DL151/D
Rev. 3, Nov-2000
Rectifier Device Data
Rectifier Device Data
DL151/D
Rev. 3, Oct–2000
SCILLC, 2000
Previous Edition 1995
“All Rights Reserved’’
http://onsemi.com
2
This book presents technical data for ON Semiconductors broad line of rectifiers. Complete specifications are provided in
the form of data sheets and accompanying selection guides provide a quick comparison of characteristics to simplify the task
of choosing the best device for a circuit.
The information in this book has been carefully checked and is believed to be accurate; however , no responsibility is assumed
for inaccuracies.
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthori zed use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
http://onsemi.com
3
ON SEMICONDUCTOR DEVICE CLASSIFICATIONS
In an effort to provide up–to–date information to the customer regarding the status of any given device,
ON Semiconductor has classified all devices into three categories: Preferred devices, Current products and Not
Recommended for New Design products.
A Preferred type is a device which is recommended as a first choice for future use. These devices are “preferred”
by virtue of their performance, price, functionality, or combination of attributes which offer the overall “best”
value to the customer. This category contains both advanced and mature devices which will remain available for
the foreseeable future.
“Preferred devices” are denoted below the device part numbers on the individual data sheets.
Device types identified as “current” may not be a first choice for new designs, but will continue to be available
because of the popularity and/or standardization or volume usage in current production designs. These products
can be acceptable for new designs but the preferred types are considered better alternatives for long term usage.
Any device that has not been identified as a “preferred device” is a “current” device.
This data book does not contain any “Not Recommended for New Design” devices.
POWERTAP, MEGAHERTZ, SCANSWITCH, Surmetic and SWITCHMODE are trademarks of
Semiconductor Components Industries, LLC (SCILLC).
Thermal Clad is a trademark of the Bergquist Company.
All brand names and product names appearing in this document are registered trademarks or trademarks of their
respective holders.
http://onsemi.com
4
Table of Contents
Page
Chapter 1 — Master Index 5. . . . . . . . . . . . . . . . . . . . . . . . .
Alphanumeric Listing of All Rectifier Devices
Chapter 2 — Product Selector Guide 13. . . . . . . . . . . . . .
Rectifier Selector Guide Arranged by Package and
Technology
Chapter 3 — Schottky Data Sheets 27. . . . . . . . . . . . . . .
See the Master Index for Page Numbering Information
Chapter 4 — Ultrafast Data Sheets 285. . . . . . . . . . . . . . .
See the Master Index for Page Numbering Information
Chapter 5 — Standard and Fast Recovery
Data Sheets 445. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
See the Master Index for Page Numbering Information
Page
Chapter 6 — Tape and Reel/
Packaging Specifications 519. . . . . . . . . . . . . . . . . . . . . .
Chapter 7 — Surface Mount Information 525. . . . . . . . . .
Chapter 8 — TO–220 Leadform Information 531. . . . . . .
Chapter 9 — Package Outline Dimensions 537. . . . . . . .
Chapter 10 — AR598: Avalanche Capability of
Todays Power Semiconductors 549. . . . . . . . . . . . . . . . .
Chapter 11 — Cross Reference Guide 557. . . . . . . . . . . .
Cross Reference Table for Industry Equivalents
http://onsemi.com
5
CHAPTER 1
Master Index
http://onsemi.com
6
ALPHANUMERIC MASTER INDEX
Device Function Page
1N4001 1.0 Amp, 50 Volt Axial Lead Standard Recovery Rectifier 447. . . . . . . . . . . . . . . . . . . . . . .
1N4002 1.0 Amp, 100 Volt Axial Lead Standard Recovery Rectifier 447. . . . . . . . . . . . . . . . . . . . . .
1N4003 1.0 Amp, 200 Volt Axial Lead Standard Recovery Rectifier 447. . . . . . . . . . . . . . . . . . . . . .
1N4004 1.0 Amp, 400 Volt Axial Lead Standard Recovery Rectifier 447. . . . . . . . . . . . . . . . . . . . . .
1N4005 1.0 Amp, 600 Volt Axial Lead Standard Recovery Rectifier 447. . . . . . . . . . . . . . . . . . . . . .
1N4006 1.0 Amp, 800 Volt Axial Lead Standard Recovery Rectifier 447. . . . . . . . . . . . . . . . . . . . . .
1N4007 1.0 Amp, 1000 Volt Axial Lead Standard Recovery Rectifier 447. . . . . . . . . . . . . . . . . . . . .
1N4933 1.0 Amp, 50 Volt Axial–Lead Fast–Recovery Rectifier 452. . . . . . . . . . . . . . . . . . . . . . . . . .
1N4934 1.0 Amp, 100 Volt Axial–Lead Fast–Recovery Rectifier 452. . . . . . . . . . . . . . . . . . . . . . . . .
1N4935 1.0 Amp, 200 Volt Axial–Lead Fast–Recovery Rectifier 452. . . . . . . . . . . . . . . . . . . . . . . . .
1N4936 1.0 Amp, 400 Volt Axial–Lead Fast–Recovery Rectifier 452. . . . . . . . . . . . . . . . . . . . . . . . .
1N4937 1.0 Amp, 600 Volt Axial–Lead Fast–Recovery Rectifier 452. . . . . . . . . . . . . . . . . . . . . . . . .
1N5400 3.0 Amp, 50 Volt Axial–Lead Standard Recovery Rectifier 449. . . . . . . . . . . . . . . . . . . . . . .
1N5401 3.0 Amp, 100 Volt Axial–Lead Standard Recovery Rectifier 449. . . . . . . . . . . . . . . . . . . . . .
1N5402 3.0 Amp, 200 Volt Axial–Lead Standard Recovery Rectifier 449. . . . . . . . . . . . . . . . . . . . . .
1N5404 3.0 Amp, 400 Volt Axial–Lead Standard Recovery Rectifier 449. . . . . . . . . . . . . . . . . . . . . .
1N5406 3.0 Amp, 600 Volt Axial–Lead Standard Recovery Rectifier 449. . . . . . . . . . . . . . . . . . . . . .
1N5407 3.0 Amp, 800 Volt Axial–Lead Standard Recovery Rectifier 449. . . . . . . . . . . . . . . . . . . . . .
1N5408 3.0 Amp, 1000 Volt Axial–Lead Standard Recovery Rectifier 449. . . . . . . . . . . . . . . . . . . . .
1N5817 1 Amp, 20 Volt Axial Lead Schottky Rectifier 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1N5818 1 Amp, 30 Volt Axial Lead Schottky Rectifier 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1N5819 1 Amp, 40 Volt Axial Lead Schottky Rectifier 146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1N5820 3 Amp, 20 Volt Axial Lead Schottky Rectifier 159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1N5821 3 Amp, 30 Volt Axial Lead Schottky Rectifier 159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1N5822 3 Amp, 40 Volt Axial Lead Schottky Rectifier 159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR0520LT1 0.5 Amp, 20 Volt Surface Mount Schottky Power Rectifier 28. . . . . . . . . . . . . . . . . . . . . . . .
MBR0520LT3 0.5 Amp, 20 Volt Surface Mount Schottky Power Rectifier 28. . . . . . . . . . . . . . . . . . . . . . . .
MBR0530T1 0.5 Amp, 30 Volt Surface Mount Schottky Power Rectifier 31. . . . . . . . . . . . . . . . . . . . . . . .
MBR0530T3 0.5 Amp, 30 Volt Surface Mount Schottky Power Rectifier 31. . . . . . . . . . . . . . . . . . . . . . . .
MBR0540T1 0.5 Amp, 40 Volt Surface Mount Schottky Power Rectifier 34. . . . . . . . . . . . . . . . . . . . . . . .
MBR0540T3 0.5 Amp, 40 Volt Surface Mount Schottky Power Rectifier 34. . . . . . . . . . . . . . . . . . . . . . . .
MBR10100 10 Amp, 100 Volt SWITCHMODE Power Rectifier 212. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1035 10 Amp, 35 Volt SWITCHMODE Power Rectifier 207. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1045 10 Amp, 45 Volt SWITCHMODE Power Rectifier 207. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1060 10 Amp, 60 Volt SWITCHMODE Power Rectifier 212. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1080 10 Amp, 80 Volt SWITCHMODE Power Rectifier 212. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1090 10 Amp, 90 Volt SWITCHMODE Power Rectifier 212. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1100 1 Amp, 100 Volt Axial Lead Rectifier 156. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR150 1 Amp, 50 Volt Axial Lead Rectifier 152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1535CT 15 Amp, 35 Volt SWITCHMODE Power Rectifier 174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1545CT 15 Amp, 45 Volt SWITCHMODE Power Rectifier 174. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR160 1 Amp, 60 Volt Axial Lead Rectifier 152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR16100CT 16 Amp, 100 Volt SWITCHMODE Power Rectifier 177. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
http://onsemi.com
7
Device Function Page
MBR1635 16 Amp, 35 Volt SWITCHMODE Power Rectifier 215. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR1645 16 Amp, 45 Volt SWITCHMODE Power Rectifier 215. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR20100CT 20 Amp, 100 Volt SWITCHMODE Power Rectifier 189. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR20200CT 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 192. . . . . . . . . . . . . . . . .
MBR2030CTL 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 180. . . . . . . . . . . . . . . . . .
MBR2045CT 20 Amp, 45 Volt SWITCHMODE Power Rectifier 184. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR2060CT 20 Amp, 60 Volt SWITCHMODE Power Rectifier 189. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR2080CT 20 Amp, 80 Volt SWITCHMODE Power Rectifier 189. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR2090CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 189. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 218. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR2535CT 25 Amp, 35 Volt SWITCHMODE Power Rectifier 198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR2535CTL 25 Amp, 35 Volt SWITCHMODE Power Rectifier 195. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR2545CT 25 Amp, 45 Volt SWITCHMODE Power Rectifier 198. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR3045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR3045ST 30 Amp, 45 Volt SWITCHMODE Power Rectifier 201. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR3045WT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 241. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR3100 3 Amp, 100 Volt Axial Lead Rectifier 171. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR340 3 Amp, 40 Volt Axial Lead Rectifier 165. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR350 3 Amp, 50 Volt Axial Lead Rectifier 168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR360 3 Amp, 60 Volt Axial Lead Rectifier 168. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR4015LWT 40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier 244. . . . . . . . . . . . . . . . . . . . . .
MBR4045PT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 235. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR4045WT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 248. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR5025L 50 Amp, 25 Volt SWITCHMODE Power Rectifier 239. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR6045PT 60 Amp, 45 Volt SWITCHMODE Power Rectifier 237. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR6045WT 60 Amp, 45 Volt SWITCHMODE Power Rectifier 250. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR735 7.5 Amp, 35 Volt SWITCHMODE Power Rectifier 204. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBR745 7.5 Amp, 45 Volt SWITCHMODE Power Rectifier 204. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRA130LT3 1 Amp, 30 Volt Surface Mount Schottky Power Rectifier 58. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRA140T3 1 Amp, 40 Volt Surface Mount Schottky Power Rectifier 61. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB1045 10 Amp, 45 Volt SWITCHMODE Power Rectifier 113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB1545CT 15 Amp, 45 Volt SWITCHMODE Power Rectifier 116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB20100CT 20 Amp, 100 Volt SWITCHMODE Power Rectifier 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB20200CT 20 Amp, 200 Volt SWITCHMODE Power Rectifier 122. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB2060CT 20 Amp, 60 Volt SWITCHMODE Power Rectifier 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier OR’ing Function Diode 125. . . . . . . . . .
MBRB2535CTL 25 Amp, 35 Volt SWITCHMODE Power Rectifier 127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB2545CT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB3030CT 30 Amp, 30 Volt SWITCHMODE Power Rectifier 132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB3030CTL 30 Amp, 30 Volt SWITCHMODE Power Rectifier 136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRB4030 40 Amp, 30 Volt SWITCHMODE Power Rectifier 142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD1035CTL 10 Amp, 35 Volt SWITCHMODE Schottky Power Rectifier 108. . . . . . . . . . . . . . . . . . . . . .
MBRD320 3 Amp, 20 Volt SWITCHMODE Power Rectifier 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD330 3 Amp, 30 Volt SWITCHMODE Power Rectifier 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD340 3 Amp, 40 Volt SWITCHMODE Power Rectifier 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD350 3 Amp, 50 Volt SWITCHMODE Power Rectifier 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
http://onsemi.com
8
Device Function Page
MBRD360 3 Amp, 60 Volt SWITCHMODE Power Rectifier 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD620CT 6 Amp, 20 Volt SWITCHMODE Power Rectifier 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD630CT 6 Amp, 30 Volt SWITCHMODE Power Rectifier 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD640CT 6 Amp, 40 Volt SWITCHMODE Power Rectifier 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD650CT 6 Amp, 50 Volt SWITCHMODE Power Rectifier 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD660CT 6 Amp, 60 Volt SWITCHMODE Power Rectifier 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRD835L 8 Amp, 35 Volt SWITCHMODE Power Rectifier 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRF20100CT 20 Amp, 100 Volt SWITCHMODE Schottky Power Rectifier 223. . . . . . . . . . . . . . . . . . . . .
MBRF20200CT 20 Amp, 200 Volt SWITCHMODE Schottky Power Rectifier 226. . . . . . . . . . . . . . . . . . . . .
MBRF2060CT 20 Amp, 60 Volt SWITCHMODE Schottky Power Rectifier 220. . . . . . . . . . . . . . . . . . . . . .
MBRF2545CT 25 Amp, 45 Volt SWITCHMODE Schottky Power Rectifier 229. . . . . . . . . . . . . . . . . . . . . .
MBRM120ET3 1 Amp, 20 Volt Surface Mount Schottky Power Rectifier 38. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRM120LT3 1 Amp, 20 Volt Surface Mount Schottky Power Rectifier 43. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRM130LT3 1 Amp, 30 Volt Surface Mount Schottky Power Rectifier 48. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRM140T3 1 Amp, 40 Volt Surface Mount Schottky Power Rectifier 53. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRP20030CTL 200 Amp, 30 Volt POWERTAP II SWITCHMODE Power Rectifier 252. . . . . . . . . . . . . . . .
MBRP20035L 200 Amp, 35 Volt SWITCHMODE Schottky Power Rectifier 280. . . . . . . . . . . . . . . . . . . . .
MBRP20045CT 200 Amp, 45 Volt POWERTAP II SWITCHMODE Power Rectifier 262. . . . . . . . . . . . . . . .
MBRP20060CT 200 Amp, 60 Volt POWERTAP II SWITCHMODE Power Rectifier 270. . . . . . . . . . . . . . . .
MBRP30035L 300 Amp, 35 Volt SWITCHMODE Schottky Power Rectifier 282. . . . . . . . . . . . . . . . . . . . .
MBRP30045CT 300 Amp, 45 Volt POWERTAP II SWITCHMODE Power Rectifier 265. . . . . . . . . . . . . . . .
MBRP30060CT 300 Amp, 60 Volt POWERTAP II SWITCHMODE Power Rectifier 275. . . . . . . . . . . . . . . .
MBRP400100CTL 400 Amp, 100 Volt POWERTAP II SWITCHMODE Power Rectifier 278. . . . . . . . . . . . . . .
MBRP40030CTL 400 Amp, 30 Volt POWERTAP II SWITCHMODE Power Rectifier 255. . . . . . . . . . . . . . . .
MBRP40045CTL 400 Amp, 45 Volt POWERTAP II SWITCHMODE Power Rectifier 268. . . . . . . . . . . . . . . .
MBRP60035CTL 600 Amp, 35 Volt POWERTAP II SWITCHMODE Power Rectifier 259. . . . . . . . . . . . . . . .
MBRS1100T3 1 Amp, 100 Volt Schottky Power Rectifier 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS120T3 1 Amp, 20 Volt Surface Mount Schottky Power Rectifier 64. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS130LT3 1 Amp, 30 Volt Schottky Power Rectifier 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS130T3 1 Amp, 30 Volt Surface Mount Schottky Power Rectifier 70. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS140LT3 1 Amp, 40 Volt Surface Mount Schottky Power Rectifier 76. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS140T3 1 Amp, 40 Volt Surface Mount Schottky Power Rectifier 73. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS1540T3 1.5 Amp, 40 Volt Surface Mount Schottky Power Rectifier 83. . . . . . . . . . . . . . . . . . . . . . . .
MBRS190T3 1 Amp, 90 Volt Schottky Power Rectifier 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS2040LT3 2 Amp, 40 Volt Surface Mount Schottky Power Rectifier 90. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS240LT3 2 Amp, 40 Volt Surface Mount Schottky Power Rectifier 87. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS320T3 3 Amp, 20 Volt Surface Mount Schottky Power Rectifier 94. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS330T3 3 Amp, 30 Volt Surface Mount Schottky Power Rectifier 94. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS340T3 3 Amp, 40 Volt Surface Mount Schottky Power Rectifier 94. . . . . . . . . . . . . . . . . . . . . . . . . .
MBRS360T3 3 Amp, 60 Volt Surface Mount Schottky Power Rectifier 94. . . . . . . . . . . . . . . . . . . . . . . . . .
MR2502 25 Amp, 200 Volt Medium–Current Silicon Rectifier 463. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR2504 25 Amp, 400 Volt Medium–Current Silicon Rectifier 463. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR2510 25 Amp, 1000 Volt Medium–Current Silicon Rectifier 463. . . . . . . . . . . . . . . . . . . . . . . . . . .
MR2520L Overvoltage Transient Suppressor 496. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR2535L Medium Current Overvoltage Transient Suppressor 501. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR2835S Overvoltage Transient Suppressor 506. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
http://onsemi.com
9
Device Function Page
MR3025 25 Amp, 250 Volt Medium–Current Silicon Rectifier 470. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR3227 Automotive Transient Voltage Suppressor (20–27 V) 510. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR4027 Automotive Transient Voltage Suppressor (20–27 V) 513. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR4045 Automotive Transient Voltage Suppressor (34–45 V) 516. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR750 50 Volt High Current Lead Mounted Rectifier 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR751 100 Volt High Current Lead Mounted Rectifier 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR752 200 Volt High Current Lead Mounted Rectifier 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR754 400 Volt High Current Lead Mounted Rectifier 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR756 600 Volt High Current Lead Mounted Rectifier 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR760 1000 Volt High Current Lead Mounted Rectifier 484. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MR850 3.0 Amp, 50 Volt Axial Lead Fast Recovery Rectifier 454. . . . . . . . . . . . . . . . . . . . . . . . . . .
MR851 3.0 Amp, 100 Volt Axial Lead Fast Recovery Rectifier 454. . . . . . . . . . . . . . . . . . . . . . . . . .
MR852 3.0 Amp, 200 Volt Axial Lead Fast Recovery Rectifier 454. . . . . . . . . . . . . . . . . . . . . . . . . .
MR854 3.0 Amp, 400 Volt Axial Lead Fast Recovery Rectifier 454. . . . . . . . . . . . . . . . . . . . . . . . . .
MR856 3.0 Amp, 600 Volt Axial Lead Fast Recovery Rectifier 454. . . . . . . . . . . . . . . . . . . . . . . . . .
MRA4003T3 1 Amp, 300 Volt Surface Mount Standard Recovery Power Rectifier 456. . . . . . . . . . . . . . .
MRA4004T3 1 Amp, 400 Volt Surface Mount Standard Recovery Power Rectifier 456. . . . . . . . . . . . . . .
MRA4005T3 1 Amp, 600 Volt Surface Mount Standard Recovery Power Rectifier 456. . . . . . . . . . . . . . .
MRA4006T3 1 Amp, 800 Volt Surface Mount Standard Recovery Power Rectifier 456. . . . . . . . . . . . . . .
MRA4007T3 1 Amp, 1000 Volt Surface Mount Standard Recovery Power Rectifier 456. . . . . . . . . . . . . .
MRS1504T3 1.5 Amp, 400 Volt Surface Mount Standard Recovery Power Rectifier 459. . . . . . . . . . . . . .
MSR1560 15 Amp, 600 Volt SWITCHMODE Soft Recovery Power Rectifier 440. . . . . . . . . . . . . . . . .
MSR860 8 Amp, 600 Volt SWITCHMODE Soft Recovery Power Rectifier 366. . . . . . . . . . . . . . . . . .
MSRD620CT 6 Amp, 200 Volt SWITCHMODE Soft Ultrafast Recovery Power Rectifier 309. . . . . . . . . .
MSRP10040 100 Amp, 400 Volt SWITCHMODE Soft Recovery Power Rectifier 438. . . . . . . . . . . . . . . .
MUR10120E 10 Amp, 1200 Volt SCANSWITCH Power Rectifier 387. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR10150E 10 Amp, 1500 Volt SCANSWITCH Power Rectifier 390. . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR105 1 Amp, 50 Volt SWITCHMODE Power Rectifier 324. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR110 1 Amp, 100 Volt SWITCHMODE Power Rectifier 324. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR1100E 1 Amp, 1000 Volt Ultrafast “E” Series SWITCHMODE Power Rectifier 329. . . . . . . . . . . .
MUR115 1 Amp, 150 Volt SWITCHMODE Power Rectifier 324. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR120 1 Amp, 200 Volt SWITCHMODE Power Rectifier 324. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR130 1 Amp, 300 Volt SWITCHMODE Power Rectifier 324. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR140 1 Amp, 400 Volt SWITCHMODE Power Rectifier 324. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR1510 15 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier 393. . . . . . . . . . . . . . . . . . . . .
MUR1515 15 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier 393. . . . . . . . . . . . . . . . . . . . .
MUR1520 15 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 393. . . . . . . . . . . . . . . . . . . . .
MUR1540 15 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 393. . . . . . . . . . . . . . . . . . . . .
MUR1560 15 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 393. . . . . . . . . . . . . . . . . . . . .
MUR160 1 Amp, 500 Volt SWITCHMODE Power Rectifier 324. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR1610CT 8 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier 402. . . . . . . . . . . . . . . . . . . . . .
MUR1615CT 8 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier 402. . . . . . . . . . . . . . . . . . . . . .
MUR1620CT 8 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 402. . . . . . . . . . . . . . . . . . . . . .
MUR1620CTR 16 Amp, 200 Volt SWITCHMODE Dual Ultrafast Power Rectifier 408. . . . . . . . . . . . . . . . .
MUR1640CT 8 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 402. . . . . . . . . . . . . . . . . . . . . .
MUR1660CT 8 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 402. . . . . . . . . . . . . . . . . . . . . .
http://onsemi.com
10
Device Function Page
MUR180E 1 Amp, 800 Volt Ultrafast “E” Series SWITCHMODE Power Rectifier 329. . . . . . . . . . . . .
MUR2020R 20 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 399. . . . . . . . . . . . . . . . . . . . .
MUR2100E 2 Amp, 1000 Volt Ultrafast “E” Series SWITCHMODE Power Rectifier 346. . . . . . . . . . . .
MUR220 2 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 334. . . . . . . . . . . . . . . . . . . . . .
MUR240 2 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 338. . . . . . . . . . . . . . . . . . . . . .
MUR260 2 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 342. . . . . . . . . . . . . . . . . . . . . .
MUR3020PT 30 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 425. . . . . . . . . . . . . . . . . . . . .
MUR3020WT 30 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 431. . . . . . . . . . . . . . . . . . . . .
MUR3040 30 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 419. . . . . . . . . . . . . . . . . . . . .
MUR3040PT 30 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 425. . . . . . . . . . . . . . . . . . . . .
MUR3060PT 30 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 425. . . . . . . . . . . . . . . . . . . . .
MUR3060WT 30 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 431. . . . . . . . . . . . . . . . . . . . .
MUR3080 30 Amp, 800 Volt Ultrafast SWITCHMODE Power Rectifier 421. . . . . . . . . . . . . . . . . . . . .
MUR405 4 Amp, 50 Volt Ultrafast SWITCHMODE Power Rectifier 350. . . . . . . . . . . . . . . . . . . . . . .
MUR410 4 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier 350. . . . . . . . . . . . . . . . . . . . . .
MUR4100E 4 Amp, 1000 Volt Ultrafast “E” Series SWITCHMODE Power Rectifier 355. . . . . . . . . . . .
MUR415 4 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier 350. . . . . . . . . . . . . . . . . . . . . .
MUR420 4 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 350. . . . . . . . . . . . . . . . . . . . . .
MUR440 4 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 350. . . . . . . . . . . . . . . . . . . . . .
MUR460 4 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 350. . . . . . . . . . . . . . . . . . . . . .
MUR480E 4 Amp, 800 Volt Ultrafast “E” Series SWITCHMODE Power Rectifier 355. . . . . . . . . . . . .
MUR5150E 5 Amp, 1500 Volt SCANSWITCH Power Rectifier 360. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MUR6040 60 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 423. . . . . . . . . . . . . . . . . . . . .
MUR620CT 6 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 363. . . . . . . . . . . . . . . . . . . . . .
MUR805 8 Amp, 50 Volt Ultrafast SWITCHMODE Power Rectifier 370. . . . . . . . . . . . . . . . . . . . . . .
MUR810 8 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier 370. . . . . . . . . . . . . . . . . . . . . .
MUR8100E 8 Amp, 1000 Volt Ultrafast “E” Series SWITCHMODE Power Rectifier 376. . . . . . . . . . . .
MUR815 8 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier 370. . . . . . . . . . . . . . . . . . . . . .
MUR820 8 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 370. . . . . . . . . . . . . . . . . . . . . .
MUR840 8 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier 370. . . . . . . . . . . . . . . . . . . . . .
MUR860 8 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 370. . . . . . . . . . . . . . . . . . . . . .
MUR880E 8 Amp, 800 Volt Ultrafast “E” Series SWITCHMODE Power Rectifier 376. . . . . . . . . . . . .
MURB1620CT 16 Amp, 200 Volt Ultrafast SWITCHMODE D2PAK Power Rectifier 313. . . . . . . . . . . . . .
MURB1660CT 16 Amp, 600 Volt Ultrafast SWITCHMODE D2PAK Power Rectifier 316. . . . . . . . . . . . . .
MURD320 3 Amp, 200 Volt Ultrafast SWITCHMODE DPAK Power Rectifier 303. . . . . . . . . . . . . . . .
MURD620CT 6 Amp, 200 Volt Ultrafast SWITCHMODE DPAK Power Rectifier 306. . . . . . . . . . . . . . . .
MURF1620CT 16 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier 411. . . . . . . . . . . . . . . . . . . . .
MURF1660CT 16 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 416. . . . . . . . . . . . . . . . . . . . .
MURH840CT 8 Amp, 400 Volt Ultrafast MEGAHERTZ Power Rectifier 381. . . . . . . . . . . . . . . . . . . . . . .
MURH860CT 8 Amp, 600 Volt Ultrafast MEGAHERTZ Power Rectifier 384. . . . . . . . . . . . . . . . . . . . . . .
MURHB840CT 8 Amp, 400 Volt Ultrafast MEGAHERTZ D2PAK Power Rectifier 319. . . . . . . . . . . . . . . . .
MURHB860CT 8 Amp, 600 Volt Ultrafast MEGAHERTZ D2PAK Power Rectifier 322. . . . . . . . . . . . . . . . .
MURHF860CT 8 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier 414. . . . . . . . . . . . . . . . . . . . . .
MURP20020CT 200 Amp, 200 Volt POWERTAP II Ultrafast SWITCHMODE Power Rectifier 436. . . . . . .
MURP20040CT 200 Amp, 400 Volt POWERTAP II Ultrafast SWITCHMODE Power Rectifier 436. . . . . . .
MURS105T3 1 Amp, 50 Volt Surface Mount Ultrafast Power Rectifier 286. . . . . . . . . . . . . . . . . . . . . . . . .
http://onsemi.com
11
Device Function Page
MURS110T3 1 Amp, 100 Volt Surface Mount Ultrafast Power Rectifier 286. . . . . . . . . . . . . . . . . . . . . . . .
MURS115T3 1 Amp, 150 Volt Surface Mount Ultrafast Power Rectifier 286. . . . . . . . . . . . . . . . . . . . . . . .
MURS120T3 1 Amp, 200 Volt Surface Mount Ultrafast Power Rectifier 286. . . . . . . . . . . . . . . . . . . . . . . .
MURS140T3 1 Amp, 400 Volt Surface Mount Ultrafast Power Rectifier 286. . . . . . . . . . . . . . . . . . . . . . . .
MURS160T3 1 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier 286. . . . . . . . . . . . . . . . . . . . . . . .
MURS220T3 2 Amp, 200 Volt Surface Mount Ultrafast Power Rectifier 290. . . . . . . . . . . . . . . . . . . . . . . .
MURS230T3 2 Amp, 300 Volt Surface Mount Ultrafast Power Rectifier 293. . . . . . . . . . . . . . . . . . . . . . . .
MURS240T3 2 Amp, 400 Volt Surface Mount Ultrafast Power Rectifier 293. . . . . . . . . . . . . . . . . . . . . . . .
MURS260T3 2 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier 296. . . . . . . . . . . . . . . . . . . . . . . .
MURS320T3 3 Amp, 200 Volt Surface Mount Ultrafast Power Rectifier 299. . . . . . . . . . . . . . . . . . . . . . . .
MURS340T3 3 Amp, 400 Volt Surface Mount Ultrafast Power Rectifier 299. . . . . . . . . . . . . . . . . . . . . . . .
MURS360T3 3 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier 299. . . . . . . . . . . . . . . . . . . . . . . .
TRA2525 25 Amp, 250 Volt Medium–Current Silicon Rectifier 470. . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRA2532 Overvoltage Transient Suppressor (24–32 V) 489. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRA3225 32 Amp, 250 Volt Medium–Current Silicon Rectifier 477. . . . . . . . . . . . . . . . . . . . . . . . . . . .
http://onsemi.com
12
http://onsemi.com
13
CHAPTER 2
Selector Guide
http://onsemi.com
14
Page
Rectifier Numbering System 15. . . . . . . . . . . . . . . . . . . . . . .
Application Specific Rectifiers 16. . . . . . . . . . . . . . . . . . . . . .
Low VF Schottky 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MEGAHERTZ 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NEW UltraSoft Rectifiers 16. . . . . . . . . . . . . . . . . . . . . . . .
Energy Rated Rectifiers 16. . . . . . . . . . . . . . . . . . . . . . . .
Automotive Transient Suppressors 16. . . . . . . . . . . . . . .
SCHOTTKY Rectifiers 17. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surface Mount Schottky 17. . . . . . . . . . . . . . . . . . . . . . . .
Axial Lead Schottky 18. . . . . . . . . . . . . . . . . . . . . . . . . . . .
TO–220 Type Schottky 19. . . . . . . . . . . . . . . . . . . . . . . . .
TO–218 Types and TO–247 Schottky 19. . . . . . . . . . . . .
POWERTAP II Schottky 20. . . . . . . . . . . . . . . . . . . . . . . .
POWERTAP III Schottky 20. . . . . . . . . . . . . . . . . . . . . . . .
NEW UltraSoft Rectifiers 20. . . . . . . . . . . . . . . . . . . . . . . . . .
Ultrafast Rectifiers 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Surface Mount Ultrafast 21. . . . . . . . . . . . . . . . . . . . . . . . .
Axial Lead Ultrafast 22. . . . . . . . . . . . . . . . . . . . . . . . . . . .
TO–220 Type Ultrafast 23. . . . . . . . . . . . . . . . . . . . . . . . .
TO–218 Types and TO–247 Ultrafast 24. . . . . . . . . . . . .
POWERTAP II Ultrafast 24. . . . . . . . . . . . . . . . . . . . . . . . .
Fast Recovery Rectifiers/General
Purpose Rectifiers 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuing investment in research and development
for discrete products has created a rectifier manufactur-
ing facility that matches the precision and versatility of
the most advanced integrated circuits. As a result,
ON Semiconductors silicon rectifiers span all high tech
applications with quality levels capable of passing the
most stringent environmental tests . . . including those
for automotive under–hood applications.
Product Highlights:
Surface Mount Devices – A major thrust has been
the development and introduction of a broad range
of power rectifiers, Schottky and Ultrafast, 1/2 amp
to 25 amp, 15 to 600 volts.
Application Specific Rectifiers –
– Schottky rectifiers having lower forward voltage
drop (0.3 to 0.6 volts) for use in low voltage
SMPS outputs and as “OR”ing diodes.
– MEGAHERTZ series for high frequency
power supplies and power factor correction.
– Ultrasoft rectifiers for high speed rectification.
– Energy rated rectifiers with guaranteed energy
handling capability.
– Automotive transient suppressors.
Ultrafast rectifiers having reverse recovery times as
low as 25 ns to complement the Schottky devices
for higher voltage requirements in high frequency
applications.
A wide variety of package options to match virtually
any potential requirement.
The rectifier selector section that follows has
generally been arranged by package and technology. The
individual tables have been sorted by voltage and current
with the package types for the devices listed shown
above each table. The Application Specific Rectifiers are
also included in their respective tables.
http://onsemi.com
15
VR
RECTIFIER NUMBERING SYSTEM
PART NUMBER KEY XXX X XX XX XX X
PREFIX
R = REVERSE
L = LOW VF
E = ENERGY
SUFFIX
(TYPE DESIGNATOR)
F = FULLY ISOLATED
A = SURFACE MT (SMA)
S = SURFACE MT (SMB/SMC)
D = DPAK
B = D2PAK
H = MEGAHERTZ
M = POWERMITE
P = POWERTAP
IO(X10 EXCEPT
SCHOTTKY)
(DUAL DESIGNATOR)
PREFIX KEY MUR = ULTRA FAST RECTIFIER
MBR = (SCHOTTKY) BARRIER RECTIFIER
MR = STANDARD & FAST RECOVERY
MSR = ULTRASOFT
SUFFIX KEY CT = CENTER TAP (DUAL) TO–220, POWERTAP, DPAK, D2PAK
PT = CENTER TAP (DUAL) TO–218 PACKAGE
WT = CENTER TAP (DUAL) TO–247
EXAMPLE: MUR 30 20 WT
ULTRAFAST 30 AMP 200 V CENTER TAP (DUAL) TO–247
EXAMPLE: MBR 30 45 WT
SCHOTTKY 30 AMP 45 V CENTER TAP (DUAL) TO–247
XX
PACKAGING
DESIGNATOR*
*For available packaging options consult Sales Office or see Data Sheet.
http://onsemi.com
16
Application Specific Rectifiers
Table 1. Low VF Schottky Rectifiers




