L AB AB plus A A + B (A + B) Plus A
H H H H A A A A minus 1
L = LOW Voltage Level
H = HIGH Voltage Level
**Each bit is shifted to the next more significant position
**Arithmetic operations expressed in 2s complement notation
LOGIC SYMBOLS
ACTIVE LOW OPERANDS ACTIVE HIGH OPERANDS
 




     
 




     
GUARANTEED OPERATING RANGES
Symbol Parameter Min Typ Max Unit
VCC Supply Voltage 54
74 4.5
4.75 5.0
5.0 5.5
5.25 V
TAOperating Ambient Temperature Range 54
74 55
025
25 125
70 °C
IOH Output Current — High 54, 74 0.4 mA
IOL Output Current — Low 54
74 4.0
8.0 mA
VOH Output Voltage — High (A = B only) 54, 74 5.5 V
5-335
FAST AND LS TTL DATA
SN54/74LS181
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)
Symbol
Parameter
Limits
Unit
Test Conditions
Symbol
Parameter
Min Typ Max
Unit
Test Conditions
VIH Input HIGH Voltage 2.0 V Guaranteed Input HIGH Voltage for
All Inputs
VIL
Input LOW Voltage
54 0.7
V
Guaranteed Input LOW Voltage for
All Inputs
VIL
Input LOW Voltage
74 0.8
V
Guaranteed Input LOW Voltage for
All Inputs
VIK Input Clamp Diode Voltage 0.65 1.5 V VCC = MIN, IIN = –18 mA
VOH
Output HIGH Voltage
54 2.5 3.5 V
V
CC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table
VOH
Output HIGH Voltage
74 2.7 3.5 V
VCC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table
VOL
Output LOW Voltage
Except G and P
54, 74 0.25 0.4 V IOL = 4.0 mA
VCC = VCC MIN,
VIN = VIL or VIH
per Truth Table
VOL
Output LOW Voltage
Except G and P
74 0.35 0.5 V IOL = 8.0 mA
V
CC = VCC MIN,
VIN = VIL or VIH
per Truth Table
VOL
Output G 54, 74 0.7 V IOL = 16 mA
VCC = VCC MIN,
VIN = VIL or VIH
per Truth Table
Output P 54
74 0.6
0.5 V IOL = 8.0 mA
per Truth Table
IOH Output HIGH Current 54, 74 100 µAVCC = MIN, IOH = MAX, VIN = VIH
or VIL per Truth Table
I
IH
Input HIGH Current
Mode Input
Any A or B Input
Any S Input
Cn Input
20
60
80
100
µA VCC = MAX, VIN = 2.7 V
IIH
Mode Input
Any A or B Input
Any S Input
Cn Input
0.1
0.3
0.4
0.5
mA VCC = MAX, VIN = 7.0 V
IIL
Input LOW Current
Mode Input
Any A or B Input
Any S Input
Cn Input
0.4
1.2
1.6
2.0
mA VCC = MAX, VIN = 0.4 V
IOS Short Circuit Current (Note 2) 20 100 mA VCC = MAX
ICC
Power Supply Current
See Note 1A
54 32
mA
VCC = MAX
ICC
Power Supply Current
See Note 1A
74 34
mA
VCC = MAX
ICC
See Note 1B
54 35
mA
VCC = MAX
See Note 1B
74 37
Note 1.
With outputs open, ICC is measured for the following conditions:
A. S0 through S3, M, and A inputs are at 4.5 V, all other inputs are grounded.
B. S0 through S3 and M are at 4.5 V, all other inputs are grounded.
Note 2: Not more than one output should be shorted at a time, nor for more than 1 second.
5-336
FAST AND LS TTL DATA
SN54/74LS181
AC CHARACTERISTICS (TA = 25°C, VCC = 5.0 V, Pin 12 = GND, CL = 15 pF)
Symbol
Parameter
Limits
Unit
Test Conditions
Symbol
Parameter
Min Typ Max
Unit
Test Conditions
tPLH
tPHL Propagation Delay,
(Cn to Cn+4)18
13 27
20 ns M = 0 V, (Sum or Diff Mode)
See Fig. 4 and Tables I and II
tPLH
tPHL (Cn to F Outputs) 17
13 26
20 ns M = 0 V, (Sum Mode)
See Fig. 4 and Table I
tPLH
tPHL (A or B Inputs to G Output) 19
15 29
23 ns M = S1 = S2 = 0 V, S0 = S3 = 4.5 V
(Sum Mode) See Fig. 4 and Table I
tPLH
tPHL (A or B Inputs to G Output) 21
21 32
32 ns M = S0 = S3 = 0 V, S1 = S2 = 4.5 V
(Diff Mode) See Fig. 5 and Table II
tPLH
tPHL (A or B Inputs to P Output) 20
20 30
30 ns M = S1 = S2 = 0 V, S0 = S3 = 4.5 V
(Sum Mode) See Fig. 4 and Table I
tPLH
tPHL (A or B Inputs to P Output) 20
22 30
33 ns M = S0 = S3 = 0 V, S1 = S2 = 4.5 V
(Diff Mode) See Fig. 5 and Table II
tPLH
tPHL (AX or BX Inputs to FX Output) 21
13 32
20 ns M = S1 = S2 = 0 V, S0 = S3 = 4.5 V
(Sum Mode) See Fig. 4 and Table I
tPLH
tPHL (AX or BX Inputs to FX Output) 21
21 32
32 ns M = S0 = S3 = 0 V, S1 = S2 = 4.5 V
(Diff Mode) See Fig. 5 and Table II
tPLH
tPHL (AX or BX Inputs to FXH Outputs) 38
26 ns M = S1 = S2 = 0 V, S0 = S3 = 4.5 V
(Sum Mode) See Fig. 4 and Table I
tPLH
tPHL (AX or BX Inputs to FXH Outputs) 38
38 ns M = S0 = S3 = 0 V, S1 = S2 = 4.5 V
(Diff Mode) See Fig. 5 and Table II
tPLH
tPHL (A or B Inputs to F Outputs) 22
26 33
38 ns M = 4.5 V (Logic Mode)
See Fig. 4 and Table III
tPLH
tPHL (A or B Inputs to Cn+4 Output) 25
25 38
38 ns M = 0 V, S0 = S3 = 4.5 V, S1 = S2 = 0 V
(Sum Mode) See Fig. 6 and Table I
tPLH
tPHL (A or B Inputs to Cn+4 Output) 27
27 41
41 ns M = 0 V, S0 = S3 = 0 V, S1 = S2 = 4.5 V
(Diff Mode)
tPLH
tPHL (A or B Inputs to A = B Output) 33
41 50
62 ns M = S0 = S3 = 0 V, S1 = S2 = 4.5 V
RL = 2.0 k
(Diff Mode) See Fig. 5 and Table II
AC WAVEFORMS
Figure 5 Figure 6
Figure 4
 