  °
 
 
  
      
   
    
    
    
     
    
     
     
    
    
     
      
      
      
     
      
Table 2. MEGAHERTZ Rectifiers





  

 



    
    
    
    
Table 3. UltraSoft Rectifiers (For High Speed Rectification)
    
   η  °
      
     
     
      
Table 4. Energy Rated Rectifiers




   





     
     
     
     
     
     
      
      
     
Table 5. Automotive Transient Suppressors
    
    °
        
        
        
        
        
http://onsemi.com
17
SCHOTTKY Rectifiers
Table 6. Surface Mount Schottky Rectifiers





 

°




°
 
°

 
 
  °

 
 
  
 


  °

 
 
  
 
CASE 425-04
(SOD-123)
Cathode = Band
  °

    
 
Cathode = Band
 °  
 
     
  °  

     CASE 457–04
(POWERMITE)
 °     (POWERMITE)
  °  

    
 ° 

   
 
  CASE 403B-01
(SMA)
 ° 

   
 
 
(SMA)
Cathode = Notch
or Polarity Band
 °     
 °     
 °     
 °     
 °       CASE 403-03
 °     
CASE
403 03
(SMB)
Cthd Nth
 °      Cathode = Notch
or Polarity Band
  °       or
P
o
l
ar
i
ty
B
an
d
 ° 

   
 
 
 
 ° 

   
 
 
 
 °     
 °      CASE 403A-03
(SMC)
 °      (SMC)
Cathode = Notch
 °      
C
at
h
o
d
e =
N
otc
h
 °       °
 °       °
 °       °
1
 °       °1
3
4
 °       °CASE 369A-13
(DPAK)
“CT” Suffix
3
 °       °(DPAK) “CT” Suffix
 °       °4
1
 °       °14
3
1
 °       °
1
3
Non
-“
CT
3
 °       °
3
Non-“CT”
Suffix
 °  
 
   
  °      °
http://onsemi.com
18
SCHOTTKY Rectifiers
Table 6. Surface Mount Schottky Rectifiers (continued)





 

°




°
 
°

 
 
  °      °
  °       °
  °       °
  °  
 
   °
  °      °
CASE 418B 03
1
3
4
  °       °CASE 418B-03
(D
2
PAK)
“CT” S ffi
3
  °  
 
    °
(D2PAK)
“CT” Suffix
  °       °44
1
  °  
 
    °
 
°
3
1Non-“CT”
Suffix
3
  °  
 
   °
 
°
  °  
 
   °
(1)IO is total device current capability.
(2)VRRM unless noted
(3)VRRM, TJ = 100°C unless noted
New Product
All devices listed are ON Semiconductor preferred devices
Table 7. Axial Lead Schottky Rectifiers




 

°




°
 
°

 
 
 °
θ°
     
CASE 59
04
 °
θ°
     
CASE
59
04
Plastic
 °
θ°
     
 °     
 °
θ°
     
Cathode Polarity Band
 °
θ°
      Cathode = Polarity Band
 °
θ°
     
 °
θ°
      CASE 267-03
Plastic
 °
θ°
      Plastic
 °
θ°
      
 °      
 °
θ°
       Cathode = Polarity Band
 °
θ°
      
(2)VRRM unless noted
(3)VRRM, TJ = 100°C unless noted
http://onsemi.com
19
Table 8. TO-220 Thru–Hole Schottky Rectifiers




 

°




°
 
°

 
 
  °       °
  °       °
  °      °
  °  
 
  
  °       °CASE 221A-09
4
  °  
 
   °
CASE
221A 09
(TO-220AB)
1
24
4
  °      °
1
32, 4
  °      °
3
  °  
 
   °123
  °      °
  °      °
  °       °
  °       °
  °       °
  °       °
  °       °
CASE 221B 04
4
  °       °CASE 221B-04
(TO
-
220AC)
4
  °      °
(TO
-
220AC)
1
  °      °1
3
4
  °      °1
3
  °       °3
  °       °
  °       °
  °       °
CASECASE
  °       °
CASE
221D-02
FULL PAK
CASE
221D-02
FULL PAK
  °      °112
FULL PAK
112
FULL PAK
  °       °
1
233
2
1
233
2
Indicates UL Recognized – File #E69369
(2)VRRM unless noted
(3)VRRM, TJ = 100°C unless noted
Table 9. TO-218 and TO-247 Schottky Rectifiers




 

°




°
 
°

 
 
  °      °CASE
340D 02
4
  °  
 
   340D-02
(TO-218AC)
  °  
 
   1
3
21
32, 4
  °  
 
    CASE 340E-02
(TO-218)
1
3
4
1
34
  °      °
  °  
 
   °CASE 340K–01
(TO-247)
  °  
 
   (TO-247) 13
2
1
2, 4
  °  
 
  
3
32, 4
(2)VRRM unless noted
(3)VRRM, TJ = 100°C unless noted
http://onsemi.com
20
Table 10. POWERTAP II Schottky Rectifiers





 

°




°
 
°

 
 
  °  
 
 
  °     
°
CASE 357C-03
POWERTAP
CASE 357C-03
POWERTAP
  °       22
  °       °
2
1
2
1
  °  
 
    °
11
  °      31
2
3
31
2
3
  °       °
Cathode = Mounting PlateCathode = Mounting Plate
22
  °  
 
    °
C
at
h
o
d
e =
M
ount
i
ng
Pl
ate
Anode = Terminal
C
at
h
o
d
e =
M
ount
i
ng
Pl
ate
Anode = Terminal
  °    
(1)IO is total device current capability.
(2)VRRM unless noted
(3)VRRM, TJ = 100°C unless noted
Table 11. POWERTAP III Schottky Rectifiers





 

°




°
 
°
µ
 
µ
°
  °       CASE 357D-01
POWERTAP1
 °      
2
(1)IO is total device current capability.
(2)VRRM unless noted
(3)VRRM, TJ = 100°C unless noted
New Product
NEW UltraSoft Rectifiers
Table 12. UltraSoft Rectifiers (For High Speed Rectification)





 

°


η

°
 
°

 

°
 °     CASE 369A–13
(DPAK)
3
1
3
4
4
1
 °      µ  CASE 221B–04
Style 1 4
1
  °      
13
1
34
  °      CASE 357D-01
POWERTAP
2
1
(1)IO is total device current capability.
(2)VRRM unless noted
(3)VRRM, TJ = 150°C unless noted
New Product
http://onsemi.com
21
Ultrafast Rectifiers
Table 13. Surface Mount Ultrafast Rectifiers





 
 


°




°
 
°
µ
 
µ
 
 °      
 °      
 °      
 °       SMB
 °       Cathode = Polarity Band
 °      
 °      
 °      
 °      
 °      
 °      
 °        SMC
 °       
at
o
e =
otc
 °       °DPAK 41
3
4
 °       °
3
1“CT” Suffix
3
 °        D2PAK
1
 °        44
3
1
  °       1Non-“CT”
Sffi
3
  °        3
1
Suffix
(1)IO is total device current capability.
(2)VRRM unless noted
(4)VRRM, TJ = 150°C unless noted
New Product
http://onsemi.com
22
Table 14. Axial Lead Ultrafast Rectifiers




 
 


°




°
 
°
µ
 
µ 
 °      
 °      
 °      
 °
θ°
      
 °      
 °      
 °
θ°
       CASE 59-04
Plastic
CASE 59-04
Plastic
 °       
Plastic
Cathode = Polarity Band
Plastic
Cathode = Polarity Band
 °
θ°
        °
C
at
h
o
d
e =
P
o
l
ar
i
ty
B
an
dC
at
h
o
d
e =
P
o
l
ar
i
ty
B
an
d
 °      
 °      
 °      
 °       
 °      
 °      
 °      
 °
θ°
      
CASE 267 03CASE 267 03
 °      CASE 267-03
Plastic
CASE 267-03
Plastic
 °
θ°
       
Plastic
Cathode = Polarity Band
Plastic
Cathode = Polarity Band
 °        °
 °
θ°
        °
(2)VRRM unless noted
(4)VRRM, TJ = 150°C unless noted
http://onsemi.com
23
Table 15. TO-220 Ultrafast and MEGAHERTZ Rectifiers





 
 


°




°
 
°
µ
 
µ 
 °      
CASE 221A
-
09
 °       
CASE
221A
-
09
(TO-220AB)
4
 °       
(TO 220AB)
1
24
4
  °      
1
32, 4
  °       1
2
  °       1
24
1
23
  °       32, 4
MUR1620CTR
  °        MUR1620CTR
Only
  °       
O
n
l
y
 °      
 °      
 °      
 °      
 °       
 °       
CASE 221B 04
 °        °CASE 221B-04
(TO-220AC)
  °        (TO-220AC) 4
1
  °       
4
1
34
  °       
3
  °        1
3
  °        3
  °       
 °        °
  °        °
  °        °
 °       °
  °       CASE 221D-02
  °       
 °       
(1)IO is total device capability
(2)VRRM unless noted
(4)VRRM, TJ = 150°C unless noted
Indicates UL Recognized – File #E69369
New Product
http://onsemi.com
24
Table 16. TO-218 and TO-247 Ultrafast Rectifiers




 
 


°




°
 
°
µ
 
 
  °        CASE 340K–01
(TO-247)
1
24
  °      
32, 4
13
2
  °        CASE 340D-02
(TO-218AC) 4
  °       
(TO-218AC)
1
3
2, 4
4
  °      
3
,
1
3
2
  °       °CASE 340E-02
(
TO-218
)4
  °       °
(TO
-
218)
1
3
4
4
  °        °
3
13
(1)IO is total device capability
(2)VRRM unless noted
(4)VRRM, TJ = 150°C unless noted
Table 17. POWERTAP II Ultrafast Rectifiers





 
 


°




°
 
°
µ
 
 
  °       °CASE 357C-03
POWERTAP
12
  °        °
Cathode = Mounting Plate
Anode = Terminal
31
23
(1)IO is total device current capability.
(2)VRRM unless noted New Product
(4)VRRM, TJ = 150°C unless noted
http://onsemi.com
25
Fast Recovery Rectifiers/General-Purpose Rectifiers
Table 18. Fast Recovery Rectifiers/General Purpose Rectifiers




 

°

 




°
 
°
µ
 
µ 
  °      CASE 403A-03
SMB
 °      
CASE 403B-01
 °       CASE 403B-01
SMA
 °      
SMA
 °      
Cathode Notch
 °       Cathode = Notch
 °      
 °      
 °      
 °      
 °       CASE 59-03(7)
Plastic
 °       Plastic
 °      
 °      
Ca
th
ode
= P
o
l
a
rit
y
B
a
n
d
 °      
Cathode
=
Polarity
Band
 °      
 °      
 °      
 °       °
 °       °
 °       °
 °       °CASE 267-03
Pl i
 °       °
CASE
267 03
Plastic
 °       °
 °       °Cathode = Polarit
y
Band
 °        
Cathode
=
Polarity
Band
 °        
 °        
 °
θ°
      
 °
θ°
      
CASE 194
-
04
 °
θ°
      
CASE
194
-
04
Plastic
 °
θ°
       Cathode indicated
b did bl
 °
θ°
      
Cathode
indicated
by diode symbol
 °
θ°
      
  °      
CASE 193 04
  °       CASE 193-04
Plastic
  °      
Plastic
  °      
Cathode Polarity Band
  °       Cathode = Polarity Band
(2)VRRM unless noted
(3)VRRM, TJ = 100°C unless noted
(7)Package Size: 0.120” max diameter by 0.260” length.
(8)Must be derated for reverse power dissipation. See data sheet.
(9)Overvoltage Transient Suppressor: 24–32 volts avalanche voltage.
New Product
http://onsemi.com
26
Table 19. Overvoltage Transient Suppressors






 

°




°


 
µ 
  
°
 

    CASE 194–04
Plastic
  
°
 

   
Cathode = Diode Symbol
   
°
 

    CASE 193-04
Plastic
Cathode = Polarity Band
   
°
 

    CASE 460–02
Cathode = Terminal
Top Can
  


°





  


CASE 193A–02
Button Can
  


°





  


N = Anode to Case
Button Can
  


°





  

 N = Anode to Case
P = Cathode to Case
(1)At Ir = 100 mA, 25°C
(2)At Ir = 90 A, Tc = 150°C, PW = 80 µS
(3)At Ir = 80 A, Tc = 85°C, PW = 80 µS
(4)At Ir = 80 A, Tc = 25°C, PW = 80 µS
(5)Time Constant = 10 mS, 25°C
(6)Time Constant = 80 mS, 25°C
(7)At VRRM, Tj = 25°C unless noted
http://onsemi.com
27
CHAPTER 3
Schottky Data Sheets
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 28 Publication Order Number:
MBR0520LT1/D
 
Preferred Devices
 
  
Plastic SOD–123 Package
The Schottky Power Rectifier employs the Schottky Barrier
principle with a barrier metal that produces optimal forward voltage
drop–reverse current tradeoff. Ideally suited for low voltage, high
frequency rectification, or as free wheeling and polarity protection
diodes in surface mount applications where compact size and weight
are critical to the system. This package provides an alternative to the
leadless 34 MELF style package. These state–of–the–art devices have
the following features:
Guardring for Stress Protection
Very Low Forward Voltage (0.38 V Max @ 0.5 A, 25°C)
125°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Package Designed for Optimal Automated Board Assembly
Mechanical Characteristics
Reel Options: MBR0520LT1 = 3,000 per 7 reel/8 mm tape.
Reel Options: MBR0520LT3 = 10,000 per 13 reel/8 mm tape.
Device Marking: B2
Polarity Designator: Cathode Band
Weight: 11.7 mg (approximately)
Case: Epoxy, Molded
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 V
Average Rectified Forward Current
(Rated VR, TL = 90°C) IF(AV) 0.5 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 5.5 A
Storage Temperature Range Tstg –65 to +125 °C
Operating Junction Temperature TJ–65 to +125 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR0520LT1 SOD–123
http://onsemi.com
SOD–123
CASE 425
STYLE 1
3000/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
0.5 AMPERES
20 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR0520LT3 SOD–123 10,000/Tape & Reel
MARKING DIAGRAM
B2
B2 = Device Code
MBR0520LT1, MBR0520LT3
http://onsemi.com
29
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Ambient (Note 1.) RθJA 206 °C/W
Thermal Resistance — Junction to Lead RθJL 150 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.) vFTJ = 25°C TJ = 100°CVolts
(iF = 0.1 Amps)
(iF = 0.5 Amps) 0.300
0.385 0.220
0.330
Maximum Instantaneous Reverse Current (Note 2.) IRTJ = 25°C TJ = 100°CmA
(VR = 10 V)
(Rated dc Voltage = 20 V) 75 µA
250 µA5 mA
8 mA
1. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.
µ

     

°° ° °
    
Figure 1. Typical Forward Voltage


 
°
  
Figure 2. Typical Reverse Current

  
Figure 3. Typical Capacitance






 
  
Figure 4. Typical Reverse Current

 °
°
°
µ
MBR0520LT1, MBR0520LT3
http://onsemi.com
30

  °
Figure 5. Current Derating (Lead)









π  
  



    
Figure 6. Power Dissipation










π



     

    

°




Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 31 Publication Order Number:
MBR0530T1/D
 
Preferred Devices
 
  
Plastic SOD–123 Package
...using the Schottky Barrier principle with a large area
metal–to–silicon power diode. Ideally suited for low voltage, high
frequency rectification or as free wheeling and polarity protection
diodes in surface mount applications where compact size and weight
are critical to the system. This package also provides an easy to work
with alternative to leadless 34 package style. These state–of–the–art
devices have the following features:
Guardring for Stress Protection
Low Forward Voltage
125°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Package Designed for Optimal Automated Board Assembly
Mechanical Characteristics
Reel Options: MBR0530T1 = 3,000 per 7 reel/8 mm tape
Reel Options: MBR0530T3 = 10,000 per 13 reel/8 mm tape
Device Marking: B3
Polarity Designator: Cathode Band
Weight: 11.7 mg (approximately)
Case: Epoxy, Molded
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
(Rated VR, TL = 100°C) IF(AV) 0.5 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 5.5 A
Storage Temperature Range Tstg –65 to +125 °C
Operating Junction Temperature TJ–65 to +125 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR0530T1 SOD–123
http://onsemi.com
SOD–123
CASE 425
STYLE 1
3000/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
0.5 AMPERES
30 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR0530T3 SOD–123 10,000/Tape & Reel
MARKING DIAGRAM
B3
B3 = Device Code
MBR0530T1, MBR0530T3
http://onsemi.com
32
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Ambient (Note 1.) RθJA 206 °C/W
Thermal Resistance — Junction to Lead RθJL 150 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 0.1 Amps, TJ = 25°C)
(iF = 0.5 Amps, TJ = 25°C)
vF0.375
0.43
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TC = 25°C)
(VR = 15 V, TC = 25°C)
IR130
20
µA
1. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.



  
Figure 1. Typical Forward Voltage
       



  
Figure 2. Typical Reverse Current
 


° ° ° °°
°
µ



  
Figure 3. Typical Capacitance
 



   




°
MBR0530T1, MBR0530T3
http://onsemi.com
33

  °
Figure 4. Current Derating (Lead)
    










 
π




    
Figure 5. Power Dissipation
    








 
π





°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 34 Publication Order Number:
MBR0540T1/D
 
 
  
SOD–123 Power Surface Mount Package
The Schottky Power Rectifier employs the Schottky Barrier
principle with a barrier metal that produces optimal forward voltage
drop–reverse current tradeoff. Ideally suited for low voltage, high
frequency rectification, or as a free wheeling and polarity protection
diodes in surface mount applications where compact size and weight
are critical to the system. This package provides an alternative to the
leadless 34 MELF style package. These state–of–the–art devices have
the following features:
Guardring for Stress Protection
Very Low Forward Voltage
Epoxy Meets UL94, VO at 1/8
Package Designed for Optimal Automated Board Assembly
Mechanical Characteristics:
Reel Options: 3,000 per 7 inch reel/8 mm tape
Reel Options: 10,000 per 13 inch reel/8 mm tape
Device Marking: B4
Polarity Designator: Cathode Band
Weight: 11.7 mg (approximately)
Case: Epoxy Molded
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C max. for 10 Seconds
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
(At Rated VR, T C = 115°C) IO0.5 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 115°C)
IFRM 1.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 5.5 A
Storage/Operating Case
Temperature Range Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 1000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR0540T1 SOD–123
http://onsemi.com
SOD–123
CASE 425
STYLE 1
3000/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
0.5 AMPERES
40 VOLTS
MBR0540T3 SOD–123 10,000/Tape & Reel
MARKING DIAGRAM
B4
B4 = Device Code
MBR0540T1, MBR0540T3
http://onsemi.com
35
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance – Junction–to–Lead (Note 1.)
Thermal Resistance – Junction–to–Ambient (Note 2.) Rtjl
Rtja 118
206 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 3.) vFTJ = 25°C TJ = 100°CV
(iF = 0.5 A)
(iF = 1 A) 0.51
0.62 0.46
0.61
Maximum Instantaneous Reverse Current (Note 3.) IRTJ = 25°C TJ = 100°CA
(VR = 40 V)
(VR = 20 V) 20
10 13,000
5,000
1. Mounted with minimum recommended pad size, PC Board FR4.
2. 1 inch square pad size (1 X 0.5 inch for each lead) on FR4 board.
3. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.




   
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

   


    

  






  


  
  



  

°
°
°
°
°
°
°
°
°
°
°
°
°










°
MBR0540T1, MBR0540T3
http://onsemi.com
36
Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °





   








 

   




  








 





 
  
Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*

  


   
 





         




°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
°
°
°
°
°
°


MBR0540T1, MBR0540T3
http://onsemi.com
37
Figure 9. Thermal Response Junction to Lead
Figure 10. Thermal Response Junction to Ambient

 




    



 






 






     
 






Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 38 Publication Order Number:
MBRM120ET3/D

 
  
POWERMITE
Power Surface Mount Package
The Schottky Powermite employs the Schottky Barrier principle
with a barrier metal and epitaxial construction that produces optimal
forward voltage drop–reverse current tradeoff. The advanced
packaging techniques provide for a highly efficient micro miniature,
space saving surface mount Rectifier. With its unique heatsink design,
the Powermite has the same thermal performance as the SMA while
being 50% smaller in footprint area, and delivering one of the lowest
height profiles, < 1.1 mm in the industry. Because of its small size, it is
ideal for use in portable and battery powered products such as cellular
and cordless phones, chargers, notebook computers, printers, PDAs
and PCMCIA cards. Typical applications are ac/dc and dc–dc
converters, reverse battery protection, and “Oring” of multiple supply
voltages and any other application where performance and size are
critical.
Features:
Low Profile — Maximum Height of 1.1 mm
Small Footprint — Footprint Area of 8.45 mm2
Low VF Provides Higher Efficiency and Extends Battery Life
Supplied in 12 mm Tape and Reel — 12,000 Units per Reel
Low Thermal Resistance with Direct Thermal Path of Die on
Exposed Cathode Heat Sink
Mechanical Characteristics:
Powermite is JEDEC Registered as D0–216AA
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 62 mg (approximately)
Device Marking: BCV
Lead and Mounting Surface Temperature for Soldering Purposes.
260°C Maximum for 10 Seconds
MAXIMUM RATINGS
Please See the Table on the Following Page
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERES
20 VOLTS
http://onsemi.com
Device Package Shipping
ORDERING INFORMATION
MBRM120ET3 POWERMITE 12,000/Tape & Reel
POWERMITE
CASE 457
PLASTIC


MARKING DIAGRAM
BCV
BCV = Device Code
MBRM120ET3
http://onsemi.com
39
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 V
Average Rectified Forward Current (At Rated VR, TC = 130°C) IO1.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave, 20 kHz, TC = 135°C) IFRM 2.0 A
Non–Repetitive Peak Surge Current
(Non–Repetitive peak surge current, halfwave, single phase, 60 Hz) IFSM 50 A
Storage Temperature Tstg –65 to 150 °C
Operating Junction Temperature TJ–65 to 150 °C
Voltage Rate of Change (Rated VR, TJ = 25°C) dv/dt 10,000 V/s
THERMAL CHARACTERISTICS
Thermal Resistance – Junction–to–Lead (Anode) (Note 1.)
Thermal Resistance – Junction–to–Tab (Cathode) (Note 1.)
Thermal Resistance – Junction–to–Ambient (Note 1.)
Rtjl
Rtjtab
Rtja
35
23
277
°C/W
1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 and 10.
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.), See Figure 2 VFTJ = 25°C TJ = 100°CV
(IF = 0.1 A)
(IF = 1.0 A)
(IF = 2.0 A)
0.455
0.530
0.595
0.360
0.455
0.540
Maximum Instantaneous Reverse Current (Note 2.), See Figure 4 IRTJ = 25°C TJ = 100°CA
(VR = 20 V)
(VR = 10 V)
(VR = 5.0 V)
10
1.0
0.5
1600
500
300
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
MBRM120ET3
http://onsemi.com
40
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

   


    

  






  


 
  



  





  

°
°
°
°
°
°
°
°
°
°




 



°
°
°


MBRM120ET3
http://onsemi.com
41

Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °





   








 

   



 









 



  
 

Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*

  



   
 



      



°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
 °
°
°
°
°
  
°
  
MBRM120ET3
http://onsemi.com
42
 




     
 






Figure 9. Thermal Response Junction to Lead

 



    



 






Figure 10. Thermal Response Junction to Ambient


Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 43 Publication Order Number:
MBRM120LT3/D

 
  
POWERMITE
Power Surface Mount Package
The Schottky Powermite employs the Schottky Barrier principle
with a barrier metal and epitaxial construction that produces optimal
forward voltage drop–reverse current tradeoff. The advanced
packaging techniques provide for a highly efficient micro miniature,
space saving surface mount Rectifier. With its unique heatsink design,
the Powermite has the same thermal performance as the SMA while
being 50% smaller in footprint area, and delivering one of the lowest
height profiles, < 1.1 mm in the industry. Because of its small size, it is
ideal for use in portable and battery powered products such as cellular
and cordless phones, chargers, notebook computers, printers, PDAs
and PCMCIA cards. Typical applications are ac/dc and dc–dc
converters, reverse battery protection, and “Oring” of multiple supply
voltages and any other application where performance and size are
critical.
Features:
Low Profile — Maximum Height of 1.1 mm
Small Footprint — Footprint Area of 8.45 mm2
Low VF Provides Higher Efficiency and Extends Battery Life
Supplied in 12 mm Tape and Reel — 12,000 Units per Reel
Low Thermal Resistance with Direct Thermal Path of Die on
Exposed Cathode Heat Sink
Mechanical Characteristics:
Powermite is JEDEC Registered as D0–216AA
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 62 mg (approximately)
Device Marking: BCF
Lead and Mounting Surface Temperature for Soldering Purposes.
260°C Maximum for 10 Seconds
MAXIMUM RATINGS
Please See the Table on the Following Page
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERES
20 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRM120LT3 POWERMITE 12,000/Tape & Reel
POWERMITE
CASE 457
PLASTIC
http://onsemi.com


MARKING DIAGRAM
BCF
BCF = Device Code
MBRM120LT3
http://onsemi.com
44
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 V
Average Rectified Forward Current (At Rated VR, TC = 135°C) IO1.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave, 100 kHz, TC = 135°C) IFRM 2.0 A
Non–Repetitive Peak Surge Current
(Non–Repetitive peak surge current, halfwave, single phase, 60 Hz) IFSM 50 A
Storage Temperature Tstg –55 to 150 °C
Operating Junction Temperature TJ–55 to 125 °C
Voltage Rate of Change (Rated VR, TJ = 25°C) dv/dt 10,000 V/s
THERMAL CHARACTERISTICS
Thermal Resistance – Junction–to–Lead (Anode) (Note 1.)
Thermal Resistance – Junction–to–Tab (Cathode) (Note 1.)
Thermal Resistance – Junction–to–Ambient (Note 1.)
Rtjl
Rtjtab
Rtja
35
23
277
°C/W
1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10.
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.), See Figure 2 VFTJ = 25°C TJ = 85°CV
(IF = 0.1 A)
(IF = 1.0 A)
(IF = 3.0 A)
0.34
0.45
0.65
0.26
0.415
0.67
Maximum Instantaneous Reverse Current (Note 2.), See Figure 4 IRTJ = 25°C TJ = 85°CmA
(VR = 20 V)
(VR = 10 V) 0.40
0.10 25
18
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
MBRM120LT3
http://onsemi.com
45
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

   


    

  






  


  
  



  





  

°
°
°
°
°
°
°
°
°
°




  
°
°
°



MBRM120LT3
http://onsemi.com
46

Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °





   










   



 
 







 



  
 

   
Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*

  



   
 




       




°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
 °
°
° °
°
  

 
°
MBRM120LT3
http://onsemi.com
47
 




     
 






Figure 9. Thermal Response Junction to Lead

 



    



 








Figure 10. Thermal Response Junction to Ambient
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 48 Publication Order Number:
MBRM130LT3/D

 
  
POWERMITE
Power Surface Mount Package
The Schottky Powermite employs the Schottky Barrier principle
with a barrier metal and epitaxial construction that produces optimal
forward voltage drop–reverse current tradeoff. The advanced
packaging techniques provide for a highly efficient micro miniature,
space saving surface mount Rectifier. With its unique heatsink design,
the Powermite has the same thermal performance as the SMA while
being 50% smaller in footprint area, and delivering one of the lowest
height profiles, < 1.1 mm in the industry. Because of its small size, it is
ideal for use in portable and battery powered products such as cellular
and cordless phones, chargers, notebook computers, printers, PDAs
and PCMCIA cards. Typical applications are ac/dc and dc–dc
converters, reverse battery protection, and “Oring” of multiple supply
voltages and any other application where performance and size are
critical.
Features:
Low Profile — Maximum Height of 1.1 mm
Small Footprint — Footprint Area of 8.45 mm2
Low VF Provides Higher Efficiency and Extends Battery Life
Supplied in 12 mm Tape and Reel — 12,000 Units per Reel
Low Thermal Resistance with Direct Thermal Path of Die on
Exposed Cathode Heat Sink
Mechanical Characteristics:
Powermite is JEDEC Registered as D0–216AA
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 62 mg (approximately)
Device Marking: BCG
Lead and Mounting Surface Temperature for Soldering Purposes.
260°C Maximum for 10 Seconds
MAXIMUM RATINGS
Please See the Table on the Following Page
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERES
30 VOLTS
http://onsemi.com
Device Package Shipping
ORDERING INFORMATION
MBRM130LT3 POWERMITE 12,000/Tape & Reel
POWERMITE
CASE 457
PLASTIC


MARKING DIAGRAM
BCG
BCG = Device Code
MBRM130LT3
http://onsemi.com
49
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current (At Rated VR, TC = 135°C) IO1.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave, 100 kHz, TC = 135°C) IFRM 2.0 A
Non–Repetitive Peak Surge Current
(Non–Repetitive peak surge current, halfwave, single phase, 60 Hz) IFSM 50 A
Storage Temperature Tstg –55 to 150 °C
Operating Junction Temperature TJ–55 to 125 °C
Voltage Rate of Change (Rated VR, TJ = 25°C) dv/dt 10,000 V/s
THERMAL CHARACTERISTICS
Thermal Resistance – Junction–to–Lead (Anode) (Note 1.)
Thermal Resistance – Junction–to–Tab (Cathode) (Note 1.)
Thermal Resistance – Junction–to–Ambient (Note 1.)
Rtjl
Rtjtab
Rtja
35
23
277
°C/W
1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10.
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.), See Figure 2 VFTJ = 25°C TJ = 85°CV
(IF = 0.1 A)
(IF = 1.0 A)
(IF = 3.0 A)
0.30
0.38
0.52
0.20
0.33
0.50
Maximum Instantaneous Reverse Current (Note 2.), See Figure 4 IRTJ = 25°C TJ = 85°CmA
(VR = 30 V)
(VR = 20 V)
(VR = 10 V)
0.41
0.13
0.05
11
5.3
3.2
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
MBRM130LT3
http://onsemi.com
50
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current
   


    

  






  


  
  



  



  

°
°
°
°
°
°
°






  

°
   
°
°
°
°

°

 °
°
°

MBRM130LT3
http://onsemi.com
51

Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °





   










   



 
 







 



  
 

   
Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*
  



   
 




   




°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
°
°
°
°
°
 


°







MBRM130LT3
http://onsemi.com
52
 




     
 






Figure 9. Thermal Response Junction to Lead

 



    



 








Figure 10. Thermal Response Junction to Ambient
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 53 Publication Order Number:
MBRM140T3/D

 
 
  
POWERMITE
Power Surface Mount Package
The Schottky Powermite employs the Schottky Barrier principle
with a barrier metal and epitaxial construction that produces optimal
forward voltage drop–reverse current tradeoff. The advanced
packaging techniques provide for a highly efficient micro miniature,
space saving surface mount Rectifier. With its unique heatsink design,
the Powermite has the same thermal performance as the SMA while
being 50% smaller in footprint area, and delivering one of the lowest
height profiles, < 1.1 mm in the industry. Because of its small size, it is
ideal for use in portable and battery powered products such as cellular
and cordless phones, chargers, notebook computers, printers, PDAs
and PCMCIA cards. Typical applications are ac/dc and dc–dc
converters, reverse battery protection, and “Oring” of multiple supply
voltages and any other application where performance and size are
critical.
Features:
Low Profile — Maximum Height of 1.1 mm
Small Footprint — Footprint Area of 8.45 mm2
Low VF Provides Higher Efficiency and Extends Battery Life
Supplied in 12 mm Tape and Reel — 12,000 Units per Reel
Low Thermal Resistance with Direct Thermal Path of Die on
Exposed Cathode Heat Sink
Mechanical Characteristics:
Powermite is JEDEC Registered as D0–216AA
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 62 mg (approximately)
Device Marking: BCJ
Lead and Mounting Surface Temperature for Soldering Purposes.
260°C Maximum for 10 Seconds
MAXIMUM RATINGS
Please See the Table on the Following Page
This document contains information on a new product. Specifications and information
herein are subject to change without notice.
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERES
40 VOLTS
http://onsemi.com
Device Package Shipping
ORDERING INFORMATION
MBRM140T3 POWERMITE 12,000/Tape & Reel
POWERMITE
CASE 457
PLASTIC


MARKING DIAGRAM
BCJ
BCJ = Device Code
MBRM140T3
http://onsemi.com
54
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current (At Rated VR, TC = 110°C) IO1.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave, 100 kHz, TC = 110°C) IFRM 2.0 A
Non–Repetitive Peak Surge Current
(Non–Repetitive peak surge current, halfwave, single phase, 60 Hz) IFSM 50 A
Storage Temperature Tstg –55 to 150 °C
Operating Junction Temperature TJ–55 to 125 °C
Voltage Rate of Change (Rated VR, TJ = 25°C) dv/dt 10,000 V/s
THERMAL CHARACTERISTICS
Thermal Resistance – Junction–to–Lead (Anode) (Note 1.)
Thermal Resistance – Junction–to–Tab (Cathode) (Note 1.)
Thermal Resistance – Junction–to–Ambient (Note 1.)
Rtjl
Rtjtab
Rtja
35
23
277
°C/W
1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10.
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.), See Figure 2 VFTJ = 25°C TJ = 85°CV
(IF = 0.1 A)
(IF = 1.0 A)
(IF = 3.0 A)
0.36
0.55
0.85
0.30
0.515
0.88
Maximum Instantaneous Reverse Current (Note 2.), See Figure 4 IRTJ = 25°C TJ = 85°CmA
(VR = 40 V)
(VR = 20 V) 0.5
0.15 25
18
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
MBRM140T3
http://onsemi.com
55
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

   


    

  






  


  
  



  





  

°
°
°
°
°
°
°
°
°
°





  
°
°
°



MBRM140T3
http://onsemi.com
56

Figure 5. Current Derating Figure 6. Forward Power Dissipation
  °    








   



 



 




 





 







 



  
   
Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*

  



   
 





      



°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
 °
°
° °
°
  
°
MBRM140T3
http://onsemi.com
57
 




     
 






Figure 9. Thermal Response Junction to Lead

 



    



 








Figure 10. Thermal Response Junction to Ambient
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 58 Publication Order Number:
MBRA130LT3/D

 
  
SMA Power Surface Mount Package
. . . employing the Schottky Barrier principle in a metal–to–silicon
power rectifier. Features epitaxial construction with oxide passivation
and metal overlay contact. Ideally suited for low voltage, high
frequency switching power supplies; free wheeling diodes and
polarity protection diodes.
Compact Package with J–Bend Leads Ideal for Automated Handling
Highly Stable Oxide Passivated Junction
Guardring for Over–Voltage Protection
Low Forward Voltage Drop
Mechanical Characteristics:
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 70 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Polarity: Cathode Lead Indicated by Either Notch in Plastic Body or
Polarity Band
Available in 12 mm Tape, 5000 Units per 13 inch Reel, Add “T3”
Suffix to Part Number
Marking: B1L3
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
(At Rated VR, TC = 105°C) IO1.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
100 kHz, TC = 105°C)
IFRM 2.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 25 A
Storage/Operating Case
Temperature Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +125 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
SMA
CASE 403B
PLASTIC
http://onsemi.com
MBRA130LT3 SMA 5000/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERES
30 VOLTS
MARKING DIAGRAM
B1L3
B1L3 = Device Code
SMA
CASE 403A
PLASTIC
B1L3
MBRA130LT3
http://onsemi.com
59
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction–to–Lead (Note 1.)
Thermal Resistance — Junction–to–Ambient (Note 1.) RθJL
RθJA 35
86 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage(Note 2 )
VFTJ = 25°C TJ = 100°CVolts
M
ax
i
mum
I
ns
t
an
t
aneous
F
orwar
d
V
o
lt
age
(N
o
t
e
2
.
)
(IF = 1.0 A)
see Figure 2 (IF = 2.0 A) 0.41
0.47 0.35
0.43
Maximum Instantaneous Reverse Current
IRTJ = 25°C TJ = 100°CmA
M
ax
i
mum
I
ns
t
an
t
aneous
R
everse
C
urren
t
(VR = 30 V)
see Figure 4 (VR = 15 V) 1.0
0.4 25
12
1. Mounted on 2 Square PC Board with 1 Square Total Pad Size, PC Board FR4.
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current
   



    
 

  


    


°
 
 


°
°
°
°
°
°


°
°
°




  

  

 °
°




MBRA130LT3
http://onsemi.com
60

Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °



   


 


 







 


    
 

 

 
 
  
 


  





Figure 7. Thermal Response
Figure 8. Capacitance

 




 
  







   

  


°
 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 61 Publication Order Number:
MBRA140T3/D

 
  
SMA Power Surface Mount Package
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State of the art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency rectification, or
as free wheeling and polarity diodes in surface mount applications
where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bent Leads
Rectangular Package for Automated Handling
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
Guardring for Stress Protection
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 70 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm tape, 5000 units per 13 inch reel
Polarity: Cathode Lead Indicated by Either Notch in Plastic Body or
Polarity Band
Marking: B14
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
(At Rated VR, TC = 95°C) IO1.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM 2.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 30 A
Storage/Operating Case
Temperature Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +125 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
MBRA140T3 SMA 5000/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERES
40 VOLTS
SMA
CASE 403B
PLASTIC
MARKING DIAGRAM
B14
B14 = Device Code
SMA
CASE 403A
PLASTIC
B14
MBRA140T3
http://onsemi.com
62
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction–to–Lead (Note 1.)
Thermal Resistance — Junction–to–Ambient (Note 1.) RθJL
RθJA 35
86 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage(Note 2 )
VFTJ = 25°C TJ = 100°CVolts
M
ax
i
mum
I
ns
t
an
t
aneous
F
orwar
d
V
o
lt
age
(N
o
t
e
2
.
)
(IF = 1.0 A)
see Figure 2 for other Values (IF = 2.0 A) 0.55
0.71 0.505
0.74
Maximum Instantaneous Reverse Current
IRTJ = 25°C TJ = 100°CmA
M
ax
i
mum
I
ns
t
an
t
aneous
R
everse
C
urren
t
(VR = 40 V)
see Figure 4 for other Values (VR = 20 V) 0.5
0.1 10
4.0
1. Mounted on 2 Square PC Board with 1 Square Total Pad Size, PC Board FR4.
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current
   



    
 

  


    


°
 
 


°
°
°
°
°
°


°
°
°




  

  


°
°




 
 
MBRA140T3
http://onsemi.com
63

Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °


   


 


 







 


    
 

 

 
 
  
 


  








Figure 7. Thermal Response
Figure 8. Capacitance

 




 
  







   

  


°
 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 5 64 Publication Order Number:
MBRS120T3/D

Preferred Device
 
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency rectification, or
as free wheeling and polarity protection diodes in surface mount
applications where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
(0.55 Volts Max @ 1.0 A, TJ = 25°C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Cathode Polarity Band
Marking: B12
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 V
Average Rectified Forward Current
(TL = 115°C) IF(AV) 1.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 40 A
Operating Junction Temperature TJ–65 to +125 °C
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS120T3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
20 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B12
B12 = Device Code
MBRS120T3
http://onsemi.com
65
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction to Lead
(TL = 25°C) RθJL 12 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 1.0 A, TJ = 25°C) VF0.6 Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 100°C)
iR1.0
10
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.







      
   
Figure 1. Typical Forward Voltage




   
  
Figure 2. Typical Reverse Current
°
°












  
°
°
°
°
MBRS120T3
http://onsemi.com
66

        
  °
 

°


    


π





  
θ°
°









 
  
 






  
 
Figure 3. Typical Capacitance
Figure 4. Current Derating (Case) Figure 5. Power Dissipation
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 67 Publication Order Number:
MBRS130LT3/D

Preferred Device
  
Surface Mount Power Package
...Employs the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency rectification,
or as free wheeling and polarity protection diodes, in surface mount
applications where compact size and weight are critical to the
system.
Very Low Forward Voltage Drop (0.395 Volts Max @
1.0 A, TJ = 25°C)
Small Compact Surface Mountable Package with J–Bend Leads
Highly Stable Oxide Passivated Junction
Guardring for Stress Protection
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Cathode Polarity Band
Marking: 1BL3
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
TL = 120°C
TL = 110 °C
IF(AV) 1.0
2.0
A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 40 A
Operating Junction Temperature TJ–65 to +125 °C
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS130LT3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
30 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
1BL3
1BL3 = Device Code
MBRS130LT3
http://onsemi.com
68
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Lead
(TL = 25°C) RθJL 12 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 1.0 A, TJ = 25°C)
(iF = 2.0 A, TJ = 25°C)
VF0.395
0.445
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 100°C)
IR1.0
10
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.







       
  
Figure 1. Typical Forward Voltage
°
°






       
  
Figure 2. Typical Reverse Leakage Current
°
°

        
  °
Figure 3. Current Derating (Case)



°

  
    
Figure 4. Typical Power Dissipation
 





  
θ°
°
MBRS130LT3
http://onsemi.com
69









 
  
Figure 5. Typical Capacitance
  
 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 5 70 Publication Order Number:
MBRS130T3/D

Preferred Device
 
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency rectification, or
as free wheeling and polarity protection diodes in surface mount
applications where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
(0.55 Volts Max @ 1.0 A, TJ = 25°C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Cathode Polarity Band
Marking: B13
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
(TL = 115°C) IF(AV) 1.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 40 A
Operating Junction Temperature TJ–65 to +125 °C
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS130T3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
30 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B13
B13 = Device Code
MBRS130T3
http://onsemi.com
71
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction to Lead
(TL = 25°C) RθJL 12 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 1.0 A, TJ = 25°C) VF0.6 Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 100°C)
iR1.0
10
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.







      
   
Figure 1. Typical Forward Voltage




   
  
Figure 2. Typical Reverse Current
°
°












  
°
°
°
°
MBRS130T3
http://onsemi.com
72

        
  °
 

°


    


π





  
θ°
°










  
 






  
 
Figure 3. Typical Capacitance
Figure 4. Current Derating (Case) Figure 5. Power Dissipation
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 5 73 Publication Order Number:
MBRS140T3/D

Preferred Device
 
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency rectification, or
as free wheeling and polarity protection diodes in surface mount
applications where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
(0.55 Volts Max @ 1.0 A, TJ = 25°C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Cathode Polarity Band
Marking: B14
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
(TL = 115°C) IF(AV) 1.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 40 A
Operating Junction Temperature TJ–65 to +125 °C
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS140T3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
40 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B14
B14 = Device Code
MBRS140T3
http://onsemi.com
74
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction to Lead
(TL = 25°C) RθJL 12 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 1.0 A, TJ = 25°C) VF0.6 Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 100°C)
iR1.0
10
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.







      
   
Figure 1. Typical Forward Voltage




   
  
Figure 2. Typical Reverse Current
°
°












  
°
°
°
°
MBRS140T3
http://onsemi.com
75

        
  °
 

°


    


π





  
θ°
°










  
 






  
 
Figure 3. Typical Capacitance
Figure 4. Current Derating (Case) Figure 5. Power Dissipation
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 76 Publication Order Number:
MBRS140LT3/D

 
  
SMB Power Surface Mount Package
. . . employing the Schottky Barrier principle in a metal–to–silicon
power rectifier. Features epitaxial construction with oxide passivation
and metal overlay contact. Ideally suited for low voltage, high
frequency switching power supplies; free wheeling diodes and
polarity protection diodes.
Compact Package with J–Bend Leads Ideal for Automated Handling
Highly Stable Oxide Passivated Junction
Guardring for Over–Voltage Protection
Low Forward Voltage Drop
Mechanical Characteristics:
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 95 mg (approximately)
Cathode Polarity Band
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Available in 12 mm Tape, 2500 Units per 13 Reel, Add “T3” Suffix
to Part Number
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Marking: B14L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
(At Rated VR, TC = 110°C) IO1.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
100 kHz, TC = 110°C)
IFRM 2.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 40 A
Storage/Operating Case
Temperature Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +125 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS140LT3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
40 VOLTS
MARKING DIAGRAM
B14L
B14L = Device Code
MBRS140LT3
http://onsemi.com
77
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance — Junction–to–Lead (Note 1.)
Thermal Resistance — Junction–to–Ambient (Note 2.) RθJL
RθJA 24
80 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage(Note 3 )
vFTJ = 25°C TJ = 125°CVolts
M
ax
i
mum
I
ns
t
an
t
aneous
F
orwar
d
V
o
lt
age
(N
o
t
e
3
.
)
(iF = 1.0 A)
see Figure 2 (iF = 2.0 A) 0.5
0.6 0.425
0.58
Maximum Instantaneous Reverse Current (Note 3 )
IRTJ = 25°C TJ = 100°CmA
M
ax
i
mum
I
ns
t
an
t
aneous
R
everse
C
urren
t
(N
o
t
e
3
.
)
(VR = 40 V)
see Figure 4 (VR = 20 V) 0.4
0.02 10
5.0
1. Mounted with minimum recommended pad size, PC Board FR4.
2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.
3. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
MBRS140LT3
http://onsemi.com
78
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current
Figure 5. Current Derating Figure 6. Forward Power Dissipation

   



  






 
  °



   
 








  
  

  



°
°
°
°

    




  

°
°
°


  






  


  
°
°
°
°
°
°

 

 
 
 

 

 
 
 




 



MBRS140LT3
http://onsemi.com
79
Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*
Figure 9. Thermal Response — Junction to Lead
Fi
g
ure 10. Thermal Res
p
onse — Junction to Ambient

  



   
 





         




°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
°
° °
°
°
°

  





  

   









  





      









Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 5 80 Publication Order Number:
MBRS1100T3/D
 
Preferred Devices
  
Surface Mount Power Package
Schottky Power Rectifiers employ the use of the Schottky Barrier
principle in a large area metal-to-silicon power diode. State-of-the-art
geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for low voltage, high frequency
rectification, or as free wheeling and polarity protection diodes, in
surface mount applications where compact size and weight are critical
to the system. These state-of-the-art devices have the following
features:
Small Compact Surface Mountable Package with J-Bend Leads
Rectangular Package for Automated Handling
Highly Stable Oxide Passivated Junction
High Blocking Voltage — 100 Volts
150°C Operating Junction Temperature
Guardring for Stress Protection
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Cathode Polarity Band
Markings; MBRS190T3: B19
Markings; MBRS1100T3: B1C
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MBRS190T3
MBRS1100T3
VRRM
VRWM
VR90
100
V
Average Rectified Forward Current
TL = 120°C
TL = 100°C
IF(AV) 1.0
2.0
A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 50 A
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change dv/dt 10 V/ns
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS1100T3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
90, 100 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRS190T3 SMB 2500/Tape & Reel
MARKING DIAGRAM
B1x
B1x = Device Code
x = 9 or C
MBRS1100T3, MBRS190T3
http://onsemi.com
81
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Lead (TL = 25°C) RθJL 22 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 1.0 A, TJ = 25°C) VF0.75 Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 100°C)
IR0.5
5.0
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current*
Figure 3. Power Dissipation Figure 4. Current Derating, Lead






            
  
°
°














°
°
°
  








       
°



    










       
 
θ°
°



  °


°
 µ
*The curves shown are typical for the highest voltage device in the voltage
grouping. Typical reverse current for lower voltage selections can be estimated
from these curves if VR is sufficient below rated VR.
°
MBRS1100T3, MBRS190T3
http://onsemi.com
82
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 5. Typical Capacitance














      
  

  
  
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 83 Publication Order Number:
MBRS1540T3/D

 
  
SMB Power Surface Mount Package
. . . employing the Schottky Barrier principle in a metal–to–silicon
power rectifier. Features epitaxial construction with oxide passivation
and metal overlay contact. Ideally suited for low voltage, high
frequency switching power supplies; free wheeling diodes and
polarity protection diodes.
Compact Package with J–Bend Leads Ideal for Automated Handling
Highly Stable Oxide Passivated Junction
Guardring for Over–Voltage Protection
Low Forward Voltage Drop
Mechanical Characteristics:
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 95 mg (approximately)
Cathode Polarity Band
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Available in 12 mm Tape, 2500 Units per 13 Reel, Add “T3” Suffix
to Part Number
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Marking: BGJ
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) IO1.5 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
100 kHz, TC = 105°C)
IFRM 3.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 40 A
Storage/Operating Case
Temperature Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +125 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS1540T3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
1.5 AMPERES
40 VOLTS
MARKING DIAGRAM
BGJ
BGJ = Device Code
MBRS1540T3
http://onsemi.com
84
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction–to–Lead (Note 1.)
Thermal Resistance — Junction–to–Ambient (Note 2.) RθJL
RθJA 24
80 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage(Note 3 )
vFTJ = 25°C TJ = 125°CVolts
M
ax
i
mum
I
ns
t
an
t
aneous
F
orwar
d
V
o
lt
age
(N
o
t
e
3
.
)
(iF = 1.5 A)
see Figure 2 (iF = 3.0 A) 0.46
0.54 0.39
0.54
Maximum Instantaneous Reverse Current (Note 3 )
IRTJ = 25°C TJ = 100°CmA
M
ax
i
mum
I
ns
t
an
t
aneous
R
everse
C
urren
t
(N
o
t
e
3
.
)
(VR = 40 V)
see Figure 4 (VR = 20 V) 0.8
0.1 5.7
1.6
1. Mounted with minimum recommended pad size, PC Board FR4.
2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.
3. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
MBRS1540T3
http://onsemi.com
85
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current
Figure 5. Current Derating Figure 6. Forward Power Dissipation

   



  






 
  °




   
 








  
  

  



°
°
°
°

    




  

°
°
°


  






  


  
°
°
°
°
°
°

 

 
 
 

 

 
 
 
MBRS1540T3
http://onsemi.com
86
Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*
Figure 9. Thermal Response — Junction to Case
Figure 10. Thermal Response — Junction to Ambient

  



   
 





         




°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
°
°
°
°
°
°

  





  

   









  





      





 


Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 87 Publication Order Number:
MBRS240LT3/D

 
  
SMB Power Surface Mount Package
. . . employing the Schottky Barrier principle in a metal–to–silicon
power rectifier. Features epitaxial construction with oxide passivation
and metal overlay contact. Ideally suited for low voltage, high
frequency switching power supplies; free wheeling diodes and
polarity protection diodes.
Compact Package with J–Bend Leads Ideal for Automated Handling
Highly Stable Oxide Passivated Junction
Guardring for Over–Voltage Protection
Low Forward Voltage Drop
Mechanical Characteristics:
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 95 mg (approximately)
Cathode Polarity Band
Maximum Temperature of 260°C/10 Seconds for Soldering
Available in 12 mm Tape, 2500 Units per 13 Reel, Add “T3” Suffix
to Part Number
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Marking: 2BL4
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) IO2.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 105°C)
IFRM 4.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 25 A
Storage/Operating Case
Temperature Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +125 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS240LT3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
2.0 AMPERES
40 VOLTS
MARKING DIAGRAM
2BL4
2BL4 = Device Code
MBRS240LT3
http://onsemi.com
88
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction–to–Lead (Note 1.)
Thermal Resistance — Junction–to–Ambient (Note 3.) RθJL
RθJA 18
78 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage(Note 2 )
VFTJ = 25°C TJ = 125°CVolts
M
ax
i
mum
I
ns
t
an
t
aneous
F
orwar
d
V
o
lt
age
(N
o
t
e
2
.
)
(IF = 2.0 A)
see Figure 2 (IF = 4.0 A) 0.43
0.54 0.375
0.55
Maximum Instantaneous Reverse Current (Note 2 )
IRTJ = 25°C TJ = 100°CmA
M
ax
i
mum
I
ns
t
an
t
aneous
R
everse
C
urren
t
(N
o
t
e
2
.
)
(VR = 40 V)
see Figure 4 (VR = 20 V) 2.0
0.5 60
40
1. Mounted with minimum recommended pad size, PC Board FR4.
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
3. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

   



  







  
  
°
°
°
°
    



  





  

°
°
°
°
°
   



 
°
°°
   
MBRS240LT3
http://onsemi.com
89
Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °


   
 






  



  
 

 
 
 
 

 
 
 




 






Figure 7. Capacitance Figure 8. Maximum Non–Repetitive
Forward Surge Current
Figure 9. Thermal Response

  



  µ



       



°

  





      










Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 90 Publication Order Number:
MBRS2040LT3/D

 
  
SMB Power Surface Mount Package
. . . employing the Schottky Barrier principle in a metal–to–silicon
power rectifier. Features epitaxial construction with oxide passivation
and metal overlay contact. Ideally suited for low voltage, high
frequency switching power supplies; free wheeling diodes and
polarity protection diodes.
Compact Package with J–Bend Leads Ideal for Automated Handling
Highly Stable Oxide Passivated Junction
Guardring for Over–Voltage Protection
Low Forward Voltage Drop
Mechanical Characteristics:
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 95 mg (approximately)
Maximum Temperature of 260°C / 10 Seconds for Soldering
Cathode Polarity Band
Available in 12 mm Tape, 2500 Units per 13 inch Reel, Add “T3”
Suffix to Part Number
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Marking: BKJL
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
(At Rated VR, TC = 103°C) IO2.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 104°C)
IFRM 4.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 70 A
Storage/Operating Case
Temperature Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +125 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
SMB
CASE 403A
PLASTIC
http://onsemi.com
MBRS2040LT3 SMB 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIER
2.0 AMPERES
40 VOLTS
MARKING DIAGRAM
BKJL
BKJL = Device Code
MBRS2040LT3
http://onsemi.com
91
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction–to–Lead (Note 1.)
Thermal Resistance — Junction–to–Ambient (Note 2.) RθJL
RθJA 22.5
78 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage(Note 3 )
VFTJ = 25°C TJ = 125°CVolts
M
ax
i
mum
I
ns
t
an
t
aneous
F
orwar
d
V
o
lt
age
(N
o
t
e
3
.
)
(IF = 2.0 A)
see Figure 2 (IF = 4.0 A) 0.43
0.50 0.34
0.45
Maximum Instantaneous Reverse Current (Note 3 )
IRTJ = 25°C TJ = 100°CmA
M
ax
i
mum
I
ns
t
an
t
aneous
R
everse
C
urren
t
(N
o
t
e
3
.
)
(VR = 40 V)
see Figure 4 (VR = 20 V) 0.8
0.1 20
6.0
1. Minimum pad size (0.108 X 0.085 inch) for each lead on FR4 board.
2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.
3. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
MBRS2040LT3
http://onsemi.com
92
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current
Figure 5. Current Derating Figure 6. Forward Power Dissipation
   