 
 
 
 
 
 







5-337
FAST AND LS TTL DATA
SN54/74LS181
SUM MODE TEST TABLE I FUNCTION INPUTS: S0 = S3 = 4.5 V, S1 = S2 = M = 0 V
Parameter
Input
Under
Test
Other Input
Same Bit Other Data Inputs
Output
Under
Test
Parameter
Input
Under
Test
Apply
4.5 V Apply
GND Apply
4.5 V Apply
GND
Output
Under
Test
tPLH
tPHL AlBlNone Remaining
A and B CnFl
tPLH
tPHL BlAlNone Remaining
A and B CnFl
tPLH
tPHL AlBlNone CnRemaining
A and B Fl+1
tPLH
tPHL BlAlNone CnRemaining
A and B Fl+1
tPLH
tPHL A B None None Remaining
A and B, CnP
tPLH
tPHL B A None None Remaining
A and B, CnP
tPLH
tPHL A None B Remaining
BRemaining
A, CnG
tPLH
tPHL B None A Remaining
BRemaining
A, CnG
tPLH
tPHL A None B Remaining
BRemaining
A, CnCn+4
tPLH
tPHL B None A Remaining
BRemaining
A, CnCn+4
tPLH
tPHL CnNone None All
AAll
BAny F
or Cn+4
5-338
FAST AND LS TTL DATA
SN54/74LS181
DIFF MODE TEST TABLE II FUNCTION INPUTS: S1 = S2 = 4.5 V, S0 = S3 = M = 0 V
Parameter
Input
Under
Test
Other Input
Same Bit Other Data Inputs
Output
Under
Test
Parameter
Input
Under
Test
Apply
4.5 V Apply
GND Apply
4.5 V Apply
GND
Output
Under
Test
tPLH
tPHL A None B Remaining
ARemaining
B, CnFl
tPLH
tPHL B A None Remaining
ARemaining
B, CnFl
tPLH
tPHL AlNone BlRemaining
B, CnRemaining
AFl+1
tPLH
tPHL BlAlNone Remaining
B, CnRemaining
AFl+1
tPLH
tPHL A None B None Remaining
A and B, CnP
tPLH
tPHL B A None None Remaining
A and B, CnP
tPLH
tPHL A B None None Remaining
A and Bl, CnG
tPLH
tPHL B None A None Remaining
A and B, CnG
tPLH
tPHL A None B Remaining
ARemaining
B, CnA = B
tPLH
tPHL B A None Remaining
ARemaining
B, CnA = B
tPLH
tPHL A B None None Remaining
A and B, Cncn+4
tPLH
tPHL B None A None Remaining
A and B, CnCn+4
tPLH
tPHL CnNone None All
A and B None Cn+4
LOGIC MODE TEST TABLE III
Other Input
Same Bit Other Data Inputs
Function Inputs
Apply
4.5 V Apply
GND Apply
4.5 V Apply
GND
Function Inputs
tPLH
tPHL A None B None Remaining
A and B, CnAny F S1 = S2 = M = 4.5 V
S0 = S3 = 0 V
tPLH
tPHL B None A None Remaining
A and B, CnAny F S1 = S2 = M = 4.5 V
S0 = S3 = 0 V
5-339
FAST AND LS TTL DATA
Case 623-05 J Suffix
24-Pin Ceramic Dual In-Line
(WIDE BODY)
  
 















°
















°

 !
 !
 !
 !
°
 
°

"!
 ' " "  ! $
   
! $"  &&  #! 
" # !" " !"  "
%# "  " $
   
 
24 13
1 12
A
L
D
F
GJ
KM
N
B
C
Case 649-03 N Suffix
24-Pin Plastic
Wide Body
M


GJ
L
B
A
P
HF
K
C
D
N
Q
"!
! $"  &&  #!  " #
!" " !"  " %#
"  "
! ' " "  ! $
   
( !" $ !" ( ! !!#
'   
  
 










)













°












)













°



 !  !
1 12
1324
5-340
FAST AND LS TTL DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability , including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customers technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer .
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.