    



  






  
 
  °





   









      


  

 

   

 


  






  



°
°
°
°
°
°
°
°
°
°
°
°
°
 









 


MBRS2040LT3
http://onsemi.com
93
Figure 7. Capacitance Figure 8. Typical Operating Temperature Derating*
Figure 9. Thermal Response Junction to Lead
Figure 10. Thermal Response Junction to Ambient

  



   
 





 




         



    

°



 






* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
 °
°
°
°
°
 






     
 






°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 94 Publication Order Number:
MBRS340T3/D
 
 
Preferred Devices
 
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency rectification, or
as free wheeling and polarity protection diodes, in surface mount
applications where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
(0.5 Volts Max @ 3.0 A, TJ = 25°C)
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 217 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 16 mm Tape and Reel, 2500 units per reel
Polarity: Notch in Plastic Body Indicates Cathode Lead
Marking: B32, B33, B34, B36
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
SMC
CASE 403
PLASTIC
http://onsemi.com
MBRS320T3 SMC 2500/Tape & Reel
SCHOTTKY BARRIER
RECTIFIERS
3.0 AMPERES
20, 30, 40, 60 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRS330T3 SMC 2500/Tape & Reel
MBRS340T3 SMC 2500/Tape & Reel
MBRS360T3 SMC 2500/Tape & Reel
MARKING DIAGRAM
YWW
B3x
B3x = Device Code
x = 2, 3, 4 or 6
Y = Year
W = Work Week
MBRS320T3, MBRS330T3, MBRS340T3, MBRS360T3
http://onsemi.com
95
MAXIMUM RATINGS
Rating Symbol MBRS320T3 MBRS330T3 MBRS340T3 MBRS360T3 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 30 40 60 Volts
Average Rectified Forward Current IF(AV) 3.0 @ TL = 100°C
4.0 @ TL = 90°CAmps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
IFSM 80 80 80 80 Amps
Operating Junction Temperature TJ 65 to +125 65 to +125 65 to +125 °C
THERMAL CHARACTERISTICS
Thermal Resistance — Junction to Lead RθJL 11 11 11 11 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 3.0 A, TJ = 25°C) VF0.50 0.50 0.525 0.740 Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 100°C)
iR2.0
20 2.0
20 2.0
20 0.5
20
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBRS320T3, MBRS330T3, MBRS340T3, MBRS360T3
http://onsemi.com
96





      
  
Figure 1. Typical Forward Voltage




  
  
Figure 2. Typical Reverse Current
°
°
°


    
Figure 3. Power Dissipation













 



  
°
°
°
°
  

        
  °



  
θ °
°






  
   
 

 

Figure 4. Current Derating (Case) Figure 5. Typical Capacitance
°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 97 Publication Order Number:
MBRD320/D
 
 

MBRD320, MBRD340 and MBRD360 are Preferred Devices

 
DPAK Surface Mount Package
. . . designed for use as output rectifiers, free wheeling, protection
and steering diodes in switching power supplies, inverters and other
inductive switching circuits. These state–of–the–art devices have the
following features:
Extremely Fast Switching
Extremely Low Forward Drop
Platinum Barrier with Avalanche Guardrings
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 75 units per plastic tube
Available in 16 mm Tape and Reel, 2500 units per reel,
by adding a “T4’’ suffix to the part number
Marking: B320, B330, B340, B350, B360
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MBRD320 DPAK
http://onsemi.com
DPAK
CASE 369A
PLASTIC
75 Units/Rail
SCHOTTKY BARRIER
RECTIFIERS
3.0 AMPERES
20 TO 60 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRD320RL DPAK 1800/Tape & Reel
1
3
4
13
4
MBRD320T4 DPAK 2500/Tape & Reel
MBRD330 DPAK 75 Units/Rail
MBRD330RL DPAK 1800/Tape & Reel
MBRD330T4 DPAK 2500/Tape & Reel
MBRD340 DPAK 75 Units/Rail
MBRD340RL DPAK 1800/Tape & Reel
MBRD340T4 DPAK 2500/Tape & Reel
MBRD350 DPAK 75 Units/Rail
MBRD350RL DPAK 1800/Tape & Reel
MBRD350T4 DPAK 2500/Tape & Reel
MBRD360 DPAK 75 Units/Rail
MBRD360RL DPAK 1800/Tape & Reel
MBRD360T4 DPAK 2500/Tape & Reel
MARKING DIAGRAM
B3x0
B3x0 = Device Code
x = 2, 3, 4, 5 or 6
MBRD320, MBRD330, MBRD340, MBRD350, MBRD360
http://onsemi.com
98
MAXIMUM RATINGS
Rating
Symbol
MBRD
Unit
Rating Symbol 320 330 340 350 360 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 30 40 50 60 Volts
Average Rectified Forward Current (TC = +125°C, Rated VR) IF(AV) 3 Amps
Peak Repetitive Forward Current, TC = +125°C
(Rated VR, Square Wave, 20 kHz) IFRM 6 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 75 Amps
Peak Repetitive Reverse Surge Current (2 µs, 1 kHz) IRRM 1 Amp
Operating Junction Temperature Range TJ–65 to +150 °C
Storage Temperature Range Tstg –65 to +175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/µs
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case RθJC 6°C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.) RθJA 80 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
iF = 3 Amps, TC = +25°C
iF = 3 Amps, TC = +125°C
iF = 6 Amps, TC = +25°C
iF = 6 Amps, TC = +125°C
VF0.6
0.45
0.7
0.625
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TC = +25°C)
(Rated dc Voltage, TC = +125°C)
iR0.2
20
mA
1. Rating applies when surface mounted on the minimum pad size recommended.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBRD320, MBRD330, MBRD340, MBRD350, MBRD360
http://onsemi.com
99
TYPICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage
Figure 2. Typical Reverse Current
Figure 3. Average Power Dissipation
 
  


  
 




    










     
   



     
   













°
°
°
°
°







°
*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these curves i f VR is s ufficient below rated VR.
°

 °
°
°
MBRD320, MBRD330, MBRD340, MBRD350, MBRD360
http://onsemi.com
100
Figure 4. Current Derating, Case Figure 5. Current Derating, Ambient
Figure 6. Typical Capacitance

  °





  °
 




  







 




          



    


 




°
  
°
°






°
°
°
°
   
  
 

 


Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 101 Publication Order Number:
MBRD620CT/D
 
 

MBRD620CT, MBRD640CT and MBRD660CT are Preferred Devices

 
DPAK Surface Mount Package
...in switching power supplies, inverters and as free wheeling
diodes, these state–of–the–art devices have the following features:
Extremely Fast Switching
Extremely Low Forward Drop
Platinum Barrier with Avalanche Guardrings
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 75 units per plastic tube
Available in 16 mm Tape and Reel, 2500 units per reel,
by adding a “T4’’ suffix to the part number
Marking: B620T, B630T, B640T, B650T, B660T
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
DPAK
CASE 369A
PLASTIC
SCHOTTKY BARRIER
RECTIFIERS
6.0 AMPERES
20 TO 60 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRD620CTT4 DPAK 2500/Tape & Reel
13
4
MBRD630CTT4 DPAK 2500/Tape & Reel
MBRD640CTT4 DPAK 2500/Tape & Reel
MBRD650CT DPAK 75 Units/Rail
MBRD650CTT4 DPAK 2500/Tape & Reel
MBRD660CT DPAK 75 Units/Rail
MBRD660CTRL DPAK 1800/Tape & Reel
MBRD660CTT4 DPAK 2500/Tape & Reel
MARKING DIAGRAM
B6x0T
B6x0T = Device Code
x = 2, 3, 4, 5 or 6
MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT
http://onsemi.com
102
MAXIMUM RATINGS
Rating
Symbol
MBRD
Unit
Rating Symbol 620CT 630CT 640CT 650CT 660CT Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 30 40 50 60 Volts
Average Rectified Forward Current Per Diode
TC = 130°C (Rated VR) Per Device IF(AV) 3
6Amps
Peak Repetitive Forward Current, TC = 130°C
(Rated VR, Square Wave, 20 kHz) Per Diode IFRM 6 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 75 Amps
Peak Repetitive Reverse Surge Current (2 µs, 1 kHz) IRRM 1 Amp
Operating Junction Temperature TJ–65 to +150 °C
Storage Temperature Tstg –65 to +175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/µs
THERMAL CHARACTERISTICS PER DIODE
Maximum Thermal Resistance, Junction to Case RθJC 6°C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.) RθJA 80 °C/W
ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage (Note 2.)
iF = 3 Amps, TC = 25°C
iF = 3 Amps, TC = 125°C
iF = 6 Amps, TC = 25°C
iF = 6 Amps, TC = 125°C
VF0.7
0.65
0.9
0.85
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TC = 25°C)
(Rated dc Voltage, TC = 125°C)
iR0.1
15
mA
1. Rating applies when surface mounted on the minimum pad size recommended.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT
http://onsemi.com
103
TYPICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage, Per Leg
Figure 2. Typical Reverse Current,* Per Leg
Figure 3. Average Power Dissipation, Per Leg

  


  
 


    










  
   


     

  








°
°
°
°
°







°
*The curves shown are typical for the highest voltage device in the
voltage grouping. T ypical reverse current for lower voltage selections
can be estimated from these curves if VR is su fficient below rated VR.
°
°
°
















MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT
http://onsemi.com
104
Figure 4. Current Derating, Case, Per Leg Figure 5. Current Derating, Ambient, Per Leg
Figure 6. Typical Capacitance, Per Leg

  °





  °
 




  



 




          



    


 
°
  
°
°






°

°
   
  
 

 


Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 105 Publication Order Number:
MBRD835L/D

Preferred Device

 
DPAK Surface Mount Package
This SWITCHMODE power rectifier which uses the Schottky
Barrier principle with a proprietary barrier metal, is designed for use
as output rectifiers, free wheeling, protection and steering diodes in
switching power supplies, inverters and other inductive switching
circuits. This state of the art device has the following features:
Low Forward Voltage
125°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Compact Size
Lead Formed for Surface Mount
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 75 units per plastic tube
Available in 16 mm Tape and Reel, 2500 units per 13 reel, by
adding a “T4” suffix to the part number
Marking: B835L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35 V
Average Rectified Forward Current
(At Rated VR, T C = 88°C) IF(AV) 8.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 80°C)
IFRM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 75 A
Repetitive Avalanche Current
(Current Decaying Linearly to Zero in
1 s, Frequency Limited by TJmax)
IAR 2.0 A
Storage Temperature Range Tstg –65 to +150 °C
Operating Junction Temperature TJ–65 to +125 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
DPAK
CASE 369A
STYLE 3
SCHOTTKY BARRIER
RECTIFIER
8.0 AMPERES
35 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRD835L DPAK 75 Units/Rail
13
4
MBRD835LT4 DPAK 2500/Tape & Reel
4
1
3
MARKING DIAGRAM
B835L
B835L = Device Code
MBRD835L
http://onsemi.com
106
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 6°C/W
Thermal Resistance — Junction to Ambient (Note 1.) RθJA 80 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.) (iF = 8 Amps, TC = +25°C)
(iF = 8 Amps, TC = +125°C) VF0.51
0.41 Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, TC = +25°C)
(Rated dc Voltage, TC = +100°C) IR1.4
35 mA
1. Rating applies when surface mounted on the minimum pad size recommended.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.
TYPICAL CHARACTERISTICS



  
Figure 1. Maximum Forward Voltage Figure 2. Typical Forward Voltage

     
°°



  
     
°

°



  
Figure 3. Maximum Reverse Current Figure 4. Typical Reverse Current
 
°
°


  
 
°
°
°






°
°
    
°
MBRD835L
http://onsemi.com
107
TYPICAL CHARACTERISTICS

 
  °

  °
°

  °
    
 










        

  
 




        

π  
 






       
°

π
 
 



    
°

π  
 


π  
°

 

θ°
  
 
 

 

θ°
  
 
 

 

θ°

Figure 5. Maximum and Typical Capacitance
  
 




°
Figure 6. Current Derating, Infinite Heatsink Figure 7. Current Derating
Figure 8. Current Derating, Free Air Figure 9. Forward Power Dissipation
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 108 Publication Order Number:
MBRD1035CTL/D


  
DPAK Power Surface Mount Package
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State of the art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency switching
power supplies, free wheeling diode and polarity protection diodes.
Highly Stable Oxide Passivated Junction
Guardring for Stress Protection
Matched Dual Die Construction –
May be Paralleled for High Current Output
High dv/dt Capability
Short Heat Sink Tap Manufactured – Not Sheared
Very Low Forward Voltage Drop
Epoxy Meets UL94, VO at 1/8”
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 75 units per plastic tube
Available in 16 mm Tape and Reel, 2500 units per Reel,
Add “T4’’ to Suffix part #
Marking: B1035CL
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
DPAK
CASE 369A
PLASTIC
SCHOTTKY BARRIER
RECTIFIER
10 AMPERES
35 VOLTS
MBRD1035CTL DPAK 75 Units/Rail
13
4
MBRD1035CTLT4 DPAK 2500/Tape & Reel
MARKING DIAGRAM
B1035CL
B1035CL = Device Code
MBRD1035CTL
http://onsemi.com
109
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35 Volts
Average Rectified Forward Current Per Leg
(At Rated VR, TC = 115°C) Per Package IO5.0
10 Amps
Peak Repetitive Forward Current Per Leg
(At Rated VR, Square Wave, 20 kHz, TC = 115°C) IFRM 10 Amps
Non–Repetitive Peak Surge Current Per Package
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz) IFSM 50 Amps
Storage / Operating Case Temperature Tstg, Tc–55 to +125 °C
Operating Junction Temperature TJ–55 to +125 °C
Voltage Rate of Change (Rated VR, TJ = 25°C) dv/dt 10,000 V/µs
THERMAL CHARACTERISTICS
Thermal Resistance – Junction to Case Per Leg RθJC 2.43 °C/W
Thermal Resistance – Junction to Ambient (Note 1.) Per Leg RθJA 68 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
see Figure 2 Per Leg
IF = 5 Amps, TJ = 25°C
IF = 5 Amps, TJ = 100°C
IF = 10 Amps, TJ = 25°C
IF = 10 Amps, TJ = 100°C
VF
0.47
0.41
0.56
0.55
Volts
Maximum Instantaneous Reverse Current (Note 2.)
see Figure 4 Per Leg
(VR = 35 V, TJ = 25°C)
(VR = 35 V, TJ = 100°C)
(VR = 17.5 V, TJ = 25°C)
(VR = 17.5 V, TJ = 100°C)
IR
2.0
30
0.20
5.0
mA
1. Rating applies when using minimum pad size, FR4 PC Board
2. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
MBRD1035CTL
http://onsemi.com
110
TYPICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage Per Leg Figure 2. Maximum Forward Voltage Per Leg
Figure 3. Typical Reverse Current Per Leg

   


  





  
  






°
°
°
°
°
Figure 4. Maximum Reverse Current Per Leg

    




  

°
°
°

°
°
  


   




°

°
°

MBRD1035CTL
http://onsemi.com
111
Figure 5. Current Derating Per Leg Figure 6. Forward Power Dissipation Per Leg
Figure 7. Capacitance Per Leg

  °





   





  






    
 






°
  



 
  
   







     





 
   
Figure 8. Typical Operating Temperature
Derating Per Leg *

 


°
°
 °
°
°
 °
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any re-
verse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as T J = TJmax – r(t)Pr,
where r(t) = Rthja. For other power applications further calculations must be performed.
MBRD1035CTL
http://onsemi.com
112
Figure 9. Thermal Response Junction to Case (Per Leg)
Figure 10. Thermal Response Junction to Ambient (Per Leg)

  



  


   
 









  





      
  





 



 



Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 0 113 Publication Order Number:
MBRB1045/D

Preferred Device

 
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the Schottky Barrier
principle in a large metal–to–silicon power diode. State–of–the–art
geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for use in low voltage, high
frequency switching power supplies, free wheeling diodes, and
polarity protection diodes. These state–of–the–art devices have the
following features:
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to the Industry Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: MBRB1045
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 Volts
Average Rectified Forward Current
(Rated VR) TC = 135°CIF(AV) 10 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC
= 135°C
IFRM 20 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load condi-
tions halfwave, single phase, 60 Hz)
IFSM 150 Amps
Operating Junction and Storage Tem-
perature Range TJ, Tstg 65 to
+150 °C
Voltage Rate of Change (Rated VR) dv/dt 10000 V/µs
Device Package Shipping
ORDERING INFORMATION
D2PAK
CASE 418B
PLASTIC
http://onsemi.com
MBRB1045 D2PAK 50 Units/Tube
SCHOTTKY BARRIER
RECTIFIER
10 AMPERES
45 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB1045T4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
MBRB1045
MBRB1045 = Device Code
MBRB1045
http://onsemi.com
114
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction to Case (Note 1.)
— Junction to Ambient (Note 1.) RθJC
RθJA 1.0
34 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(IF = 10 Amps, TJ = 125°C)
(IF = 20 Amps, TJ = 125°C)
(IF = 20 Amps, TJ = 25°C)
VF0.57
0.72
0.84
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
IR15
0.1
mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Figure 1. Maximum Forward Voltage

  







    









°
Figure 2. Typical Forward Voltage


  







    









°

°
°°
°
MBRB1045
http://onsemi.com
115
 
  





  








 

 


  
Figure 3. Maximum Reverse Current Figure 4. Typical Reverse Current
  
°
°
°
°
°
°
°
°
°
°
  



  °








 



 
Figure 5. Typical Capacitance
Figure 6. Current Derating, Case,
RJC = 1.0 °C/W
  
    






 

 
Figure 7. Forward Power Dissipation












  








    






 


Figure 8. Maximum Surge Capability
  
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 116 Publication Order Number:
MBRB1545CT/D

Preferred Device

 
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the Schottky Barrier principle
with a platinum barrier metal. These state-of-the-art devices have the
following features:
Center-Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to the Industry Standard TO-220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: B1545T
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 105°C) Total Device IF(AV) 7.5
15 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 105°C)
IFRM 15 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBRB1545CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
15 AMPERES
45 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB1545CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B1545T
B1545T = Device Code
MBRB1545CT
http://onsemi.com
117
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 2.0
50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 7.5 Amps, TJ = 125°C)
(iF = 15 Amps, TJ = 125°C)
(iF = 15 Amps, TJ = 25°C)
VF0.57
0.72
0.84
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR15
0.1
mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.







  °

  
θ°










    
°








°



 
20

0
  
°
°
°°°

   
   






 




π
Figure 1. Typical Forward Voltage, Per Leg Figure 2. Typical Reverse Current, Per Leg
Figure 3. Typical Forward Power Dissipation Figure 4. Current Derating, Case
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 118 Publication Order Number:
MBRB2060CT/D

Preferred Device

 
D2PAK Surface Mount Power Package
Employs the use of the Schottky Barrier principle with a platinum
barrier metal. These state–of–the–art devices have the following
features:
Package Designed for Power Surface Mount Applications
Center–Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to Industry Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: B2060T
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
60 V
Average Rectified Forward Current
(Rated VR, TC = 110°C) Total Device IF(AV) 10
20 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 100°C)
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 0.5 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBRB2060CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
60 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB2060CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B2060T
B2060T = Device Code
MBRB2060CT
http://onsemi.com
119
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 2.0
50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 20 Amps, TJ = 125°C)
(iF = 20 Amps, TJ = 25°C)
vF0.85
0.95
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR150
0.15
mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Per Diode Figure 2. Typical Reverse Current Per Diode
Figure 3. Typical Current Derating, Case,
Per Leg Figure 4. Average Power Dissipation and
Average Current




  

°
°
°
°

  



        

°
°
°
°


  °





    


 

  






     

°









θ°
  
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 120 Publication Order Number:
MBRB20100CT/D

Preferred Device

 
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the use of the Schottky
Barrier principle with a platinum barrier metal. These state–of–the–art
devices have the following features:
Package Designed for Power Surface Mount Applications
Center–Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to Industry Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: B20100
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 V
Average Rectified Forward Current
(Rated VR, TC = 110°C) Total Device IF(AV) 10
20 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 100°C)
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 0.5 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBRB20100CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
100 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB20100CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B20100
B20100 = Device Code
MBRB20100CT
http://onsemi.com
121
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 2.0
50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 10 Amp, TC = 125°C)
(iF = 10 Amp, TC = 25°C)
(iF = 20 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)
vF0.75
0.85
0.85
0.95
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR6.0
0.1
mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Per Diode Figure 2. Typical Reverse Current Per Diode
Figure 3. Typical Current Derating, Case,
Per Leg




  

°
°
°
°

  



        

°
°
°
°
  






     

°







  °





    


 



θ°
  


Figure 4. Average Power Dissipation and
Average Current
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 122 Publication Order Number:
MBRB20200CT/D

Preferred Device

 
Dual Schottky Rectifier
. . . using Schottky Barrier technology with a platinum barrier
metal. This state–of–the–art device is designed for use in high
frequency switching power supplies and converters with up to 48 volt
outputs. They block up to 200 volts and offer improved Schottky
performance at frequencies from 250 kHz to 5.0 MHz.
200 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability
(10,000 V/µs)
Dual Diode Construction — Terminals 1 and 3 Must be Connected
for Parallel Operation at Full Rating
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering
Purposes: 260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: B20200
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Current
(At Rated VR, T C = 134°C)
Per Device
Per Leg
IF(AV)
10
20
A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = +137°C) Per Leg
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBRB20200CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
200 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB20200CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B20200
B20200 = Device Code
MBRB20200CT
http://onsemi.com
123
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(IF = 10 Amps, TC = 25°C)
(IF = 10 Amps, TC = 125°C)
(IF = 20 Amps, TC = 25°C)
(IF = 20 Amps, TC = 125°C)
VF0.9
0.8
1.0
0.9
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 25°C)
(Rated dc Voltage, TC = 125°C)
IR1.0
50
mA
DYNAMIC CHARACTERISTICS (Per Leg)
Capacitance (VR = –5.0 V, TC = 25°C, Frequency = 1.0 MHz) CT500 pF
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBRB20200CT
http://onsemi.com
124
Figure 1. Typical Forward Voltage (Per Leg)





   
°
°
°
  
°


µ
  





          
°
°
°
°
Figure 2. Typical Reverse Current (Per Leg)








     
°







    
Figure 3. Forward Power Dissipation






       


  °
Figure 4. Current Derating, Case



 
θ°


θ °
 



  °
Figure 5. Current Derating, Ambient



      






°
  
    
Figure 6. Typical Capacitance (Per Leg)
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 125 Publication Order Number:
MBRB2515L/D

Preferred Device

 
  
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the Schottky Barrier
principle in a large metal–to–silicon power diode. State–of–the–art
geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for use in low voltage, high
frequency switching power supplies, free wheeling diodes, and
polarity protection diodes. These state–of–the–art devices have the
following features:
Guardring for Stress Protection
Low Forward Voltage
100°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to the Industry Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: B2515L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
15 V
Average Rectified Forward Current
(Rated VR, TC = 90°C) IF(AV) 25 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 100°C)
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Storage Temperature Range Tstg –65 to +150 °C
Operating Junction Temperature TJ100 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBRB2515L D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
15 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB2515LT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B2515L
B2515L = Device Code
MBRB2515L
http://onsemi.com
126
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 1.0
50 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 19 Amps, TJ = 70°C)
(iF = 25 Amps, TJ = 70°C)
(iF = 25 Amps, TJ = 25°C)
vF0.28
0.42
0.45
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 70°C)
(Rated dc Voltage, TJ = 25°C)
IR200
15
mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Leakage Current
Figure 3. Typical Forward Power Dissipation Figure 4. Current Derating, Case

  





  


    



  °











      


      


 








 




°
°
°


°




 



  
°
  
°



   

°

 
    






Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 127 Publication Order Number:
MBRB2535CTL/D

Preferred Device

 
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the Schottky Barrier
principle in a large metal–to–silicon power diode. State–of–the–art
geometry features epitaxial construction with oxide passivation and
metal overlay contact. Ideally suited for use in low voltage, high
frequency switching power supplies, free wheeling diodes, and
polarity protection diodes. These state–of–the–art devices have the
following features:
Center–Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
125°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to the Industry Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: B2535L
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MBRB2535CTL D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
35 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB2535CTLT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B2535L
B2535L = Device Code
MBRB2535CTL
http://onsemi.com
128
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35 V
Average Rectified Forward Current
(Rated VR, TC = 110°C) IF(AV) 12.5 A
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz, TC = 90°C) IFRM 25 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) IFSM 150 A
Peak Repetitive Reverse Surge Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +150 °C
Operating Junction Temperature TJ–65 to +125 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 2.0
50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 25 Amps, TJ = 25°C)
(iF = 12.5 Amps, TJ = 125°C)
(iF = 12.5 Amps, TJ = 25°C)
vF0.55
0.41
0.47
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
IR500
10
mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBRB2535CTL
http://onsemi.com
129







 
  
Figure 1. Typical Forward Voltage, Per Leg






  
Figure 2. Typical Reverse Current, Per Leg

°
°
°

°











    
Figure 3. Typical Forward Power Dissipation
 
 
 
θ°










  °
Figure 4. Current Derating, Case
°
°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 130 Publication Order Number:
MBRB2545CT/D

Preferred Device

 
D2PAK Surface Mount Power Package
The D2PAK Power Rectifier employs the Schottky Barrier principle
with a platinum barrier metal. These state–of–the–art devices have the
following features:
Center–Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to the Industry Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per 13 reel by adding a
“T4” suffix to the part number
Marking: B2545T
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 130°C) Total Device IF(AV) 15
30 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 130°C)
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change
(Rated VR)dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBRB2545CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
30 AMPERES
45 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB2545CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B2545T
B2545T = Device Code
MBRB2545CT
http://onsemi.com
131
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 1.5
50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 30 Amps, TJ = 125°C)
(iF = 30 Amps, TJ = 25°C)
vF0.73
0.82 Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR40
0.2 mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
  
θ°











  °





 








   

°
  π



 

°
°
°


   
Figure 1. Typical Forward Voltage, Per Leg
 







°
°












 
  
Figure 2. Typical Reverse Current, Per Leg

°
°
°
Figure 3. Typical Forward Power Dissipation Figure 4. Current Derating, Case
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 132 Publication Order Number:
MBRB3030CT/D

Preferred Device

 
Using the Schottky Barrier principle with a proprietary barrier
metal. These state–of–the–art devices have the following features:
Guardring for Stress Protection
Maximum Die Size
150°C Operating Junction Temperature
Short Heat Sink Tab Manufactured – Not Sheared
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 Units per Plastic Tube
Available in 24 mm Tape and Reel, 800 Units per 13” Reel by
Adding a “T4” Suffix to the Part Number
Marking: B3030
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
(At Rated VR, T C = 134°C)
Per Device
Per Leg
IF(AV)
30
15
A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = +137°C) Per Leg
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions, Halfwave, Single
Phase, 60 Hz)
IFSM 200 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Reverse Energy
(Unclamped Inductive Surge)
(Inductance = 3 mH, TC = 25°C)
W 100 mJ
Device Package Shipping
ORDERING INFORMATION
MBRB3030CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
30 AMPERES
30 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB3030CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B3030
B3030 = Device Code
MBRB3030CT
http://onsemi.com
133
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 1.0
50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 2.), Per Leg
(IF = 15 Amps, TC = +25°C)
(IF = 15 Amps, TC = +150°C)
(IF = 30 Amps, TC = +25°C)
(IF = 30 Amps, TC = +150°C)
VF0.54
0.47
0.67
0.66
Volts
Maximum Instantaneous Reverse Current (Note 2.), Per Leg
(Rated dc Voltage, TC = +25°C)
(Reverse Voltage = 10 V, TC = +150°C)
(Rated dc Voltage, TC = +150°C)
IR0.6
46
145
mA
1. When mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBRB3030CT
http://onsemi.com
134
ELECTRICAL CHARACTERISTICS
  




°













Figure 1. Maximum Forward Voltage, Per Leg Figure 2. Typical Forward Voltage, Per Leg
Figure 3. Maximum Reverse Current, Per Leg






Figure 4. Typical Reverse Current, Per Leg








 




       
  
       
ÎÎ
°
  
     
ÎÎÎ
ÎÎÎ
°
ÎÎÎÎ
°
ÎÎ
°
ÎÎ
ÎÎ
°
ÎÎÎ
°
ÎÎÎ
°
ÎÎÎ
ÎÎÎ
°
ÎÎÎ
ÎÎÎ
°
ÎÎÎ
ÎÎÎ
°
ÎÎ
°
ÎÎÎÎ
ÎÎÎÎ
°
Figure 5. Capacitance
MBRB3030CT
http://onsemi.com
135
TYPICAL CHARACTERISTICS
    




 




°
π  
 
  °



 
π  



θ°
  °






 

θ°


 

  °





 





 

Figure 6. Current Derating, Infinite Heatsink Figure 7. Current Derating
Figure 8. Current Derating, Free Air Figure 9. Forward Power Dissipation



 
π  
θ°
π  


 



 

Figure 10. Thermal Response
  


 

 
 

 

  
      
   


θ    
 

         
           
 
       
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 136 Publication Order Number:
MBRB3030CTL/D

 

 
. . . using the Schottky Barrier principle with a proprietary barrier
metal. These state–of–the–art devices have the following features:
Features:
Dual Diode Construction —
May be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
125°C Operating Junction Temperature
Maximum Die Size
Short Heat Sink Tab Manufactured — Not Sheared!
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
(At Rated VR, T C = 115°C) Per Device IO15
30 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 115°C)
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 300 A
Peak Repetitive Reverse Surge
Current (1.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –55 to
+150 °C
Operating Junction
Temperature Range TJ–55 to
+125 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/s
Reverse Energy,
Unclamped Inductive Surge
(TJ = 25°C, L = 3.0 mH)
EAS 224.5 mJ
This document contains information on a new product. Specifications and information
herein are subject to change without notice.
Device Package Shipping
ORDERING INFORMATION
MBRB3030CTL D2PAK
http://onsemi.com
D2PAK
CASE 418B
PLASTIC
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
30 AMPERES
30 VOLTS
MBRB3030CTLT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B3030CTL= Device Code
Y = Year
WW = Work Week
B3030CTL
YWW
MBRB3030CTL
http://onsemi.com
137
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Ambient (Note 1.) RθJA 50 °C/W
Thermal Resistance, Junction to Case RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(IF = 15 A, TJ = 25°C)
(IF = 30 A, TJ = 25°C)
VF0.44
0.51
V
Maximum Instantaneous Reverse Current (Note 2.)
(Rated VR, TJ = 25°C)
(Rated VR, TJ = 125°C)
IR2.0
195
mA
1. Mounted using minimum recommended pad size on FR–4 board.
2. Pulse Test: Pulse Width = 250 µs, Duty Cycle 2.0%.
All device data is “Per Leg” except where noted.
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

   



  








  
  

°
°
°
    


  

°
°

 



  

°
°
°


 






  
°
°
°

°
MBRB3030CTL
http://onsemi.com
138
Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °




   
 







  



  

 

 
 
 




 
 
 





°
Figure 7. Typical Capacitance

  


  






  


 
°
 


Figure 8. Typical Unclamped Inductive Surge

  



 
°
Figure 9. Typical Thermal Response


MBRB3030CTL
http://onsemi.com
139
   
  
Prepared by: David Shumate & Larry Walker
Motorola Semiconductor Products Sector
ABSTRACT
Power semiconductor rectifiers are used in a variety of
applications where the reverse energy requirements often
vary dramatically based on the operating conditions of the
application circuit. A characterization method was devised
using the Unclamped Inductive Surge (UIS) test technique.
By testing at only a few different operating conditions (i.e.
different inductor sizes) a safe operating range can be
established for a device. A relationship between peak
avalanche current and inductor discharge time was
established. Using this relationship and circuit parameters,
the part applicability can be determined. This technique
offers a power supply designer the total operating conditions
for a device as opposed to the present single–data–point
approach.
INTRODUCTION
In today’s modern power supplies, converters and other
switching circuitry, large voltage spikes due to parasitic
inductance can propagate throughout the circuit, resulting in
catastrophic device failures. Concurrent with this, in an
effort to provide low–loss power rectifiers, i.e. devices with
lower forward voltage drops, schottky technology is being
applied to devices used in this switching power circuitry.
This technology lends itself to lower reverse breakdown
voltages. This combination of high voltage spikes and low
reverse breakdown voltage devices can lead to reverse
energy destruction of power rectifiers in their applications.
This phenomena, however, is not limited to just schottky
technology.
In order to meet the challenges of these situations, power
semiconductor manufacturers attempt to characterize their
devices with respect to reverse energy robustness. The
typical reverse energy specification, if provided at all, is
usually given as energy–to–failure (mJ) with a particular
inductor specified for the UIS test circuit. Sometimes, the
peak reverse test current is also specified. Practically all
reverse energy characterizations are performed using the
UIS test circuit shown in Figure 10. Typical UIS voltage and
current waveforms are shown in Figure 11.
In order to provide the designer with a more extensive
characterization than the above mentioned one–point
approach, a more comprehensive method for characterizing
these devices was developed. A designer can use the given
information to determine the appropriateness and safe
operating area (SOA) of the selected device.
Figure 10. Simplified UIS Test Circuit
    



 
 





MBRB3030CTL
http://onsemi.com
140
Suggested Method of Characterization
Figure 11. Typical Voltage and Current UIS
Waveforms
 

 


Utilizing the UIS test circuit in Figure 10, devices are
tested to failure using inductors ranging in value from 0.01
to 159 mH. The reverse voltage and current waveforms are
acquired to determine the exact energy seen by the device
and the inductive current decay time. At least 4 distinct
inductors and 5 to 10 devices per inductor are used to
generate the characteristic current versus time relationship.
This relationship when coupled with the application circuit
conditions, defines the SOA of the device uniquely for this
application.
Example Application
The device used for this example was an MBR3035CT,
which i s a 3 0 A (15 A per side) forward current, 35 V reverse
breakdown voltage rectifier. All parts were tested to
destruction at 25°C. The inductors used for the
characterization were 10, 3.0, 1.0 and 0.3 mH. The data
recorded from the testing were peak reverse current (Ip),
peak reverse breakdown voltage (BVR), maximum
withstand energy, inductance and inductor discharge time
(see Table 1). A plot of the Peak Reverse Current versus
Time at device destruction, as shown in Figure 12, was
generated. The area under the curve is the region of lower
reverse energy or lower stress on the device. This area is
known as the safe operating area or SOA.
Figure 12. Peak Reverse Current versus
Time for DUT
 
       






  
  
MBRB3030CTL
http://onsemi.com
141
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 1. UIS Test Data
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
PART
NO.
ÁÁÁ
Á
Á
Á
ÁÁÁ
IP (A)
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
BVR (V)
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
ENERGY
(mJ)
ÁÁÁ
Á
Á
Á
ÁÁÁ
L (mH)
ÁÁÁÁ
Á
ÁÁ
Á
ÁÁÁÁ
TIME
(s)
ÁÁÁÁ
ÁÁÁÁ
1
ÁÁÁ
ÁÁÁ
46.6
ÁÁÁÁ
ÁÁÁÁ
65.2
ÁÁÁÁ
ÁÁÁÁ
998.3
ÁÁÁ
ÁÁÁ
1
ÁÁÁÁ
ÁÁÁÁ
715
ÁÁÁÁ
ÁÁÁÁ
2
ÁÁÁ
ÁÁÁ
41.7
ÁÁÁÁ
ÁÁÁÁ
63.4
ÁÁÁÁ
ÁÁÁÁ
870.2
ÁÁÁ
ÁÁÁ
1
ÁÁÁÁ
ÁÁÁÁ
657
ÁÁÁÁ
ÁÁÁÁ
3
ÁÁÁ
ÁÁÁ
46.0
ÁÁÁÁ
ÁÁÁÁ
66.0
ÁÁÁÁ
ÁÁÁÁ
1038.9
ÁÁÁ
ÁÁÁ
1
ÁÁÁÁ
ÁÁÁÁ
697
ÁÁÁÁ
ÁÁÁÁ
4
ÁÁÁ
ÁÁÁ
42.7
ÁÁÁÁ
ÁÁÁÁ
64.8
ÁÁÁÁ
ÁÁÁÁ
904.2
ÁÁÁ
ÁÁÁ
1
ÁÁÁÁ
ÁÁÁÁ
659
ÁÁÁÁ
5
ÁÁÁ
44.9
ÁÁÁÁ
64.8
ÁÁÁÁ
997.3
ÁÁÁ
1
ÁÁÁÁ
693
ÁÁÁÁ
ÁÁÁÁ
6
ÁÁÁ
ÁÁÁ
44.1
ÁÁÁÁ
ÁÁÁÁ
64.1
ÁÁÁÁ
ÁÁÁÁ
865.0
ÁÁÁ
ÁÁÁ
1
ÁÁÁÁ
ÁÁÁÁ
687
ÁÁÁÁ
ÁÁÁÁ
7
ÁÁÁ
ÁÁÁ
26.5
ÁÁÁÁ
ÁÁÁÁ
63.1
ÁÁÁÁ
ÁÁÁÁ
1022.6
ÁÁÁ
ÁÁÁ
3
ÁÁÁÁ
ÁÁÁÁ
1261
ÁÁÁÁ
ÁÁÁÁ
8
ÁÁÁ
ÁÁÁ
26.4
ÁÁÁÁ
ÁÁÁÁ
62.8
ÁÁÁÁ
ÁÁÁÁ
1024.9
ÁÁÁ
ÁÁÁ
3
ÁÁÁÁ
ÁÁÁÁ
1262
ÁÁÁÁ
ÁÁÁÁ
9
ÁÁÁ
ÁÁÁ
24.4
ÁÁÁÁ
ÁÁÁÁ
62.2
ÁÁÁÁ
ÁÁÁÁ
872.0
ÁÁÁ
ÁÁÁ
3
ÁÁÁÁ
ÁÁÁÁ
1178
ÁÁÁÁ
ÁÁÁÁ
10
ÁÁÁ
ÁÁÁ
27.6
ÁÁÁÁ
ÁÁÁÁ
62.9
ÁÁÁÁ
ÁÁÁÁ
1091.0
ÁÁÁ
ÁÁÁ
3
ÁÁÁÁ
ÁÁÁÁ
1316
ÁÁÁÁ
ÁÁÁÁ
11
ÁÁÁ
ÁÁÁ
27.7
ÁÁÁÁ
ÁÁÁÁ
63.2
ÁÁÁÁ
ÁÁÁÁ
1102.4
ÁÁÁ
ÁÁÁ
3
ÁÁÁÁ
ÁÁÁÁ
1314
ÁÁÁÁ
ÁÁÁÁ
12
ÁÁÁ
ÁÁÁ
17.9
ÁÁÁÁ
ÁÁÁÁ
62.6
ÁÁÁÁ
ÁÁÁÁ
1428.6
ÁÁÁ
ÁÁÁ
10
ÁÁÁÁ
ÁÁÁÁ
2851
ÁÁÁÁ
ÁÁÁÁ
13
ÁÁÁ
ÁÁÁ
18.9
ÁÁÁÁ
ÁÁÁÁ
62.1
ÁÁÁÁ
ÁÁÁÁ
1547.4
ÁÁÁ
ÁÁÁ
10
ÁÁÁÁ
ÁÁÁÁ
3038
ÁÁÁÁ
ÁÁÁÁ
14
ÁÁÁ
ÁÁÁ
18.8
ÁÁÁÁ
ÁÁÁÁ
60.7
ÁÁÁÁ
ÁÁÁÁ
1521.1
ÁÁÁ
ÁÁÁ
10
ÁÁÁÁ
ÁÁÁÁ
3092
ÁÁÁÁ
ÁÁÁÁ
15
ÁÁÁ
ÁÁÁ
19.0
ÁÁÁÁ
ÁÁÁÁ
62.6
ÁÁÁÁ
ÁÁÁÁ
1566.2
ÁÁÁ
ÁÁÁ
10
ÁÁÁÁ
ÁÁÁÁ
3037
ÁÁÁÁ
ÁÁÁÁ
16
ÁÁÁ
ÁÁÁ
74.2
ÁÁÁÁ
ÁÁÁÁ
69.1
ÁÁÁÁ
ÁÁÁÁ
768.4
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
322
ÁÁÁÁ
ÁÁÁÁ
17
ÁÁÁ
ÁÁÁ
77.3
ÁÁÁÁ
ÁÁÁÁ
69.6
ÁÁÁÁ
ÁÁÁÁ
815.4
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
333
ÁÁÁÁ
ÁÁÁÁ
18
ÁÁÁ
ÁÁÁ
75.2
ÁÁÁÁ
ÁÁÁÁ
68.9
ÁÁÁÁ
ÁÁÁÁ
791.7
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
328
ÁÁÁÁ
ÁÁÁÁ
19
ÁÁÁ
ÁÁÁ
77.3
ÁÁÁÁ
ÁÁÁÁ
69.6
ÁÁÁÁ
ÁÁÁÁ
842.6
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
333
ÁÁÁÁ
ÁÁÁÁ
20
ÁÁÁ
ÁÁÁ
73.8
ÁÁÁÁ
ÁÁÁÁ
69.1
ÁÁÁÁ
ÁÁÁÁ
752.4
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
321
ÁÁÁÁ
ÁÁÁÁ
21
ÁÁÁ
ÁÁÁ
75.6
ÁÁÁÁ
ÁÁÁÁ
69.2
ÁÁÁÁ
ÁÁÁÁ
823.2
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
328
ÁÁÁÁ
ÁÁÁÁ
22
ÁÁÁ
ÁÁÁ
74.7
ÁÁÁÁ
ÁÁÁÁ
68.6
ÁÁÁÁ
ÁÁÁÁ
747.5
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
327
ÁÁÁÁ
ÁÁÁÁ
23
ÁÁÁ
ÁÁÁ
78.4
ÁÁÁÁ
ÁÁÁÁ
70.3
ÁÁÁÁ
ÁÁÁÁ
834.0
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
335
ÁÁÁÁ
ÁÁÁÁ
24
ÁÁÁ
ÁÁÁ
70.5
ÁÁÁÁ
ÁÁÁÁ
66.6
ÁÁÁÁ
ÁÁÁÁ
678.4
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
317
ÁÁÁÁ
ÁÁÁÁ
25
ÁÁÁ
ÁÁÁ
78.3
ÁÁÁÁ
ÁÁÁÁ
69.4
ÁÁÁÁ
ÁÁÁÁ
817.3
ÁÁÁ
ÁÁÁ
0.3
ÁÁÁÁ
ÁÁÁÁ
339
The procedure to determine if a rectifier is appropriate,
from a reverse energy standpoint, to be used in the
application circuit is as follows:
a. Obtain “Peak Reverse Current versus Time” curve
from data book.
b. Determine steady state operating voltage (OV) of
circuit.
c. Determine parasitic inductance (L) of circuit section of
interest.
d. Obtain rated breakdown voltage (BVR) of rectifier
from data book.
e. From the following relationships,
VLd
dti(t) I (BVR OV) t
L
a “designer” l versus t curve is plotted alongside the
device characteristic plot.
f. The point where the two curves intersect is the current
level where the devices will start to fail. A peak
inductor current below this intersection should be
chosen for safe operating.
As an example, the values were chosen as L = 200 H,
OV = 12 V and BVR = 35 V.
Figure 13 illustrates the example. Note the UIS
characterization curve, the parasitic inductor current curve
and the safe operating region as indicated.
Figure 13. DUT Peak Reverse and Circuit
Parasitic Inductance Current versus Time
 
       






  
  
  
   
SUMMARY
Traditionally, power rectifier users have been supplied
with single–data–point reverse–energy characteristics by
the supplier s device data sheet; however, as has been shown
here and in previous work, the reverse withstand ener gy can
vary significantly depending on the application. What was
done in this work was to create a characterization scheme by
which the designer can overlay or map their particular
requirements onto the part capability and determine quite
accurately if the chosen device is applicable. This
characterization technique i s very robust due to its statistical
approach, and with proper guardbanding (6 ) can be used to
give worst–case device performance for the entire product
line. A “typical” characteristic curve is probably the most
applicable for designers allowing them to design in their
own margins.
References
1. Borras, R., Aliosi, P., Shumate, D., 1993, “Avalanche
Capability of Today’s Power Semiconductors,
“Proceedings, European Power Electronic
Conference,” 1993, Brighton, England
2. Pshaenich, A., 1985, “Characterizing Overvoltage
Transient Suppressors,” Powerconversion
International, June/July
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 142 Publication Order Number:
MBRB4030/D

Preferred Device

 
Using the Schottky Barrier principle with a proprietary barrier
metal. These state–of–the–art devices have the following features:
Guardring for Stress Protection
Maximum Die Size
150°C Operating Junction Temperature
Short Heat Sink Tab Manufactured – Not Sheared
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 Grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads Readily Solderable
Shipped 50 Units per Plastic Tube
Available in 24 mm Tape and Reel, 800 Units per 13Reel by Adding
a “T4” Suffix to the Part Number
Marking: B4030
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
(At Rated VR) TC = +115°C (Note 1.) IF(AV) 40 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz) TC = +112°C
IFRM 80 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 300 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –65 to
+150 °C
Operating Junction
Temperature Range TJ–65 to
+150 °C
Voltage Rate of Change
(Rated VR)dv/dt 10,000 V/s
Reverse Energy
(Unclamped Inductive Surge)
(TC = 25°C, L = 3.0 mH)
W 600 mJ
1. Rating applies when pins 1 and 3 are connected.
Device Package Shipping
ORDERING INFORMATION
MBRB4030 D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
30 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBRB4030T4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
B4030
B4030 = Device Code
MBRB4030
http://onsemi.com
143
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance – Junction to Case RθJC 1.0 °C/W
Thermal Resistance – Junction to Ambient (Note 3.) RθJA 50 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Notes 2. and 4.), per Device
(IF = 20 A, TC = + 25°C)
(IF = 20 A, TC = +150°C)
(IF = 40 A, TC = + 25°C)
(IF = 40 A, TC = +150°C)
VF0.46
0.34
0.55
0.45
V
Maximum Instantaneous Reverse Current (Note 4.), per Device
(Rated DC Voltage, TC = + 25°C)
(Rated DC Voltage, TC = +125°C)
IR0.35
150
mA
2. Rating applies when pins 1 and 3 are connected.
3. Rating applies when surface mounted on the miniumum pad size recommended.
4. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
MBRB4030
http://onsemi.com
144
ELECTRICAL CHARACTERISTICS
  
  



Figure 1. Maximum Forward Voltage
  



 
Figure 2. Typical Forward Voltage
  



 
Figure 3. Maximum Reverse Current
  







Figure 4. Typical Reverse Current








 
 
Figure 5. Maximum and Typical Capacitance

 


°
°
°
°
°
°
°
°
°
°
°
°
°



MBRB4030
http://onsemi.com
145
ELECTRICAL CHARACTERISTICS
    







 



  °


  °









 





  


 

 
 

  
 
 
θ°
 



 



 

π   

 


°


 π  
θ°
π
 
 
  °








 


 

 



π  


 

  
      
   


θ    
 

         
           
 
       
Figure 6. Current Derating, Infinite Heatsink Figure 7. Current Derating
Figure 8. Current Derating, Free Air Figure 9. Forward Power Dissipation
Figure 10. Thermal Response
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 146 Publication Order Number:
1N5817/D
  
1N5817 and 1N5819 are Preferred Devices
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
chrome barrier metal, epitaxial construction with oxide passivation
and metal overlap contact. Ideally suited for use as rectifiers in
low–voltage, high–frequency inverters, free wheeling diodes, and
polarity protection diodes.
Extremely Low VF
Low Stored Charge, Majority Carrier Conduction
Low Power Loss/High Efficiency
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag.
Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: 1N5817, 1N5818, 1N5819
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 59–04
PLASTIC
SCHOTTKY BARRIER
RECTIFIERS
1.0 AMPERE
20, 30 and 40 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
1N5817 Axial Lead 1000 Units/Bag
1N5817RL Axial Lead 5000/Tape & Reel
1N5818 Axial Lead 1000 Units/Bag
1N5818RL Axial Lead 5000/Tape & Reel
1N5819 Axial Lead 1000 Units/Bag
1N5819RL Axial Lead 5000/Tape & Reel
MARKING DIAGRAM
1N581x
1N581x= Device Code
x = 7, 8 or 9
1N5817, 1N5818, 1N5819
http://onsemi.com
147
MAXIMUM RATINGS
Rating Symbol 1N5817 1N5818 1N5819 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 30 40 V
Non–Repetitive Peak Reverse Voltage VRSM 24 36 48 V
RMS Reverse Voltage VR(RMS) 14 21 28 V
Average Rectified Forward Current (Note 5.)
(VR(equiv) 0.2 VR(dc), TL = 90°C,
RθJA = 80°C/W, P.C. Board Mounting, see Note 8., TA = 55°C)
IO1.0 A
Ambient Temperature (Rated VR(dc), PF(AV) = 0, RθJA = 80°C/W) TA85 80 75 °C
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions, half–wave, single phase 60 Hz,
TL = 70°C)
IFSM 25 (for one cycle) A
Operating and Storage Junction Temperature Range
(Reverse Voltage applied) TJ, Tstg –65 to +125 °C
Peak Operating Junction Temperature (Forward Current applied) TJ(pk) 150 °C
THERMAL CHARACTERISTICS (Note 5.)
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient RθJA 80 °C/W
ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) (Note 5.)
Characteristic Symbol 1N5817 1N5818 1N5819 Unit
Maximum Instantaneous Forward Voltage (Note 6.) (iF = 0.1 A)
(iF = 1.0 A)
(iF = 3.0 A)
vF0.32
0.45
0.75
0.33
0.55
0.875
0.34
0.6
0.9
V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 6.)
(TL = 25°C)
(TL = 100°C)
IR1.0
10 1.0
10 1.0
10
mA
5. Lead Temperature reference is cathode lead 1/32 from case.
6. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.





 


°

   
Figure 1. Maximum Reference Temperature
1N5817
  


θ° 





  
  
θ° 
 
Figure 2. Maximum Reference Temperature
1N5818





   
θ° 


Figure 3. Maximum Reference Temperature
1N5819
Circuit
Load
Half Wave
Resistive Capacitive*
Full Wave, Bridge
Resistive Capacitive
Full Wave, Center Tapped*
Resistive Capacitive
Sine Wave
Square Wave
0.5
0.75
1.3
1.5
0.5
0.75
0.65
0.75
1.0
1.5
1.3
1.5



 
°
   
   
*Note that VR(PK) 2.0 Vin(PK).Use line to center tap voltage for Vin.
Table 1. Values for Factor F

°

1N5817, 1N5818, 1N5819
http://onsemi.com
148
NOTE 7. — DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibility of thermal
runaway must be considered when operating this rectifier at
reverse voltages above 0.1 VRWM. Proper derating may be
accomplished by use of equation (1).
TA(max) =
where TA(max) =
TJ(max) =
PF(AV) =
PR(AV) =
RθJA =
TJ(max) – RθJAPF(AV) – RθJAPR(AV)
Maximum allowable ambient temperature
Maximum allowable junction temperature
(1)
Average forward power dissipation
(125°C or the temperature at which thermal
runaway occurs, whichever is lowest)
Average reverse power dissipation
Junction–to–ambient thermal resistance
Figures 1, 2, and 3 permit easier use of equation (1) by
taking reverse power dissipation and thermal runaway into
consideration. The figures solve for a reference temperature
as determined by equation (2).
TR = TJ(max) – RθJAPR(AV) (2)
Substituting equation (2) into equation (1) yields:
TA
(
max
)
= TR – RθJAPF
(
AV
)
(3)
Inspection of equations (2) and (3) reveals that TR is the
ambient temperature at which thermal runaway occurs or
where TJ = 125°C, when forward power is zero. The
transition from one boundary condition to the other is
evident on the curves of Figures 1, 2, and 3 as a difference
in the rate of change of the slope in the vicinity of 1 15°C. The
data of Figures 1, 2, and 3 is based upon dc conditions. For
use in common rectifier circuits, Table 1 indicates suggested
factors for an equivalent dc voltage to use for conservative
design, that is: (4)
VR(equiv) = Vin(PK) x F
The factor F is derived by considering the properties of the
various rectifier circuits and the reverse characteristics of
Schottky diodes.
EXAMPLE: Find TA(max) for 1N5818 operated in a
12–volt dc supply using a bridge circuit with capacitive filter
such that IDC = 0.4 A (IF(AV) = 0.5 A), I(FM)/I(AV) = 10, Input
Voltage = 10 V(rms), RθJA = 80°C/W.
Step 1. Find VR(equiv). Read F = 0.65 from Table 1,
Step 1. Find VR(equiv) = (1.41)(10)(0.65) = 9.2 V.
Step 2. Find TR from Figure 2. Read TR = 109°C
Step 1. Find @ VR = 9.2 V and RθJA = 80°C/W.
Step 3. Find PF(AV) from Figure 4. **Read PF(AV) = 0.5 W
@I(FM)
I(AV) = 10 and IF(AV) = 0.5 A.
Step 4. Find TA(max) from equation (3).
Step 4. Find TA(max) = 109 – (80) (0.5) = 69°C.
**Values given are for the 1N5818. Power is slightly lower for the
1N5817 because of its lower forward voltage, and higher for the
1N5819.
1N5817, 1N5818, 1N5819
http://onsemi.com
149









  
θ
°
   
 


   
Figure 4. Steady–State Thermal Resistance










 

    

 
°











 

θ
θ 
 

  
      
   


θ    
 

         
             
 
       
  
NOTE 8. — MOUNTING DATA
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mountings shown is to be used as typical guide-
line values for preliminary engineering, or in case the tie
point temperature cannot be measured.
TYPICAL VALUES FOR RθJA IN STILL AIR
Mounting
Method 1/8 1/4 1/2 3/4
Lead Length, L (in)
RθJA
1
2
3
52
67 65
80 72
87 85
100 °C/W
°C/W
°C/W
50
Mounting Method 1
P.C. Board with
1–1/2 x 1–1/2
copper surface.
Mounting Method 3
P.C. Board with
1–1/2 x 1–1/2
copper surface.


 

  

Mounting Method 2


 


π  

 {
Figure 5. Forward Power Dissipation
1N5817–19
Figure 6. Thermal Response
1N5817, 1N5818, 1N5819
http://onsemi.com
150






    













   











  




   
NOTE 9. — THERMAL CIRCUIT MODEL
(For heat conduction through the leads)
 
θ θ θ θ θ θ
   
   

Figure 7. Typical Forward Voltage

  
Figure 8. Maximum Non–Repetitive Surge Current

  
Figure 9. Typical Reverse Current
°
°

°
 
  
  



°
°
°
Use of the above model permits junction to lead thermal re-
sistance for any mounting configuration to be found. For a
given total lead length, lowest values occur when one side of
the rectifier is brought as close as possible to the heatsink.
Terms in the model signify:
TA = Ambient Temperature TC = Case Temperature
TL = Lead Temperature TJ = Junction Temperature
RθS = Thermal Resistance, Heatsink to Ambient
RθL = Thermal Resistance, Lead to Heatsink
RθJ = Thermal Resistance, Junction to Case
PD = Power Dissipation
(Subscripts A and K refer to anode and cathode sides, re-
spectively.) Values for thermal resistance components are:
RθL = 100°C/W/in typically and 120°C/W/in maximum
RθJ = 36°C/W typically and 46°C/W maximum.
°
1N5817, 1N5818, 1N5819
http://onsemi.com
151
NOTE 10. — HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of
majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minor-
ity carrier injection and stored charge. Satisfactory circuit
analysis work may be performed by using a model consist-
ing of an ideal diode in parallel with a variable capacitance.
(See Figure 10.)
Rectification efficiency measurements show that opera-
tion will be satisfactory up to several megahertz. For exam-
ple, relative waveform rectification efficiency is approxi-
mately 70 percent at 2.0 MHz, e.g., the ratio of dc power to
RMS power in the load is 0.28 at this frequency, whereas
perfect rectification would yield 0.406 for sine wave inputs.
However, in contrast to ordinary junction diodes, the loss in
waveform efficiency is not indicative of power loss: it is
simply a result of reverse current flow through the diode ca-
pacitance, which lowers the dc output voltage.
 






   

  
Figure 10. Typical Capacitance
°
 



Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 152 Publication Order Number:
MBR150/D
 
MBR160 is a Preferred Device
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlap
contact. Ideally suited for use as rectifiers in low–voltage,
high–frequency inverters, free wheeling diodes, and polarity
protection diodes.
Low Reverse Current
Low Stored Charge, Majority Carrier Conduction
Low Power Loss/High Efficiency
Highly Stable Oxide Passivated Junction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: B150, B160
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 59–04
PLASTIC
SCHOTTKY BARRIER
RECTIFIERS
1.0 AMPERE
50, 60 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR150 Axial Lead 1000 Units/Bag
MBR150RL Axial Lead 5000/Tape & Reel
MBR160 Axial Lead 1000 Units/Bag
MBR160RL Axial Lead 5000/Tape & Reel
MARKING DIAGRAM
B1x0
B1x0 = Device Code
x = 5 or 6
MBR150, MBR160
http://onsemi.com
153
MAXIMUM RATINGS
Rating Symbol MBR150 MBR160 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 60 Volts
RMS Reverse Voltage VR(RMS) 35 42 Volts
Average Rectified Forward Current (Note 1.)
(VR(equiv) 0.2 VR(dc), TL = 90°C, RθJA = 80°C/W, P.C. Board Mounting,
see Note 3., TA = 55°C)
IO1.0 Amp
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave, single phase, 60 Hz,
TL = 70°C)
IFSM 25 (for one cycle) Amps
Operating and Storage Junction Temperature Range (Reverse Voltage Applied) TJ, Tstg 65 to +150 °C
Peak Operating Junction Temperature (Forward Current Applied) TJ(pk) 150 °C
THERMAL CHARACTERISTICS (Notes 3. and 4.)
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient RθJA 80 °C/W
ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) (Note 1.)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 0.1 A)
(iF = 1.0 A)
(iF = 3.0 A)
vF0.550
0.750
1.000
Volt
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2.)
(TL = 25°C)
(TL = 100°C)
iR0.5
5.0
mA
1. Lead Temperature reference is cathode lead 1/32 from case.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBR150, MBR160
http://onsemi.com
154
Figure 1. Typical Forward Voltage
Figure 2. Typical Reverse Current*
Figure 3. Forward Power Dissipation

  


  
 



    







   
   

  












°°
°





°
*The curves shown are typical for the highest voltage device in the volt-
age grouping. Typical reverse current for lower voltage selections can
be estimated from these same curves if VR i s s u fficiently below rated VR.
°


°
°
°














THERMAL CHARACTERISTICS
Figure 4. Thermal Response


            






  





θ
θ 
 

  
      
   


θ    
 

         
             
 
       
MBR150, MBR160
http://onsemi.com
155
Figure 5. Steady–State Thermal Resistance Figure 6. Typical Capacitance

   





  
 








          







°
    
 



°

NOTE 3. — MOUNTING DATA:
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mounting shown is to be used as a typical
guideline values for preliminary engineering or in case the
tie point temperature cannot be measured.
Typical Values for RθJA in Still Air
Mountin
g
Lead Length, L (in)
R
Mo
u
nting
Method 1/8 1/4 1/2 3/4 RθJA
1 52 65 72 85 °C/W
2 67 80 87 100 °C/W
3 50 °C/W
NOTE 4. — THERMAL CIRCUIT MODEL:
(For heat conduction through the leads)
 
   
θ θ θ θ θ θ
Use of the above model permits junction to lead thermal
resistance for any mounting configuration to be found. For
a given total lead length, lowest values occur when one side
of the rectifier is brought as close as possible to the heat sink.
Terms in the model signify:
TA = Ambient Temperature TC = Case Temperature
TL = Lead Temperature TJ = Junction Temperature
RθS = Thermal Resistance, Heat Sink to Ambient
RθL = Thermal Resistance, Lead to Heat Sink
RθJ = Thermal Resistance, Junction to Case
PD = Power Dissipation
Mounting Method 1
P.C. Board with
1–1/2 x 1–1/2
copper surface.
Mounting Method 3
P.C. Board with
1–1/2 x 1–1/2
copper surface.
 

  
Mounting Method 2
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

ÉÉ
ÉÉ
ÉÉ
ÉÉ

(Subscripts A and K refer to anode and cathode sides,
respectively.) Values for thermal resistance components are:
RθL = 100°C/W/in typically and 120°C/W/in maximum.
RθJ = 36°C/W typically and 46°C/W maximum.
NOTE 5. — HIGH FREQUENCY OPERATION:
Since current flow in a Schottky rectifier is the result of
majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to
minority carrier injection and stored charge. Satisfactory
circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 6.)
Rectification efficiency measurements show that
operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is
approximately 70 percent at 2 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine
wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicative of
power loss: it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output
voltage.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 156 Publication Order Number:
MBR1100/D

Preferred Device
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlap
contact. Ideally suited for use as rectifiers in low–voltage,
high–frequency inverters, free wheeling diodes, and polarity
protection diodes.
Low Reverse Current
Low Stored Charge, Majority Carrier Conduction
Low Power Loss/High Efficiency
Highly Stable Oxide Passivated Junction
Guard–Ring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
High Surge Capacity
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: B1100
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 V
Average Rectified Forward Current
(VR(equiv) 0.2 VR(dc), RJA =
50°C/W, P.C. Board Mounting, see
Note 1., TA = 120°C)
IO1.0 A
Non–Repetitive Peak
Surge Current (Surge Applied at
Rated Load Conditions Halfwave,
Single Phase, 60 Hz)
IFSM 50 A
Operating and Storage Junction
Temperature Range TJ, Tstg –65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10 V/ns
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 59–04
PLASTIC
SCHOTTKY BARRIER
RECTIFIER
1.0 AMPERE
100 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR1100 Axial Lead 1000 Units/Bag
MBR1100RL Axial Lead 5000/Tape & Reel
MARKING DIAGRAM
B1100
B1100 = Device Code
MBR1100
http://onsemi.com
157
THERMAL CHARACTERISTICS (See Note 2.)
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient RθJA See Note 1. °C/W
ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage *
(iF = 1 A, TL = 25°C)
(iF = 1 A, TL = 100°C)
VF0.79
0.69
Volt
Maximum Instantaneous Reverse Current @ Rated dc Voltage *
(TL = 25°C)
(TL = 100°C)
iR0.5
5.0
mA
* Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
Figure 3. Current Derating
(Mounting Method 3 per Note 1.) Figure 4. Power Dissipation
 
  





  
 




 
  °




    











           



       


    












 

 

°
°
°
°
°
°
The curves shown are typical for the highest voltage
device i n the voltage grouping. T ypical reverse current for
lower voltage selections can be estimated from these
same curves if VR is sufficiently below rated VR.
MBR1100
http://onsemi.com
158
Figure 5. Typical Capacitance
 
  








 

   




°

NOTE 1. — MOUNTING DATA:
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mounting shown is to be used as a typical
guideline values for preliminary engineering or in case the
tie point temperature cannot be measured.
Typical Values for RθJA in Still Air
Mountin
g
Lead Length, L (in)
R
Mo
u
nting
Method 1/8 1/4 1/2 3/4 RθJA
1 52 65 72 85 °C/W
2 67 80 87 100 °C/W
3 50 °C/W
Mounting Method 1
P.C. Board with
1–1/2 x 1–1/2
copper surface.
Mounting Method 3
P.C. Board with
1–1/2 x 1–1/2
copper surface.
 

  
Mounting Method 2
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

É
É
É
É

NOTE 2. — THERMAL CIRCUIT MODEL:
(For heat conduction through the leads)
 
   
θ θ θ θ θ θ
Use of the above model permits junction to lead thermal
resistance for any mounting configuration to be found. For
a given total lead length, lowest values occur when one side
of the rectifier is brought as close as possible to the heat sink.
Terms in the model signify:
TA = Ambient Temperature TC = Case Temperature
TL = Lead Temperature TJ = Junction Temperature
RθS = Thermal Resistance, Heat Sink to Ambient
RθL = Thermal Resistance, Lead to Heat Sink
RθJ = Thermal Resistance, Junction to Case
PD = Power Dissipation
(Subscripts A and K refer to anode and cathode sides,
respectively.) Values for thermal resistance components are:
RθL = 100°C/W/in typically and 120°C/W/in maximum.
RθJ = 36°C/W typically and 46°C/W maximum.
NOTE 3. — HIGH FREQUENCY OPERATION:
Since current flow in a Schottky rectifier is the result of
majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to
minority carrier injection and stored charge. Satisfactory
circuit analysis work may be performed by using a model
consisting of an ideal diode in parallel with a variable
capacitance. (See Figure 5)
Rectification efficiency measurements show that
operation will be satisfactory up to several megahertz. For
example, relative waveform rectification efficiency is
approximately 70 percent at 2 MHz, e.g., the ratio of dc
power to RMS power in the load is 0.28 at this frequency,
whereas perfect rectification would yield 0.406 for sine
wave inputs. However, in contrast to ordinary junction
diodes, the loss in waveform efficiency is not indicative of
power loss: it is simply a result of reverse current flow
through the diode capacitance, which lowers the dc output
voltage.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 159 Publication Order Number:
1N5820/D
  
1N5820 and 1N5822 are Preferred Devices
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
chrome barrier metal, epitaxial construction with oxide passivation
and metal overlap contact. Ideally suited for use as rectifiers in
low–voltage, high–frequency inverters, free wheeling diodes, and
polarity protection diodes.
Extremely Low VF
Low Power Loss/High Efficiency
Low Stored Charge, Majority Carrier Conduction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 500 per bag
Available Tape and Reeled, 1500 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode indicated by Polarity Band
Marking: 1N5820, 1N5821, 1N5822
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 267–03
STYLE 1
SCHOTTKY BARRIER
RECTIFIERS
3.0 AMPERES
20, 30, 40 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
1N5820 Axial Lead 500 Units/Bag
1N5820RL Axial Lead 1500/Tape & Reel
1N5821 Axial Lead 500 Units/Bag
1N5821RL Axial Lead 1500/Tape & Reel
1N5822 Axial Lead 500 Units/Bag
1N5822RL Axial Lead 1500/Tape & Reel
MARKING DIAGRAM
1N582x
1N582x = Device Code
x = 0, 1 or 2
1N5820, 1N5821, 1N5822
http://onsemi.com
160
MAXIMUM RATINGS
Rating Symbol 1N5820 1N5821 1N5822 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 30 40 V
Non–Repetitive Peak Reverse Voltage VRSM 24 36 48 V
RMS Reverse Voltage VR(RMS) 14 21 28 V
Average Rectified Forward Current (Note 1.)
VR(equiv) 0.2 VR(dc), TL = 95°C
(RθJA = 28°C/W, P.C. Board Mounting, see Note 5.)
IO3.0 A
Ambient Temperature
Rated VR(dc), PF(AV) = 0
RθJA = 28°C/W
TA90 85 80 °C
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions, half wave, single phase
60 Hz, TL = 75°C)
IFSM 80 (for one cycle) A
Operating and Storage Junction Temperature Range
(Reverse Voltage applied) TJ, Tstg 65 to +125 °C
Peak Operating Junction Temperature (Forward Current applied) TJ(pk) 150 °C
*THERMAL CHARACTERISTICS (Note 5.)
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient RθJA 28 °C/W
*ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) (Note 1.)
Characteristic Symbol 1N5820 1N5821 1N5822 Unit
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 1.0 Amp)
(iF = 3.0 Amp)
(iF = 9.4 Amp)
VF0.370
0.475
0.850
0.380
0.500
0.900
0.390
0.525
0.950
V
Maximum Instantaneous Reverse Current
@ Rated dc Voltage (Note 2.)
TL = 25°C
TL = 100°C
iR
2.0
20 2.0
20 2.0
20
mA
1. Lead Temperature reference is cathode lead 1/32 from case.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.
*Indicates JEDEC Registered Data for 1N5820–22.
1N5820, 1N5821, 1N5822
http://onsemi.com
161
NOTE 3. — DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibility of thermal
runaway must be considered when operating this rectifier at
reverse voltages above 0.1 VRWM. Proper derating may be
accomplished by use of equation (1).
TA(max) = T J(max) RθJAPF(AV) RθJAPR(AV)(1)
where TA(max) = Maximum allowable ambient temperature
TJ(max) = Maximum allowable junction temperature
(125°C or the temperature at which thermal
runaway occurs, whichever is lowest)
PF(AV) = Average forward power dissipation
PR(AV) = Average reverse power dissipation
RθJA = Junction–to–ambient thermal resistance
Figures 1, 2, and 3 permit easier use of equation (1) by
taking reverse power dissipation and thermal runaway into
consideration. The figures solve for a reference temperature
as determined by equation (2).
TR = TJ(max) RθJAPR(AV) (2)
Substituting equation (2) into equation (1) yields:
TA(max) = TR RθJAPF(AV) (3)
Inspection of equations (2) and (3) reveals that TR is the
ambient temperature at which thermal runaway occurs or
where TJ = 125°C, when forward power is zero. The
transition from one boundary condition to the other is
evident on the curves of Figures 1, 2, and 3 as a difference
in the rate of change of the slope in the vicinity of 1 15°C. The
data of Figures 1, 2, and 3 is based upon dc conditions. For
use in common rectifier circuits, Table 1. indicates
suggested factors for an equivalent dc voltage to use for
conservative design, that is:
VR(equiv) = V(FM) F (4)
The factor F is derived by considering the properties of the
various rectifier circuits and the reverse characteristics of
Schottky diodes.
EXAMPLE: Find TA(max) for 1N5821 operated in a
12–volt dc supply using a bridge circuit with capacitive filter
such that I DC = 2.0 A (IF(AV) = 1.0 A), I(FM)/I(AV) = 10, Input
Voltage = 10 V(rms), RθJA = 40°C/W.
Step 1. Find VR(equiv). Read F = 0.65 from Table 1. ,
VR(equiv) = (1.41) (10) (0.65) = 9.2 V.
Step 2. Find TR from Figure 2. Read TR = 108°C
@ VR = 9.2 V and RθJA = 40°C/W.
Step 3 . Find PF(AV) from Figure 6. **Read PF(AV) = 0 . 8 5 W
@I(FM)
I(AV) 10and IF(AV) 1.0 A.
Step 4. Find TA(max) from equation (3).
TA(max) = 108 (0.85) (40) = 74°C.
**Values given are for the 1N5821. Power is slightly lower
for the 1N5820 because of its lower forward voltage, and
higher for the 1N5822. Variations will be similar for the
MBR–prefix devices, using PF(AV) from Figure 6.
Table 1. Values for Factor F
Circuit Half Wave Full Wave, Bridge Full Wave,
Center Tapped*†
Load Resistive Capacitive* Resistive Capacitive Resistive Capacitive
Sine Wave 0.5 1.3 0.5 0.65 1.0 1.3
Square Wave 0.75 1.5 0.75 0.75 1.5 1.5
*Note that VR(PK) 2.0 Vin(PK). †Use line to center tap voltage for Vin.
1N5820, 1N5821, 1N5822
http://onsemi.com
162
Figure 1. Maximum Reference Temperature
1N5820 Figure 2. Maximum Reference Temperature
1N5821
Figure 3. Maximum Reference Temperature
1N5822 Figure 4. Steady–State Thermal Resistance

  




  






   












    
°
          



°
    
 



°
° 



  


  






    
°
° 



  



° 









              





  




  
 

  
      
   


θ    
  
         
          

       

Figure 5. Thermal Response

         
            
          
          
         
       
        

1N5820, 1N5821, 1N5822
http://onsemi.com
163

    







   







   
Figure 6. Forward Power Dissipation 1N5820–22

 
°
 

 

 


 
   
θ θ θ θ θ θ
NOTE 4. APPROXIMATE THERMAL CIRCUIT MODEL
Use of the above model permits junction to lead thermal
resistance for any mounting configuration to be found. For
a given total lead length, lowest values occur when one side
of the rectifier is brought as close as possible to the heat sink.
Terms in the model signify:
TA = Ambient Temperature TC = Case Temperature
TL = Lead Temperature TJ = Junction Temperature
RθS = Thermal Resistance, Heat Sink to Ambient
RθL = Thermal Resistance, Lead to Heat Sink
RθJ = Thermal Resistance, Junction to Case
PD = Total Power Dissipation = PF + PR
PF = Forward Power Dissipation
PR = Reverse Power Dissipation
(Subscripts (A) and (K) refer to anode and cathode sides,
respectively.) Values for thermal resistance components
are:
RθL = 42°C/W/in typically and 48°C/W/in maximum
RθJ = 10°C/W typically and 16°C/W maximum
The maximum lead temperature may be found as follows:
TL = TJ(max) TJL
where TJL RθJL · PD
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction–to–ambient (RθJA)
for the mountings shown is to be used as typical guideline values
for preliminary engineering, or in case the tie point temperature
cannot be measured.
1
2
3
Mounting
Method
Lead Length, L (in)
1/8 1/4 1/2 3/4 RθJA
50 51 53 55 °C/W
°C/W
°C/W
58 59 61 63
28
NOTE 5. — MOUNTING DATA
Mounting Method 1
P.C. Board where available
copper surface is small.
Mounting Method 3
P.C. Board with
2–1/2 x 2–1/2
copper surface.
 

 
 
Mounting Method 2
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ

É
É
É
É
É

1N5820, 1N5821, 1N5822
http://onsemi.com
164
°
°
°
°
NOTE 6. — HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of
majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minor-
ity carrier injection and stored charge. Satisfactory circuit
analysis work may be performed by using a model consist-
ing o f an ideal diode in parallel with a variable capacitance.
(See Figure 10.)
Figure 7. Typical Forward Voltage
Figure 8. Maximum Non–Repetitive Surge
Current
Figure 9. Typical Reverse Current

   


  
 

  







   
  

  
 









°
°













  



   




   



°
 
   
°
 
    
Figure 10. Typical Capacitance








    




   
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 165 Publication Order Number:
MBR340/D

Preferred Device
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlap
contact. Ideally suited for use as rectifiers in low–voltage,
high–frequency inverters, free wheeling diodes, and polarity
protection diodes.
Extremely Low VF
Low Power Loss/High Efficiency
Highly Stable Oxide Passivated Junction
Low Stored Charge, Majority Carrier Conduction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 500 per bag
Available Tape and Reeled, 1500 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode indicated by Polarity Band
Marking: B340
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
40 V
Average Rectified Forward Current
TA = 65°C (RJA = 28°C/W,
P.C. Board Mounting)
IO3.0 A
Non–Repetitive Peak
Surge Current (Note 1.)
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz, TL = 75°C)
IFSM 80 A
Operating and Storage Junction
Temperature Range
(Reverse Voltage Applied)
TJ, Tstg –65 to +150 °C
Peak Operating Junction
Temperature
(Forward Current Applied)
TJ(pk) 150 °C
1. Lead Temperature reference is cathode lead 1/32 from case.
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 267–03
STYLE 1
SCHOTTKY BARRIER
RECTIFIER
3.0 AMPERES
40 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR340 Axial Lead 500 Units/Bag
MBR340P Axial Lead 500 Units/Bag
MBR340PRL Axial Lead 1500/Tape & Reel
MBR340RL Axial Lead 1500/Tape & Reel
MARKING DIAGRAM
B340
B340 = Device Code
MBR340
http://onsemi.com
166
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient (see Note 3., Mounting Method 3) RθJA 28 °C/W
ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) (Note 1.)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 1.0 Amp)
(iF = 3.0 Amp)
(iF = 9.4 Amp)
vF0.500
0.600
0.850
V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2.)
TL = 25°C
TL = 100°C
iR0.60
20
mA
1. Lead Temperature reference is cathode lead 1/32 from case.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.
  °
  








    


  
  
















°
°
°




   
   












  




°



°
°
°
*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selec-
tions can be estimated from these same curves if VR is sufficiently
below rated VR.
Figure 1. Typical Forward Voltage
Figure 2. Typical Reverse Current*
Figure 3. Current Derating
(Mounting Method #3 per Note 3.)
MBR340
http://onsemi.com
167
       
   





°

 





 


   





°






 
Figure 4. Power Dissipation Figure 5. Typical Capacitance


TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mountings shown is to be used as typical
guideline values for preliminary engineering, or in case the
tie point temperature cannot be measured.
1
2
3
Mounting
Method
Lead Length, L (in)
1/8 1/4 1/2 3/4 RθJA
50 51 53 55 °C/W
°C/W
°C/W
58 59 61 63
28
NOTE 3. — MOUNTING DATA
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
Mounting Method 1
P.C. Board where available
copper surface is small.
L L L
Mounting Method 2
Vector Push–In
Terminals T–28
L
Mounting Method 3
P.C. Board with
2–1/2 X 2–1/2
copper surface.
L = 1/2’
Board Ground Plane
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 168 Publication Order Number:
MBR350/D
 
MBR360 is a Preferred Device
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlap
contact. Ideally suited for use as rectifiers in low–voltage,
high–frequency inverters, free wheeling diodes, and polarity
protection diodes.
Extremely Low vF
Low Power Loss/High Efficiency
Highly Stable Oxide Passivated Junction
Low Stored Charge, Majority Carrier Conduction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 500 per bag
Available Tape and Reeled, 1500 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode indicated by Polarity Band
Marking: B350, B360
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MBR350
MBR360
VRRM
VRWM
VR50
60
V
Average Rectified Forward Current
TA = 65°C (RJA = 28°C/W,
P.C. Board Mounting)
IO3.0 A
Non–Repetitive Peak
Surge Current (Note 1.)
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz, TL = 75°C)
IFSM 80 A
Operating and Storage Junction
Temperature Range
(Reverse Voltage Applied)
TJ, Tstg –65 to +150 °C
Peak Operating Junction
Temperature
(Forward Current Applied)
TJ(pk) 150 °C
1. Lead Temperature reference is cathode lead 1/32 from case.
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 267–03
STYLE 1
SCHOTTKY BARRIER
RECTIFIERS
3.0 AMPERES
50, 60 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR350 Axial Lead 500 Units/Bag
MBR350RL Axial Lead 1500/Tape & Reel
MBR360 Axial Lead 500 Units/Bag
MBR360RL Axial Lead 1500/Tape & Reel
MARKING DIAGRAM
B3x0
B3x0 = Device Code
x = 5 or 6
MBR350, MBR360
http://onsemi.com
169
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient (see Note 3., Mounting Method 3) RθJA 28 °C/W
ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted) (Note 1.)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 1.0 Amp)
(iF = 3.0 Amp)
(iF = 9.4 Amp)
vF0.600
0.740
1.080
V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2.)
TL = 25°C
TL = 100°C
iR0.60
20
mA
1. Lead Temperature reference is cathode lead 1/32 from case.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.
  °
  








  


  
  













°
   
 











 







  
        
       
       
       
  
°
°
°
° °
°
°

°
Figure 1. Typical Forward Voltage
Figure 2. Typical Reverse Current*
Figure 3. Current Derating Ambient
(Mounting Method #3 per Note 3.)
MBR350, MBR360
http://onsemi.com
170
       
   





°





   


°






Figure 4. Power Dissipation Figure 5. Typical Capacitance
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mountings shown is to be used as typical
guideline values for preliminary engineering, or in case the
tie point temperature cannot be measured.
1
2
3
Mounting
Method
Lead Length, L (in)
1/8 1/4 1/2 3/4 RθJA
50 51 53 55 °C/W
°C/W
°C/W
58 59 61 63
28
NOTE 3. — MOUNTING DATA
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
Mounting Method 1
P.C. Board where available
copper surface is small.
L L L
Mounting Method 2
Vector Push–In
Terminals T–28
L
Mounting Method 3
P.C. Board with
2–1/2 X 2–1/2
copper surface.
L = 1/2’
Board Ground Plane
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 171 Publication Order Number:
MBR3100/D

Preferred Device
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlap
contact. Ideally suited for use as rectifiers in low–voltage,
high–frequency inverters, free wheeling diodes, and polarity
protection diodes.
Low Reverse Current
Low Stored Charge, Majority Carrier Conduction
Low Power Loss/High Efficiency
Highly Stable Oxide Passivated Junction
Guard–Ring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
High Surge Capacity
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 500 per bag
Available Tape and Reeled, 1500 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode indicated by Polarity Band
Marking: B3100
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 V
Average Rectified Forward Current
TA = 100°C (RJA = 28°C/W,
P.C. Board Mounting, see Note 2.)
IO3.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Operating and Storage Junction
Temperature Range
(Reverse Voltage Applied)
TJ, Tstg –65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10 V/ns
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 267–03
STYLE 1
SCHOTTKY BARRIER
RECTIFIER
3.0 AMPERES
100 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR3100 Axial Lead 500 Units/Bag
MBR3100RL Axial Lead 1500/Tape & Reel
MARKING DIAGRAM
B3100
B3100 = Device Code
MBR3100
http://onsemi.com
172
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient (see Note 2., Mounting Method 3) RθJA 28 °C/W
ELECTRICAL CHARACTERISTICS (TL = 25°C unless otherwise noted)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 3.0 Amps, TL = 25°C)
(iF = 3.0 Amps, TL = 100°C)
vF0.79
0.69
V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 1.)
TL = 25°C
TL = 100°C
iR0.6
20
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.
    
   





  °
  

   


  
  









   
   


  





°
°
°




      



°

°
°
°


*The curves shown are typical for the highest voltage device in the
voltage grouping. Typical reverse current for lower voltage selections
can be estimated from these curves if VR is su fficient below rated VR.




Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current*
Figure 3. Current Derating
(Mounting Method #3 per Note 2.) Figure 4. Power Dissipation
MBR3100
http://onsemi.com
173
  
  








Figure 5. Typical Capacitance
°

TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mountings shown is to be used as typical
guideline values for preliminary engineering, or in case the
tie point temperature cannot be measured.
1
2
3
Mounting
Method
Lead Length, L (in)
1/8 1/4 1/2 3/4 RθJA
50 51 53 55 °C/W
°C/W
°C/W
58 59 61 63
28
NOTE 2. — MOUNTING DATA
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
Mounting Method 1
P.C. Board where available
copper surface is small.
L L L
Mounting Method 2
Vector Push–In
Terminals T–28
L
Mounting Method 3
P.C. Board with
2–1/2 X 2–1/2
copper surface.
L = 1/2’
Board Ground Plane
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 174 Publication Order Number:
MBR1535CT/D
 
MBR1545CT is a Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Center–Tap Configuration
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B1535, B1545
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Volta MBR1535CT
MBR1545CT
VRRM
VRWM
VR35
45
V
Average Rectified Forward Current
(Rated VR, TC = 105°C) Per Diode
Per Device
IF(AV) 7.5
15
A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 105°C) Per Diode
IFRM 15 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR1535CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIERS
15 AMPERES
35 and 45 VOLTS

Preferred devices are recommended choices for future use
and best overall value.
MBR1545CT TO–220 50 Units/Rail
2
MARKING DIAGRAM
B15x5
B15x5 = Device Code
x = 3 or 4
MBR1535CT, MBR1545CT
http://onsemi.com
175
THERMAL CHARACTERISTICS PER DIODE
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 3.0 °C/W
Maximum Thermal Resistance, Junction to Ambient RθJA 60 °C/W
ELECTRICAL CHARACTERISTICS PER DIODE
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 7.5 Amps, TC = 125°C)
(iF = 15 Amps, TC = 125°C)
(iF = 15 Amps, TC = 25°C)
VF0.57
0.72
0.84
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR15
0.1
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
MBR1535CT, MBR1545CT
http://onsemi.com
176




    
  °
  





  





  °




°  
  











°


Figure 6. Typical Forward Voltage
    
 





 


°
°




 
 °
  
  





Figure 7. Typical Reverse Current



°
°
°
°
Figure 8. Current Derating, Case
 
°
  
° 
Figure 9. Current Derating, Ambient
   
°  
  
° 


     



 
Figure 10. Power Dissipation
° 
  
 
Semiconductor Components Industries, LLC, 2000
November, 2000 – Rev. 0 177 Publication Order Number:
MBR16100CT/D


 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
16 Amps Total (8.0 Amps Per Diode Leg)
Guard–Ring for Stress Protection
Low Forward Voltage
175°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Low Power Loss/High Efficiency
High Surge Capacity
Low Stored Charge Majority Carrier Conduction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B16100
MAXIMUM RATINGS (Per Diode Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 V
Average Rectified Forward Current
(Rated VR) TC = 133°CIF(AV) 8.0 A
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz)
TC = 133°C
IFRM 16 A
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge Current
(2.0 µs, 1.0 kHz) IRRM 0.5 A
Operating Junction Temperature TJ65 to
+175 °C
Storage Temperature Tstg 65 to
+175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/µsDevice Package Shipping
ORDERING INFORMATION
MBR16100CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
16 AMPERES
100 VOLTS
1
3

2
MARKING DIAGRAM
YYWW
B16100
A K A
YY = Year
WW = Work Week
B16100= Device Code
AKA = Polarity Designator
MBR16100CT
http://onsemi.com
178
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance – Junction to Case
– Junction to Ambient RθJC
RθJA 2.0
60 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 8.0 Amps, TC = 125°C)
(iF = 8.0 Amps, TC = 25°C)
(iF = 16 Amps, TC = 125°C)
(iF = 16 Amps, TC = 25°C)
vF0.6
0.74
0.69
0.84
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR5.0
0.1
mA
1. Pulse Test: Pulse Width = 300 s, Duty Cycle 2%.
Figure 1. Typical Forward Voltage Per Diode Figure 2. Maximum Forward Voltage Per Diode
0.60
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
100
10
0.2 0.4 0.8
1
0.1 1
TJ = 25°C
175°C
125°C75°C
0.50.1 0.3 0.7 0.9
iF, INSTANTANEOUS FORWARD
VOLTAGE (AMPS)
0.60
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
100
10
0.2 0.4 0.8
1
0.1 1
TJ = 25°C
175°C
125°C75°C
0.50.1 0.3 0.7 0.9
IF, INSTANTANEOUS FORWARD
CURRENT (AMPS)
MBR16100CT
http://onsemi.com
179
SQUARE
WAVE
dc
Figure 3. Typical Reverse Current Per Diode Figure 4. Typical Capacitance Per Diode
0
VR, REVERSE VOLTAGE (VOLTS)
0.001
0.00001
0.0000001
VR, REVERSE VOLTAGE (VOLTS)
100
1200
600
02010 20 30 40 30 40 80
0.0001
0.1
0.01
1400
1000
800
50 60 70100
0.000001 200
400
90 100
Figure 5. Current Derating (Per Diode), Case Figure 6. Average Power Dissipation
140
TC, CASE TEMPERATURE (°C)
14
6
8
0
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
20
8
5
–1 4145 150 155 160 6 8
SQUARE
WAVE
dc
12
10 6
4
3
2
10 12 14165
2
4
0
1
7
PD, AVERAGE POWER DISSIPATION (WATTS)
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
170 175 180
C, CAPACITANCE (pF)
50 60 70 80 90
IR, REVERSE CURRENT (AMPS)
TJ = 25°C
175°C
125°C
75°C
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 180 Publication Order Number:
MBR2030CTL/D

Preferred Device
 
  
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay contact.
Ideally suited for use as rectifiers in very low–voltage, high–frequency
switching power supplies, free wheeling diodes and polarity protection
diodes.
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop (0.4 Max @ 10 A, TC = 150°C)
150°C Operating Junction Temperature
Matched Dual Die Construction (10 A per Leg or 20 A per Package)
High Junction Temperature Capability
High dv/dt Capability
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B2030
MAXIMUM RATINGS
Please See the Table on the Following Page
http://onsemi.com

SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
30 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBR2030CTL TO–220 50 Units/Tube
Preferred devices are recommended choices for future use
and best overall value.
TO–220AB
CASE 221A
PLASTIC
3
4
12
MARKING DIAGRAM
B2030
B2030 = Device Code
MBR2030CTL
http://onsemi.com
181
MAXIMUM RATINGS (Per Leg)
Rating
Symbol
Val e
Unit
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 Volts
Average Rectified Forward Current IF(AV) 10 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 150 Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) IRRM 1.0 Amp
Operating Junction Temperature TJ65 to +150 °C
Storage Temperature Tstg 65 to +175 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/µs
THERMAL CHARACTERISTICS (Per Leg)
Thermal Resistance, Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 10 Amps, TC = 25°C)
(iF = 10 Amps, TC = 150°C)
(iF = 20 Amps, TC = 25°C)
(iF = 20 Amps, TC = 150°C)
vF0.52
0.40
0.58
0.48
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated DC Voltage, TC = 25°C)
(Rated DC Voltage, TC = 100°C)
(Rated DC Voltage, TC = 125°C)
iR5.0
40
75
mA
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.
MBR2030CTL
http://onsemi.com
182
   
  










°
°
°
 
  
  










°


°
°
  °




        
  °
 




  
°


 



  
°
°
 

 



 
    







 
 °
Figure 1. Typical Forward Voltage (Per Leg)
Figure 2. Typical Reverse Current (Per Leg)
Figure 3. Current Derating, Case
Figure 4. Current Derating, Ambient Figure 5. Forward Power Dissipation
MBR2030CTL
http://onsemi.com
183
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of
majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minor-
ity carrier injection and stored charge. Satisfactory circuit
analysis work may be performed by using a model consist-
ing o f an ideal diode in parallel with a variable capacitance.
(See Figure 6.)
Rectification efficiency measurements show that opera-
tion will be satisfactory up to several megahertz. For exam-
ple, relative waveform rectification efficiency is approxi-
mately 70 percent at 2.0 MHz, e.g., the ratio of dc power to
RMS power in the load is 0.28 at this frequency, whereas
perfect rectification would yield 0.406 for sine wave inputs.
However, in contrast to ordinary junction diodes, the loss in
waveform efficiency is not indicative of power loss; it is
simply a result of reverse current flow through the diode c a -
pacitance, which lowers the dc output voltage.
µ

 
  




 






  
µ






    
  

Figure 6. Typical Capacitance


 °

Figure 7. Test Circuit for dv/dt and Reverse Surge Current
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 0 184 Publication Order Number:
MBR2045CT/D

Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B2045
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 135°C) IF(AV) 20 A
Peak Repetitive Forward Current
per Diode Leg (Rated VR, Square
Wave, 20 kHz, TC = 135°C)
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz)
See Figure 11
IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR2045CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
45 VOLTS

Preferred devices are recommended choices for future use
and best overall value.
2
MARKING DIAGRAM
B2045
B2045 = Device Code
MBR2045CT
http://onsemi.com
185
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Maximum Thermal Resistance, Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 10 Amps, TC = 125°C)
(iF = 20 Amps, TC = 125°C)
(iF = 20 Amps, TC = 25°C)
vF0.57
0.72
0.84
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR15
0.1
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBR2045CT
http://onsemi.com
186
Figure 1. Maximum Forward Voltage

  





 
  





    









    

 

 











  
°
Figure 2. Typical Forward Voltage
Figure 3. Maximum Reverse Current Figure 4. Maximum Surge Capability
  
°
°
°
°
°


  







    









°

°
°°
°
MBR2045CT
http://onsemi.com
187




  °




  °







 

 

 
Figure 5. Current Derating, Infinite Heatsink Figure 6. Current Derating, RJA = 16°C/W
  

    




  °







 

 


 
Figure 7. Forward Power Dissipation Figure 8. Current Derating, Free Air
  














    





  




 

  
      
   


θ    
  
         
          

       


Figure 9. Thermal Response

°
 
 







  






 


  
  




 




 


  
  
°


MBR2045CT
http://onsemi.com
188
HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of
majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minor-
ity carrier injection and stored charge. Satisfactory circuit
analysis work may be performed by using a model consist-
ing o f an ideal diode in parallel with a variable capacitance.
(See Figure 10.)
Rectification efficiency measurements show that opera-
tion will be satisfactory up to several megahertz. For exam-
ple, relative waveform rectification efficiency is approxi-
mately 70 percent at 2.0 MHz, e.g., the ratio of dc power to
RMS power in the load is 0.28 at this frequency, whereas
perfect rectification would yield 0.406 for sine wave inputs.
However, in contrast to ordinary junction diodes, the loss in
waveform efficiency is not indicative of power loss; it is
simply a result of reverse current flow through the diode c a -
pacitance, which lowers the dc output voltage.
 µ
 
 
  




 



 



  
 µ
  






 


Figure 10. Capacitance
  



 
Figure 11. Test Circuit for dv/dt and
Reverse Surge Current
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 189 Publication Order Number:
MBR2060CT/D
 
 
MBR2060CT and MBR20100CT are Preferred Devices

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
20 Amps Total (10 Amps Per Diode Leg)
Guard–Ring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Low Power Loss/High Efficiency
High Surge Capacity
Low Stored Charge Majority Carrier Conduction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B2060, B2080, B2090, B20100
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MBR2060CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIERS
20 AMPERES
60–100 VOLTS

Preferred devices are recommended choices for future use
and best overall value.
MBR2080CT TO–220 50 Units/Rail
2
MBR2090CT TO–220 50 Units/Rail
MBR20100CT TO–220 50 Units/Rail
MARKING DIAGRAM
YY WW
B20x0
A K A
YY = Year
WW = Work Week
B20x0 = Device Code
x = 6, 8, 9 or 10
AKA = Polarity Designator
MBR2060CT, MBR2080CT, MBR2090CT, MBR20100CT
http://onsemi.com
190
MAXIMUM RATINGS (Per Diode Leg)
MBR
Rating Symbol 2060CT 2080CT 2090CT 20100CT Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
60 80 90 100 Volts
Average Rectified Forward Current
(Rated VR) TC = 133°CIF(AV) 10 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 133°CIFRM 20 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
IFSM 150 Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) IRRM 0.5 Amp
Operating Junction Temperature TJ65 to +150 °C
Storage Temperature Tstg 65 to +175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/µs
THERMAL CHARACTERISTICS
Maximum Thermal Resistance — Junction to Case
— Junction to Ambient RθJC
RθJA 2.0
60 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 10 Amps, TC = 125°C)
(iF = 10 Amps, TC = 25°C)
(iF = 20 Amps, TC = 125°C)
(iF = 20 Amps, TC = 25°C)
vF0.75
0.85
0.85
0.95
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR6.0
0.1
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBR2060CT, MBR2080CT, MBR2090CT, MBR20100CT
http://onsemi.com
191
Figure 1. Typical Forward Voltage Per Diode Figure 2. Typical Reverse Current Per Diode
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
Figure 5. Average Power Dissipation and
Average Current

  



  

  °



  °






 
  










      


      
 



 




   



 

°
°
°
°
°
 °




 



  

 

 

  
° 
°
 
°
 

°
°°
     





 

 



Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 192 Publication Order Number:
MBR20200CT/D

 
Dual Schottky Rectifier
...using Schottky Barrier technology with a platinum barrier metal.
This state–of–the–art device is designed for use in high frequency
switching power supplies and converters with up to 48 volt outputs.
They block u p t o 2 00 v olts a nd o ffer i mproved S chottky p erformance a t
frequencies from 250 kHz to 5.0 MHz.
200 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability
(10,000 V/µs)
Dual Diode Construction — Terminals 1 and 3 Must be Connected
for Parallel Operation at Full Rating
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B20200
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Current
(Rated VR, TC = 125°C) Per Leg
Per Package
IF(AV) 10
20
A
Peak Repetitive Forward Current
per Leg (Rated VR, Square Wave,
20 kHz, TC = 90°C)
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR20200CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
200 VOLTS

2
MARKING DIAGRAM
B20200
B20200 = Device Code
MBR20200CT
http://onsemi.com
193
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.) (IF = 10 Amps, TC = 25°C)
(IF = 10 Amps, TC = 125°C)
(IF = 20 Amps, TC = 25°C)
(IF = 20 Amps, TC = 125°C)
VF0.9
0.8
1.0
0.9
Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, TC = 25°C)
(Rated dc Voltage, TC = 125°C) IR1.0
50 mA
DYNAMIC CHARACTERISTICS (Per Leg)
Capacitance (VR = –5.0 V, TC = 25°C, Frequency = 1.0 MHz) CT500 pF
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage (Per Leg)





   
°
°
°
  
°


µ
  





          
°
°
°
°
Figure 2. Typical Reverse Current (Per Leg)
MBR20200CT
http://onsemi.com
194








     
°







    
Figure 3. Forward Power Dissipation






       


  °
Figure 4. Current Derating, Case



 
θ°


θ °
 



  °
Figure 5. Current Derating, Ambient



      






°
  
    
Figure 6. Typical Capacitance (Per Leg)
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 195 Publication Order Number:
MBR2535CTL/D


 
...employing the Schottky Barrier principle in a large
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for use in low voltage, high frequency
switching power supplies, free wheeling diodes, and polarity
protection diodes.
Very Low Forward Voltage (0.55 V Maximum @ 25 Amps)
Matched Dual Die Construction
(12.5 A per Leg or 25 A per Package)
Guardring for Stress Protection
Highly Stable Oxide Passivated Junction
(125°C Operating Junction Temperature)
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B2535L
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35 V
Average Rectified Forward Current
(Rated VR, TC = 110°C) IF(AV) 12.5 A
Peak Repetitive Forward Current,
per Leg (Rated VR, Square Wave,
20 kHz, TC = 95°C)
IFRM 25 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions, Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +150 °C
Operating Junction Temperature TJ–65 to +125 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Controlled Avalanche Energy Waval 20 mJ
Device Package Shipping
ORDERING INFORMATION
MBR2535CTL TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
35 VOLTS

2
MARKING DIAGRAM
B2535L
B2535L = Device Code
MBR2535CTL
http://onsemi.com
196
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance — Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(IF = 25 Amps, TJ = 25°C)
(IF = 12.5 Amps, TJ = 25°C)
(IF = 12.5 Amps, TJ = 125°C)
VF0.55
0.47
0.41
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 125°C)
IR5.0
500
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.





          
  
Figure 1. Typical Forward Voltage, Per Leg
°
°

MBR2535CTL
http://onsemi.com
197





  

Figure 2. Typical Reverse Current, Per Leg
°
°
°









      
    
Figure 3. Forward Power Dissipation, Per Leg
°
 
 









    


  °
Figure 4. Current Derating
 
θ°








    


  °
Figure 5. Current Derating Ambient, Per Leg
θ°



Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 198 Publication Order Number:
MBR2535CT/D
 
MBR2545CT is a Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B2535, B2545
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MBR2535CT
MBR2545CT
VRRM
VRWM
VR35
45
V
Average Rectified Forward Current
(Rated VR, TC = 130°C) IF(AV) 30 A
Peak Repetitive Forward Current,
per Diode Leg (Rated VR, Square
Wave, 20 kHz, TC = 130°C)
IFRM 30 A
Non–Repetitive Peak Surge Current
per Diode Leg (Surge Applied at
Rated Load Conditions, Halfwave,
Single Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR2535CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIERS
25 AMPERES
35 and 45 VOLTS

2
Preferred devices are recommended choices for future use
and best overall value.
MBR2545CT TO–220 50 Units/Rail
MARKING DIAGRAM
B25x5
B25x5 = Device Code
x = 3 or 4
MBR2535CT, MBR2545CT
http://onsemi.com
199
THERMAL CHARACTERISTICS (Per Diode Leg)
Characteristic Symbol MBR2535CT MBR2545CT Unit
Maximum Thermal Resistance, Junction to Case RθJC 1.5 1.5 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 30 Amps, TC = 125°C)
(iF = 30 Amps, TC = 25°C)
vF0.73
0.82 0.73
0.82
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR40
0.2 40
0.2
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current

   





  








      





 








°
°
°
°
°
°



°
°
MBR2535CT, MBR2545CT
http://onsemi.com
200
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
Figure 5. Forward Power Dissipation

  °



  °






 
   







      
 



   


 

 





 



  


 
 

  
°
°
   
°
  
 

°


 





Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 201 Publication Order Number:
MBR3045ST/D

Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. This state–of–the–art device has the following features:
Dual Diode Construction — Terminals 1 and 3 May Be Connected
for Parallel Operation at Full Rating
45 V Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection
150°C Operating Junction Temperature
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 Units Per Plastic Tube
Marking: B3045
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified CurrentPer Device
(TC = 130°C) Per Diode
IF(AV) 30
15
A
Peak Repetitive Forward Current,
per Diode (Square Wave,
VR = 45 V, 20 kHz)
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions, Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Current,
per Diode (2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR3045ST TO–220
http://onsemi.com
TO–220AB
CASE 221A
STYLE 6
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
30 AMPERES
45 VOLTS

2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B3045
B3045 = Device Code
MBR3045ST
http://onsemi.com
202
THERMAL CHARACTERISTICS (Per Diode)
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 1.5 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode)
Instantaneous Forward Voltage (Note 1.) (iF = 30 Amp, TC = 25°C)
(iF = 30 Amp, TC = 125°C)
(iF = 20 Amp, TC = 125°C)
vF0.76
0.72
0.60
Volts
Instantaneous Reverse Current (Note 1.) (VR = 45 Volts, TC = 25°C)
(VR = 45 Volts, TC = 125°C) IR0.2
40 mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current

   





  








      





 








°
°
°
°
°
°



°
°
MBR3045ST
http://onsemi.com
203
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
Figure 5. Forward Power Dissipation

  °



  °






 
   







      
 



   


 

 





 



  


 
 

  
°
°
   
°
  
 

°


 





Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 204 Publication Order Number:
MBR735/D
 
MBR745 is a Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B735, B745
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MBR735
MBR745
VRRM
VRWM
VR35
45
V
Average Rectified Forward Current
(Rated VR, TC = 105°C) IF(AV) 7.5 A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 105°C)
IFRM 15 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change
(Rated VR)dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR735 TO–220
http://onsemi.com
TO–220AC
CASE 221B
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIERS
7.5 AMPERES
35 and 45 VOLTS
MBR745 TO–220 50 Units/Rail
Preferred devices are recommended choices for future use
and best overall value.

MARKING DIAGRAM
B7x5
B7x5 = Device Code
x = 3 or 4
MBR735, MBR745
http://onsemi.com
205
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 3.0 °C/W
Maximum Thermal Resistance, Junction to Ambient RθJA 60 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 7.5 Amps, TC = 125°C)
(iF = 15 Amps, TC = 125°C)
(iF = 15 Amps, TC = 25°C)
vF0.57
0.72
0.84
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR15
0.1
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current

   




  





     




 



°
°°
°
°
°
 °
°


MBR735, MBR745
http://onsemi.com
206
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
Figure 5. Power Dissipation

  °



  °






 
    






      
 



   


°  

°  





 



  


  

  
°
°
°
  



°
°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 207 Publication Order Number:
MBR1035/D
 
MBR1045 is a Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B1035, B1045
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MBR1035
MBR1045
VRRM
VRWM
VR35
45
V
Average Rectified Forward Current
(Rated VR, TC = 135°C) IF(AV) 10 A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 135°C)
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz)
See Figure 12.
IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change
(Rated VR)dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR1035 TO–220
http://onsemi.com
TO–220AC
CASE 221B
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIERS
10 AMPERES
35 to 45 VOLTS
MBR1045 TO–220 50 Units/Rail
Preferred devices are recommended choices for future use
and best overall value.

MARKING DIAGRAM
B10x5
B10x5 = Device Code
x = 3 or 4
MBR1035, MBR1045
http://onsemi.com
208
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 10 Amps, TC = 125°C)
(iF = 20 Amps, TC = 125°C)
(iF = 20 Amps, TC = 25°C)
vF0.57
0.72
0.84
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR15
0.1
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Maximum Forward Voltage

  







    









°
Figure 2. Typical Forward Voltage


  







    









°

°
°°
°
MBR1035, MBR1045
http://onsemi.com
209
 
  





    








 

 


  
Figure 3. Maximum Reverse Current Figure 4. Maximum Surge Capability
  
°
°
°
°
°




  °



  °







 

 

 
Figure 5. Current Derating, Infinite Heatsink Figure 6. Current Derating, RJA = 16°C/W
  

    




  °







 

 


 
Figure 7. Forward Power Dissipation Figure 8. Current Derating, Free Air
  










°
 
 







  






 


  
  




 




 


  
  
°
MBR1035, MBR1045
http://onsemi.com
210


    





  




 

  
      
   


θ    
  
         
          

       

Figure 9. Thermal Response


HIGH FREQUENCY OPERATION
Since current flow in a Schottky rectifier is the result of
majority carrier conduction, it is not subject to junction
diode forward and reverse recovery transients due to minor-
ity carrier injection and stored charge. Satisfactory circuit
analysis work may be performed by using a model consist-
ing o f an ideal diode in parallel with a variable capacitance.
(See Figure 10. )
Rectification efficiency measurements show that opera-
tion will be satisfactory up to several megahertz. For exam-
ple, relative waveform rectification efficiency is approxi-
mately 70 percent at 2.0 MHz, e.g., the ratio of dc power to
RMS power in the load is 0.28 at this frequency, whereas
perfect rectification would yield 0.406 for sine wave inputs.
However, in contrast to ordinary junction diodes, the loss in
waveform efficiency is not indicative of power loss; it is
simply a result of reverse current flow through the diode c a -
pacitance, which lowers the dc output voltage.
  






 


Figure 10. Capacitance
  



 
MBR1035, MBR1045
http://onsemi.com
211
  

 
    

 
 
Motorola builds quality and reliability into its Schottky
Rectifiers.
First is the chip, which has an interface metal between the
barrier metal and aluminum–contact metal to eliminate any
possible interaction between the two. The indicated guar-
dring prevents dv/dt problems, so snubbers are not manda-
tory. The guardring also operates like a zener to absorb
over–voltage transients.
Second is the package. The Schottky chip is bonded to
the copper heat sink using a specially formulated solder.
This gives the unit the capability of passing 10,000 operat-
ing thermal–fatigue cycles having a TJ of 100°C. The
epoxy molding compound is rated per UL 94, V0 @ 1/8.
Wire bonds are 100% tested in assembly as they are made.
Third i s the electrical testing, which includes 100% dv/dt
at 1600 V/s and reverse avalanche as part of device char-
acterization.

   

  
   
Figure 11. Schottky Rectifier
 µ
 
 
  




 



 



  
 µ
Figure 12. Test Circuit for dv/dt and
Reverse Surge Current
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 212 Publication Order Number:
MBR1060/D
 
 
MBR1060 and MBR10100 are Preferred Devices

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Guard–Ring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Epoxy Meets UL94, VO at 1/8
Low Power Loss/High Efficiency
High Surge Capacity
Low Stored Charge Majority Carrier Conduction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B1060, B1080, B1090, B10100
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MBR1060 TO–220
http://onsemi.com
50 Units/Rail
SCHOTTKY BARRIER
RECTIFIERS
10 AMPERES
60 to 100 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MBR1080 TO–220 50 Units/Rail
MBR1090 TO–220 50 Units/Rail
MBR10100 T O–220 50 Units/Rail
TO–220AC
CASE 221B
PLASTIC
3
4
1

MARKING DIAGRAM
B10x0
B10x0 = Device Code
x = 6, 8, 9 or 10
MBR1060, MBR1080, MBR1090, MBR10100
http://onsemi.com
213
MAXIMUM RATINGS
Rating
Symbol
MBR
Unit
Rating Symbol 1060 1080 1090 10100 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
60 80 90 100 Volts
Average Rectified Forward Current (Rated VR) TC = 133°C IF(AV) 10 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz) TC = 133°CIFRM 20 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 150 Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) IRRM 0.5 Amp
Operating Junction Temperature TJ65 to +150 °C
Storage Temperature Tstg 65 to +175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/µs
THERMAL CHARACTERISTICS
Maximum Thermal Resistance — Junction to Case
— Junction to Ambient RθJC
RθJA 2.0
60 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 10 Amps, TC = 125°C)
(iF = 10 Amps, TC = 25°C)
(iF = 20 Amps, TC = 125°C)
(iF = 20 Amps, TC = 25°C)
vF0.7
0.8
0.85
0.95
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR6.0
0.10
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MBR1060, MBR1080, MBR1090, MBR10100
http://onsemi.com
214
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
Figure 5. Forward Power Dissipation

  



  

  °



  °






 
   










      


      
 



 




   



 

°
°
°
°
°
 °




 



  


 

 

  
°

°
 
°
 

°
°°
     





 






Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 215 Publication Order Number:
MBR1635/D
 
MBR1645 is a Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B1635, B1645
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MBR1635
MBR1645
VRRM
VRWM
VR35
45
V
Average Rectified Forward Current
(Rated VR, TC = 125°C) IF(AV) 16 A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 125°C)
IFRM 32 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Voltage Rate of Change
(Rated VR)dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR1635 TO–220
http://onsemi.com
TO–220AC
CASE 221B
PLASTIC
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIERS
16 AMPERES
35 and 45 VOLTS
MBR1645 TO–220 50 Units/Rail
Preferred devices are recommended choices for future use
and best overall value.

MARKING DIAGRAM
B16x5
B16x5 = Device Code
x = 3 or 4
MBR1635, MBR1645
http://onsemi.com
216
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 1.5 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 16 Amps, TC = 125°C)
(iF = 16 Amps, TC = 25°C)
vF0.57
0.63
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR40
0.2
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current

   





  








      





 








°
°
°
°
°
°



°
°
MBR1635, MBR1645
http://onsemi.com
217
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
Figure 5. Forward Power Dissipation

  °




  °






 
    







      
 



   


 

 











  


 
 

  
°
°
   
°
  
 

°


 





Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 218 Publication Order Number:
MBR2515L/D


 
...employing the Schottky Barrier principle in a large
metal–to–silicon power diode. State–of–the–art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for use in low voltage, high frequency
switching power supplies, low voltage converters, OR’ing diodes, and
polarity protection devices.
Very Low Forward Voltage (0.28 V Maximum @ 19 Amps, 70°C)
Guardring for Stress Protection
Highly Stable Oxide Passivated Junction
(100°C Operating Junction Temperature)
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 Units Per Plastic Tube
Marking: B2515L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
15 V
Average Rectified Forward Current
(Rated VR, TC = 90°C) IF(AV) 25 A
Peak Repetitive Forward Current,
per Leg (Rated VR, Square Wave,
20 kHz, TC = 90°C)
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 150 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 1.0 A
Storage Temperature Range Tstg –65 to +125 °C
Operating Junction Temperature TJ–65 to +100 °C
THERMAL CHARACTERISTICS
Thermal Resistance —
Junction to Case RθJC 2.0 °C/W Device Package Shipping
ORDERING INFORMATION
MBR2515L TO–220
http://onsemi.com
TO–220AC
CASE 221B
STYLE 1
50 Units/Rail
3
4
1
SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
15 VOLTS
4
13
MARKING DIAGRAM
B2515L
B2515L = Device Code
MBR2515L
http://onsemi.com
219
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 25 Amps, TJ = 25°C)
(iF = 25 Amps, TJ = 70°C)
(iF = 19 Amps, TJ = 70°C)
vF0.45
0.42
0.28
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated DC Voltage, TJ = 25°C)
(Rated DC Voltage, TJ = 70°C)
IR15
200
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 220 Publication Order Number:
MBRF2060CT/D

Preferred Device

  
The SWITCHMODE Power Rectifier employs the Schottky Barrier
principle in a large area metal–to–silicon power diode.
State–of–the–art geometry features epitaxial construction with oxide
passivation and metal overlay contact. Ideally suited for use as
rectifiers in very low–voltage, high–frequency switching power
supplies, free wheeling diodes and polarity protection diodes.
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
Matched Dual Die Construction
High Junction Temperature Capability
High dv/dt Capability
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Epoxy Meets UL94, VO at 1/8
Electrically Isolated. No Isolation Hardware Required.
UL Recognized File #E69369 (Note 1.)
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B2060
MAXIMUM RATINGS
Please See the Table on the Following Page
1. UL Recognized mounting method is per Figure 4.
Device Package Shipping
ORDERING INFORMATION
MBRF2060CT TO–220
http://onsemi.com
ISOLATED TO–220
CASE 221D
STYLE 3
50 Units/Rail
3
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
60 VOLTS
2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B2060
B2060 = Device Code
MBRF2060CT
http://onsemi.com
221
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
60 Volts
Average Rectified Forward Current
(Rated VR), TC = 133°C Total Device IF(AV) 10
20 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC = 133°CIFRM 20 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 150 Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) IRRM 0.5 Amp
Operating Junction and Storage Temperature Range TJ, Tstg 65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10000 V/µs
RMS Isolation Voltage (t = 1.0 second, R.H. 30%, TA = 25°C) (Note 2.) Per Figure 3.
Per Figure 4. (Note 1.)
Per Figure 5.
Viso1
Viso2
Viso3
4500
3500
1500
Volts
THERMAL CHARACTERISTICS (Per Leg)
Maximum Thermal Resistance, Junction to Case RθJC 4.0 °C/W
Lead Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds TL260 °C
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 3.)
(iF = 10 Amp, TC = 25°C)
(iF = 10 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)
(iF = 20 Amp, TC = 125°C)
vF0.85
0.75
0.95
0.85
Volts
Maximum Instantaneous Reverse Current (Note 3.)
(Rated DC Voltage, TC = 25°C)
(Rated DC Voltage, TC = 125°C)
iR0.15
150
mA
1. UL Recognized mounting method is per Figure 4.
2. Proper strike and creepage distance must be provided.
3. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Figure 1. Typical Forward Voltage Per Diode Figure 2. Typical Reverse Current Per Diode





  

°
°
°
°

  






         

°
°
°
MBRF2060CT
http://onsemi.com
222
TEST CONDITIONS FOR ISOLATION TESTS*

 



 
Figure 3. Clip Mounting Position
for Isolation Test Number 1
* Measurement made between leads and heatsink with all leads shorted together.


 



  

 



 
Figure 4. Clip Mounting Position
for Isolation Test Number 2 Figure 5. Screw Mounting Position
for Isolation Test Number 3
MOUNTING INFORMATION**
 
 

 



Figure 6. Typical Mounting Techniques
6a. Screw–Mounted 6b. Clip–Mounted
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting
technique, a screw torque of 6 to 8 in .lbs is sufficient to provide maximum power dissipation capability. The compression
washer helps to maintain a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20
in .lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 2 0 i n.lbs without adversely affecting
the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does
not recommend exceeding 10 in .lbs of mounting torque under any mounting conditions.
**For more information about mounting power semiconductors see Application Note AN1040.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 223 Publication Order Number:
MBRF20100CT/D

Preferred Device

  
The SWITCHMODE Power Rectifier employs the Schottky Barrier
principle in a large area metal–to–silicon power diode.
State–of–the–art geometry features epitaxial construction with oxide
passivation and metal overlay contact. Ideally suited for use as
rectifiers in very low–voltage, high–frequency switching power
supplies, free wheeling diodes and polarity protection diodes.
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
Matched Dual Die Construction
High Junction Temperature Capability
High dv/dt Capability
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Epoxy Meets UL94, VO at 1/8
Electrically Isolated. No Isolation Hardware Required.
UL Recognized File #E69369 (Note 1.)
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B20100
MAXIMUM RATINGS
Please See the Table on the Following Page
1. UL Recognized mounting method is per Figure 4.
Device Package Shipping
ORDERING INFORMATION
MBRF20100CT TO–220
http://onsemi.com
ISOLATED TO–220
CASE 221D
STYLE 3
50 Units/Rail
3
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
100 VOLTS
2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B20100
B20100= Device Code
MBRF20100CT
http://onsemi.com
224
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 Volts
Average Rectified Forward Current
(Rated VR), TC = 133°C Total Device IF(AV) 10
20 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC = 133°CIFRM 20 Amps
Non–repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 150 Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) IRRM 0.5 Amp
Operating Junction and Storage Temperature Range TJ, Tstg 65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10000 V/µs
RMS Isolation Voltage (t = 1.0 second, R.H. 30%, TA = 25°C) (Note 2.) Per Figure 3.
Per Figure 4. (Note 1.)
Per Figure 5.
Viso1
Viso2
Viso3
4500
3500
1500
Volts
THERMAL CHARACTERISTICS (Per Leg)
Maximum Thermal Resistance, Junction to Case RθJC 3.5 °C/W
Lead Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds TL260 °C
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 3.)
(iF = 10 Amp, TC = 25°C)
(iF = 10 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)
(iF = 20 Amp, TC = 125°C)
vF0.85
0.75
0.95
0.85
Volts
Maximum Instantaneous Reverse Current (Note 3.)
(Rated DC Voltage, TC = 25°C)
(Rated DC Voltage, TC = 125°C)
iR0.15
150
mA
1. UL Recognized mounting method is per Figure 4.
2. Proper strike and creepage distance must be provided.
3. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Figure 1. Typical Forward Voltage Per Diode Figure 2. Typical Reverse Current Per Diode





  

°
°
°
°

  






         

°
°
°
MBRF20100CT
http://onsemi.com
225
TEST CONDITIONS FOR ISOLATION TESTS*

 



 
Figure 3. Clip Mounting Position
for Isolation Test Number 1
* Measurement made between leads and heatsink with all leads shorted together.


 



  

 



 
Figure 4. Clip Mounting Position
for Isolation Test Number 2 Figure 5. Screw Mounting Position
for Isolation Test Number 3
MOUNTING INFORMATION**
 
 

 



Figure 6. Typical Mounting Techniques
6a. Screw–Mounted 6b. Clip–Mounted
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting
technique, a screw torque of 6 to 8 in .lbs is sufficient to provide maximum power dissipation capability. The compression
washer helps to maintain a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20
in .lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 2 0 i n.lbs without adversely affecting
the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does
not recommend exceeding 10 in .lbs of mounting torque under any mounting conditions.
**For more information about mounting power semiconductors see Application Note AN1040.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 226 Publication Order Number:
MBRF20200CT/D

Preferred Device

  
The SWITCHMODE Power Rectifier employs the Schottky Barrier
principle in a large area metal–to–silicon power diode.
State–of–the–art geometry features epitaxial construction with oxide
passivation and metal overlay contact. Ideally suited for use as
rectifiers in very low–voltage, high–frequency switching power
supplies, free wheeling diodes and polarity protection diodes.
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
Matched Dual Die Construction
High Junction Temperature Capability
High dv/dt Capability
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Epoxy Meets UL94, VO at 1/8
Electrically Isolated. No Isolation Hardware Required.
UL Recognized File #E69369
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B20200
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MBRF20200CT TO–220
http://onsemi.com
ISOLATED TO–220
CASE 221D
STYLE 3
50 Units/Rail
3
1
SCHOTTKY BARRIER
RECTIFIER
20 AMPERES
200 VOLTS
2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B20200
B20200= Device Code
MBRF20200CT
http://onsemi.com
227
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 Volts
Average Rectified Forward Current Per Leg
(Rated VR) TC = 125°C Per Package IF(AV) 10
20 Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz) TC = 90°CIFRM 20 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 150 Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) IRRM 1.0 Amp
Operating Junction Temperature and Storage Temperature TJ, Tstg –65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/µs
THERMAL CHARACTERISTICS (Per Leg)
Thermal Resistance — Junction to Case RθJC 3.5 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Rating Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 10 Amp, TC = 25°C)
(iF = 10 Amp, TC = 125°C)
(iF = 20 Amp, TC = 25°C)
(iF = 20 Amp, TC = 125°C)
vF0.9
0.8
1.0
0.9
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 25°C)
(Rated dc Voltage, TC = 125°C)
iR1.0
50
mA
DYNAMIC CHARACTERISTICS (Per Leg)
Capacitance (VR = –5.0 V, TC = 25°C, Freq. = 1.0 MHz) CT500 pF
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Figure 1. Typical Forward Voltage (Per Leg)





   
°
°
°
  
°


µ
  





          
°
°
°
°
Figure 2. Typical Reverse Current (Per Leg)
MBRF20200CT
http://onsemi.com
228
TEST CONDITIONS FOR ISOLATION TESTS*

 



 
Figure 3. Clip Mounting Position
for Isolation Test Number 1
* Measurement made between leads and heatsink with all leads shorted together.


 



  

 



 
Figure 4. Clip Mounting Position
for Isolation Test Number 2 Figure 5. Screw Mounting Position
for Isolation Test Number 3
MOUNTING INFORMATION**
 
 

 



Figure 6. Typical Mounting Techniques
6a. Screw–Mounted 6b. Clip–Mounted
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting
technique, a screw torque of 6 to 8 in .lbs is sufficient to provide maximum power dissipation capability. The compression
washer helps to maintain a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20
in .lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 2 0 i n.lbs without adversely affecting
the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does
not recommend exceeding 10 in .lbs of mounting torque under any mounting conditions.
**For more information about mounting power semiconductors see Application Note AN1040.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 229 Publication Order Number:
MBRF2545CT/D

Preferred Device

  
The SWITCHMODE Power Rectifier employs the Schottky Barrier
principle in a large area metal–to–silicon power diode.
State–of–the–art geometry features epitaxial construction with oxide
passivation and metal overlay contact. Ideally suited for use as
rectifiers in very low–voltage, high–frequency switching power
supplies, free wheeling diodes and polarity protection diodes.
Highly Stable Oxide Passivated Junction
Very Low Forward Voltage Drop
Matched Dual Die Construction
High Junction Temperature Capability
High dv/dt Capability
Excellent Ability to Withstand Reverse Avalanche Energy Transients
Guardring for Stress Protection
Epoxy Meets UL94, VO at 1/8
Electrically Isolated. No Isolation Hardware Required.
UL Recognized File #E69369 (Note 1.)
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: B2545
MAXIMUM RATINGS
Please See the Table on the Following Page
1. UL Recognized mounting method is per Figure 4.
Device Package Shipping
ORDERING INFORMATION
MBRF2545CT TO–220
http://onsemi.com
ISOLATED TO–220
CASE 221D
STYLE 3
50 Units/Rail
3
1
SCHOTTKY BARRIER
RECTIFIER
25 AMPERES
45 VOLTS
2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B2545
B2545 = Device Code
MBRF2545CT
http://onsemi.com
230
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 Volts
Average Rectified Forward Current
(Rated VR), TC = 125°C Total Device IF(AV) 12.5
25 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC = 125°CIFRM 25 Amps
Non–repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 150 Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz) IRRM 1.0 Amp
Operating Junction and Storage Temperature TJ, Tstg 65 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10000 V/µs
RMS Isolation Voltage (t = 1.0 second, R.H. 30%, TA = 25°C) (Note 2.) Per Figure 3.
Per Figure 4. (Note 1.)
Per Figure 5.
Viso1
Viso2
Viso3
4500
3500
1500
Volts
THERMAL CHARACTERISTICS (Per Leg)
Maximum Thermal Resistance, Junction to Case RθJC 3.5 °C/W
Maximum Lead Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds TL260 °C
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 3.)
(iF = 12.5 Amps, TC = 25°C)
(iF = 12.5 Amps, TC = 125°C)
vF0.7
0.62
Volts
Maximum Instantaneous Reverse Current (Note 3.)
(Rated DC Voltage, TC = 25°C)
(Rated DC Voltage, TC = 125°C)
iR0.2
40
mA
1. UL Recognized mounting method is per Figure 4.
2. Proper strike and creepage distance must be provided.
3. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
  








°
°
°









    
  
Figure 1. Typical Forward Voltage, Per Leg


 °
°


°
°
Figure 2. Typical Reverse Current, Per Leg
MBRF2545CT
http://onsemi.com
231
TEST CONDITIONS FOR ISOLATION TESTS*

 



 
Figure 3. Clip Mounting Position
for Isolation Test Number 1
* Measurement made between leads and heatsink with all leads shorted together.


 



  

 



 
Figure 4. Clip Mounting Position
for Isolation Test Number 2 Figure 5. Screw Mounting Position
for Isolation Test Number 3
MOUNTING INFORMATION**
 
 

 



Figure 6. Typical Mounting Techniques
6a. Screw–Mounted 6b. Clip–Mounted
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting
technique, a screw torque of 6 to 8 in .lbs is sufficient to provide maximum power dissipation capability. The compression
washer helps to maintain a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20
in .lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 2 0 i n.lbs without adversely affecting
the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does
not recommend exceeding 10 in .lbs of mounting torque under any mounting conditions.
**For more information about mounting power semiconductors see Application Note AN1040.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 232 Publication Order Number:
MBR3045PT/D

Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Dual Diode Construction — Terminals 1 and 3 may be Connected for
Parallel Operation at Full Rating
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 units per plastic tube
Marking: B3045
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 105°C) Per Device
Per Diode
IF(AV) 30
15
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz) Per Diode
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 200 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) Per Diode
See Figure 6.
IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
Device Package Shipping
ORDERING INFORMATION
MBR3045PT SOT–93
http://onsemi.com
SOT–93
CASE 340D
PLASTIC
30 Units/Rail
2
4
1
SCHOTTKY BARRIER
RECTIFIER
30 AMPERES
45 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
3
MARKING DIAGRAM
B3045
B3045 = Device Code
MBR3045PT
http://onsemi.com
233
THERMAL CHARACTERISTICS PER DIODE
Rating Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 1.4 °C/W
Thermal Resistance, Junction to Ambient RθJA 40 °C/W
ELECTRICAL CHARACTERISTICS PER DIODE
Instantaneous Forward Voltage (Note 1.)
(iF = 20 Amps, TC = 125°C)
(iF = 30 Amps, TC = 125°C)
(iF = 30 Amps, TC = 25°C)
vF0.60
0.72
0.76
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR100
1.0
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
   


  





 

 

 
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
  






 







°°
 
°
°
°
°
°
MBR3045PT
http://onsemi.com
234

  °



    






 

 


 
Figure 3. Current Derating (Per Leg) Figure 4. Forward Power Dissipation (Per Leg)
  





  

  







 

 
Figure 5. Capacitance




Figure 6. Test Circuit for Repetitive Reverse
Current
 µ
 
 
  




 



 



  
 µ

 
 
°






  

 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 235 Publication Order Number:
MBR4045PT/D


 
The SWITCHMODE power rectifier employs the use of the
Schottky Barrier principle with a Platinum barrier metal. This
state-of-the-art device has the following features:
Dual Diode Construction — Terminals 1 and 3 May Be Connected
for Parallel Operation at Full Rating
45 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability
(> 10 V/ns)
150°C Operating Junction Temperature
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: B4045
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 125°C) Per Diode
Per Device
IF(AV) 20
40
A
Peak Repetitive Forward Current,
(Rated VR, Square Wave, 20 kHz
@ TC = 90°C) Per Diode
IFRM 40 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 400 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR4045PT SOT–93
http://onsemi.com
SOT–93
CASE 340D
STYLE 2
30 Units/Rail
SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
45 VOLTS
3
1
2,4
2
4
1
3
MARKING DIAGRAM
B4045
B4045 = Device Code
MBR4045PT
http://onsemi.com
236
THERMAL CHARACTERISTICS
Rating Symbol Max Unit
Thermal Resistance — Junction to Case RθJC 1.4 °C/W
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage (Note 1.)
@ IF = 20 Amps, TC = 25°C
@ IF = 20 Amps, TC = 125°C
@ IF = 40 Amps, TC = 25°C
@ IF = 40 Amps, TC = 125°C
VF0.70
0.60
0.80
0.75
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated DC Voltage, TC = 25°C
@ Rated DC Voltage, TC = 100°C
IR1.0
50
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
Figure 3. Typical Capacitance Per Leg Figure 4. Current Derating Per Leg
  

   

  

  °




°
°°
°
°
°







  






     
 
  

Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 237 Publication Order Number:
MBR6045PT/D


 
The SWITCHMODE power rectifier employs the use of the
Schottky Barrier principle with a Platinum barrier metal. This
state-of-the-art device has the following features:
Dual Diode Construction — Terminals 1 and 3 May Be Connected
for Parallel Operation at Full Rating
45 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability
(> 10 V/ns)
150°C Operating Junction Temperature
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: B6045
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 125°C) Per Diode
Per Device
IF(AV) 30
60
A
Peak Repetitive Forward Current,
(Rated VR, Square Wave, 20 kHz
@ TC = 90°C) Per Diode
IFRM 60 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR6045PT SOT–93
http://onsemi.com
30 Units/Rail
SCHOTTKY BARRIER
RECTIFIER
60 AMPERES
45 VOLTS
3
1
2,4
2
4
1
3
MARKING DIAGRAM
B6045
B6045 = Device Code
SOT–93
CASE 340D
STYLE 2
MBR6045PT
http://onsemi.com
238
THERMAL CHARACTERISTICS
Rating Symbol Max Unit
Thermal Resistance — Junction to Case RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage (Note 1.)
@ IF = 30 Amps, TC = 25°C
@ IF = 30 Amps, TC = 125°C
@ IF = 60 Amps, TC = 25°C
VF0.62
0.55
0.75
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated DC Voltage, TC = 25°C
@ Rated DC Voltage, TC = 100°C
IR1.0
50
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Reverse Current Figure 2. Typical Forward Voltage
  

   





 
°
°
°


       
° ° °
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 239 Publication Order Number:
MBR5025L/D

Preferred Device

 
The SWITCHMODE power rectifier employs the use of the
Schottky Barrier principle with a Platinum barrier metal. This
state-of-the-art device has the following features:
Very Low Forward Voltage Drop (Max 0.58 V @ 100°C)
Guardring for Stress Protection and High dv/dt Capability
(> 10 V/ns)
150°C Operating Junction Temperature
Specially Designed for SWITCHMODE Power Supplies with
Operating Frequency up to 300 kHz
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: B5025L
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
25 V
Average Rectified Forward Current
TC = 125°CIF(AV) 50 A
Peak Repetitive Forward Current,
(Rated VR, Square Wave, 20 kHz
@ TC = 90°C) Per Diode
IFRM 150 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 300 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR5025L TO–218
http://onsemi.com
TO–218
CASE 340E
STYLE 1
30 Units/Rail
4
1
SCHOTTKY BARRIER
RECTIFIER
LOW VF
50 AMPERES
25 VOLTS
3
1, 43
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B5025L
B5025L= Device Code
MBR5025L
http://onsemi.com
240
THERMAL CHARACTERISTICS
Rating Symbol Max Unit
Thermal Resistance — Junction to Case RθJC 0.75 °C/W
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage (Note 1.)
@ IF = 50 Amps, TC = 25°C
@ IF = 50 Amps, TC = 125°C
@ IF = 30 Amps, TC = 25°C
VF0.62
0.58
0.54
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated DC Voltage, TC = 25°C
@ Rated DC Voltage, TC = 100°C
IR0.5
60
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
  

   

  °

  °








    
°

° °
°
°
°









    

   
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 241 Publication Order Number:
MBR3045WT/D

Preferred Device

 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Dual Diode Construction — Terminals 1 and 3 may be Connected for
Parallel Operation at Full Rating
Guardring for Stress Protection
Low Forward Voltage
150°C Operating Junction Temperature
Popular TO–247 Package
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 units per plastic tube
Marking: B3045
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 105°C) Per Device
Per Diode
IF(AV) 30
15
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz) Per Diode
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 200 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) Per Diode
See Figure 6.
IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR3045WT TO–247
http://onsemi.com
TO–247
CASE 340L
PLASTIC
30 Units/Rail
2
1
SCHOTTKY BARRIER
RECTIFIER
30 AMPERES
45 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
3
MARKING DIAGRAM
B3045
B3045 = Device Code
MBR3045WT
http://onsemi.com
242
THERMAL CHARACTERISTICS (Per Diode)
Rating Symbol Max Unit
Thermal Resistance— Junction to Case
— Junction to Ambient RθJC
RθJA 1.4
40 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode)
Instantaneous Forward Voltage (Note 1.)
(iF = 20 Amps, TC = 125°C)
(iF = 30 Amps, TC = 125°C)
(iF = 30 Amps, TC = 25°C)
vF0.6
0.72
0.76
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR100
1.0
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
   


  





 

 

 
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
  






 







°°
 
°
°
°
°
°
MBR3045WT
http://onsemi.com
243

  °



    






 

 


 
Figure 3. Current Derating (Per Leg) Figure 4. Forward Power Dissipation (Per Leg)
  





  

  







 

 
Figure 5. Capacitance




Figure 6. Test Circuit for Repetitive Reverse
Current
 µ
 
 
  




 



 



  
 µ

 
 
°






  

 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 244 Publication Order Number:
MBR4015LWT/D


  
TO247 Power Package
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power rectifier. Features epitaxial construction with
oxide passivation and metal overlay contact. Ideally suited for low
voltage, high frequency switching power supplies; free wheeling
diodes and polarity protection diodes.
Highly Stable Oxide Passivated Junction
Guardring for Over–Voltage Protection
Low Forward Voltage Drop
Monolithic Dual Die Construction. May Be Paralleled for High
Current Output.
Full Electrical Isolation without Additional Hardware
Mechanical Characteristics:
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 30 Units Per Plastic Tube
Marking: B4015L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
15 V
Average Rectified Forward Current
(At Rated VR, TC = 95°C) Per Leg
Per Package
IO20
40
A
Peak Repetitive Forward Current,
(At Rated VR, Square Wave,
20 kHz, TC = 95°C) Per Leg
IFRM 40 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz) Per Package
IFSM 120 A
Storage/Operating Case Temperature Tstg, TC–55 to +100 °C
Operating Junction Temperature TJ–55 to +100 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR4015LWT TO–247
http://onsemi.com
TO–247
CASE 340L
STYLE 2
30 Units/Rail
2
1
SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
15 VOLTS
3
MARKING DIAGRAM
B4015L
B4015L= Device Code
MBR4015LWT
http://onsemi.com
245
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction–to–Case Per Leg
— Junction–to–Ambient Per Leg RθJC
RθJA 0.57
55 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.), See Figure 2. Per Leg VFTJ = 25°C TJ = 100°CV
(IF = 20 A)
(IF = 40 A) 0.42
0.50 0.36
0.48
Maximum Instantaneous Reverse Current (Note 1.), See Figure 4. Per Leg IRTJ = 25°C TJ = 100°CmA
(VR = 15 V)
(VR = 7.5 V) 5.0
2.7 530
370
1. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
Figure 1. Typical Forward Voltage Per Leg Figure 2. Maximum Forward Voltage Per Leg
Figure 3. Typical Reverse Current Per Leg Figure 4. Maximum Reverse Current Per Leg
   


    

  






  


 
 



  



 

°
°
°
°
°
°




  
°



 


°°


 
MBR4015LWT
http://onsemi.com
246

Figure 5. Current Derating Per Leg Figure 6. Forward Power Dissipation Per Leg
 
  °



   








 

   














 



  
 


Figure 7. Capacitance Per Leg Figure 8. Typical Operating Temperature
Derating Per Leg*

  



   






       



°
* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any
reverse voltage conditions. Calculations of TJ therefore must include forward and reverse power ef fects. The allowable operating
TJ may be calculated from the equation: TJ = TJmax – r(t)(Pf + Pr) where
r(t) = thermal impedance under given conditions,
Pf = forward power dissipation, and
Pr = reverse power dissipation
This graph displays the derated allowable TJ due to reverse bias under DC conditions only and is calculated as TJ = TJmax – r(t)Pr ,
where r(t) = Rthja. For other power applications further calculations must be performed.
°
°
°
°
 


°
MBR4015LWT
http://onsemi.com
247
 






     
 







Figure 9. Thermal Response Junction to Lead (Per Leg)

 


   



 






Figure 10. Thermal Response Junction to Ambient (Per Leg)
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 248 Publication Order Number:
MBR4045WT/D


 
The SWITCHMODE power rectifier employs the use of the
Schottky Barrier principle with a Platinum barrier metal. This
state-of-the-art device has the following features:
Dual Diode Construction — Terminals 1 and 3 May Be Connected
for Parallel Operation at Full Rating
45 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability
(> 10 V/ns)
150°C Operating Junction Temperature
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: B4045
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 125°C) Per Diode
Per Device
IF(AV) 20
40
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 90°C) Per Diode
IFRM 40 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 400 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR4045WT TO–247
http://onsemi.com
TO–247AC
CASE 340L
STYLE 2
30 Units/Rail
2
1
SCHOTTKY BARRIER
RECTIFIER
40 AMPERES
45 VOLTS

3
MARKING DIAGRAM
B4045
B4045 = Device Code
MBR4045WT
http://onsemi.com
249
THERMAL CHARACTERISTICS (Per Diode)
Rating Symbol Max Unit
Thermal Resistance — Junction to Case RθJC 1.4 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode)
Instantaneous Forward Voltage (Note 1.)
@ IF = 20 Amps, TC = 25°C
@ IF = 20 Amps, TC = 125°C
@ IF = 40 Amps, TC = 25°C
@ IF = 40 Amps, TC = 125°C
VF0.70
0.60
0.80
0.75
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated DC Voltage, TC = 25°C
@ Rated DC Voltage, TC = 100°C
IR1.0
50
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle < 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
Figure 3. Typical Capacitance Per Leg Figure 4. Current Derating Per Leg
  

   

  

  °




°
°°
°
°
°







  






     
 
  

Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 250 Publication Order Number:
MBR6045WT/D


 
The SWITCHMODE power rectifier employs the use of the
Schottky Barrier principle with a Platinum barrier metal. This
state-of-the-art device has the following features:
Dual Diode Construction — Terminals 1 and 3 May Be Connected
for Parallel Operation at Full Rating
45 Volt Blocking Voltage
Low Forward Voltage Drop
Guardring for Stress Protection and High dv/dt Capability
(> 10 V/ns)
150°C Operating Junction Temperature
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: B6045
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 125°C) Per Diode
Per Device
IF(AV) 30
60
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 90°C) Per Diode
IFRM 60 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –65 to +175 °C
Operating Junction Temperature TJ–65 to +150 °C
Peak Surge Junction Temperature
(Forward Current Applied) TJ(pk) 175 °C
Voltage Rate of Change dv/dt 10,000 V/sDevice Package Shipping
ORDERING INFORMATION
MBR6045WT TO–247
http://onsemi.com
TO–247AC
CASE 340L
STYLE 2
30 Units/Rail
2
1
SCHOTTKY BARRIER
RECTIFIER
60 AMPERES
45 VOLTS

3
MARKING DIAGRAM
B6045
B6045 = Device Code
MBR6045WT
http://onsemi.com
251
THERMAL CHARACTERISTICS (Per Diode)
Rating Symbol Max Unit
Thermal Resistance — Junction to Case RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode)
Instantaneous Forward Voltage (Note 1.)
@ IF = 30 Amps, TC = 25°C
@ IF = 30 Amps, TC = 125°C
@ IF = 60 Amps, TC = 25°C
VF0.62
0.55
0.75
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated DC Voltage, TC = 25°C
@ Rated DC Voltage, TC = 100°C
IR1.0
50
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle < 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Reverse Current Figure 2. Typical Forward Voltage
  

   





 
°
°
°


       
° ° °
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 252 Publication Order Number:
MBRP20030CTL/D

Preferred Device

  
The SWITCHMODE Power Rectifier uses the Schottky Barrier
principle with a platinum barrier metal. This state–of–the–art device
has the following features:
Dual Diode Construction —
May Be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
150°C Operating Junction Temperature
Recyclable Epoxy
Guaranteed Reverse Avalanche Energy Capability
Improved Mechanical Ratings
Mechanical Characteristics
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques:
See procedure given in the Package Outline Section
Shipped 25 units per foam
Marking: B20030L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
30 V
Average Rectified Forward Current
(At Rated VR, TC = 125°C) Per Leg
Per Device
IF(AV) 100
200
A
Peak Repetitive Forward Current,
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM 200 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 1500 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
LOW VF SCHOTTKY
BARRIER RECTIFIER
200 AMPERES
30 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP20030CTL POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B20030L
B20030L = Device Code
YY = Year
WW = Work Week
YYWW
MBRP20030CTL
http://onsemi.com
253
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 0.45 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(IF = 200 Amps, TC = +125°C)
(IF = 200 Amps, TC = +25°C)
VF0.52
0.60
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = +25°C) IR5.0 mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.
MAXIMUM MECHANICAL RATINGS
Terminal Penetration: 0.235 max
Terminal Torque: 25–40 in-lb max
Mounting Torque —
Outside Holes: 30–40 in-lb max
Mounting Torque —
Center Hole: 8–10 in-lb max
Seating Plane 1 mil per in.
Flatness (between mounting holes)
POWERTAP MECHANICAL DATA
APPLIES OVER OPERATING TEMPERATURE
Vertical Pull
250 lbs. max 2 in. Lever Pull
50 lbs. max
Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact
Note: between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very
Note: flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.
2
MBRP20030CTL
http://onsemi.com
254
MOUNTING PROCEDURE
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper
heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal
contact between the POWERTAP and heat sink.
2–3 TURNS 2–3 TURNS 2–3 TURNS
POWER TAP
HEAT SINK
STEP 2:
Finger tighten the center bolt. The bolt may
catch on the threads of the heat sink so it is
important to make sure the face of the bolt or
washer is in contact with the surface of the
POWERTAP.
2–3 TURNS FINGER-TIGHT 2–3 TURNS
POWER TAP
HEAT SINK
STEP 3:
Tighten each of the end bolts between 5 to 10
in-lb. POWER TAP
HEAT SINK
5–10 IN-LB FINGER-TIGHT 5–10 IN-LB
STEP 4:
T ighten the center bolt between 8 to 10 in-lb.
5–10 IN-LB 8–10 IN-LB 5–10 IN-LB
POWER TAP
HEAT SINK
STEP 5:
Finally, tighten the end bolts between 30 to 40
in-lb.
30–40 IN-LB 8–10 IN-LB 30–40 IN-LB
POWER TAP
HEAT SINK
STEP 1:
Locate the POWERTAP on the heat sink and
start mounting bolts into the threads by hand
(2 or 3 turns).
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 255 Publication Order Number:
MBRP40030CTL/D

Preferred Device

  
The SWITCHMODE Power Rectifier uses the Schottky Barrier
principle with a platinum barrier metal. This state-of-the-art device
has the following features:
Dual Diode Construction –
May Be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
150°C Operating Junction Temperature
Recyclable Epoxy
Improved Mechanical Ratings
Mechanical Characteristics
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques: See procedure given in the
Package Outline Section
Shipped 25 units per foam
Marking: B40030L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR30
V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) Per Leg
Per Device
IF(AV) 200
400
A
Peak Repetitive Forward Current,
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM
200
A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 1500 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
LOW VF SCHOTTKY
BARRIER RECTIFIER
400 AMPERES
30 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP40030CTL POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B40030L
B40030L = Device Code
YY = Year
WW = Work Week
YYWW
MBRP40030CTL
http://onsemi.com
256
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance – Junction to Case (Note 1.) RθJC 0.4 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 200 Amps, TC = +25°C)
(iF = 200 Amps, TC = +100°C)
VF0.5
0.41
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TC = +25°C)
(Rated dc Voltage, TC = +100°C)
IR20
1000
mA
1. Rating applies when surface mounted on the minimum pad size recommended.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.
Figure 1. Typical Instantaneous Forward Voltage Figure 2. Maximum Instantaneous Forward Voltage
   


    
 



 

°°
°° °
°
   



MBRP40030CTL
http://onsemi.com
257


Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

     





°
°
°

  

°


  






°
°
°

Figure 5. Typical Capacitance
MBRP40030CTL
http://onsemi.com
258
MAXIMUM MECHANICAL RATINGS
Terminal Penetration: 0.235 max
Terminal Torque: 25–40 in-lb max
Mounting Torque –
Outside Holes: 30–40 in-lb max
Mounting Torque –
Center Hole: 8–10 in-lb max
Seating Plane 1 mil per in.
Flatness (between mounting holes)
POWERTAP MECHANICAL DATA
APPLIES OVER OPERATING TEMPERATURE
Vertical Pull
250 lbs. max 2 in. Lever Pull
50 lbs. max
Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact
Note: between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very
Note: flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.
MOUNTING PROCEDURE
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper
heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal
contact between the POWERTAP and heat sink.
2–3 TURNS 2–3 TURNS 2–3 TURNS
POWER TAP
HEAT SINK
STEP 2:
Finger tighten the center bolt. The bolt may
catch on the threads of the heat sink so it is
important to make sure the face of the bolt or
washer is in contact with the surface of the
POWERTAP.
2–3 TURNS FINGER-TIGHT 2–3 TURNS
POWER TAP
HEAT SINK
STEP 3:
Tighten each of the end bolts between 5 to 10
in-lb. POWER TAP
HEAT SINK
5–10 IN-LB FINGER-TIGHT 5–10 IN-LB
STEP 4:
T ighten the center bolt between 8 to 10 in-lb.
5–10 IN-LB 8–10 IN-LB 5–10 IN-LB
POWER TAP
HEAT SINK
STEP 5:
Finally, tighten the end bolts between 30 to 40
in-lb.
30–40 IN-LB 8–10 IN-LB 30–40 IN-LB
POWER TAP
HEAT SINK
STEP 1:
Locate the POWERTAP on the heat sink and
start mounting bolts into the threads by hand
(2 or 3 turns).
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 259 Publication Order Number:
MBRP60035CTL/D

Preferred Device

  
The SWITCHMODE Power Rectifier uses the Schottky Barrier
principle with a platinum barrier metal. This state-of-the-art device
has the following features:
Dual Diode Construction —
May Be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
150°C Operating Junction Temperature
Recyclable Epoxy
Guaranteed Reverse Avalanche Energy Capability
Improved Mechanical Ratings
Mechanical Characteristics
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques:
See procedure given in the Package Outline Section
Shipped 25 units per foam
Marking: B60035L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) Per Leg
Per Device
IF(AV) 300
600
A
Peak Repetitive Forward Current,
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM 300 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 4000 A
Peak Repetitive Reverse Surge
Current (2.0 s, 1.0 kHz) IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
LOW VF SCHOTTKY
BARRIER RECTIFIER
600 AMPERES
35 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP60035CTL POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B60035L
B60035L = Device Code
YY = Year
WW = Work Week
YYWW
MBRP60035CTL
http://onsemi.com
260
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 0.4 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 300 Amps, TC = +25°C)
(iF = 300 Amps, TC = +100°C)
VF0.57
0.50
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = +25°C)
(Rated dc Voltage, TC = +100°C)
IR10
250
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2%.
MAXIMUM MECHANICAL RATINGS
Terminal Penetration: 0.235 max
Terminal Torque: 25–40 in-lb max
Mounting Torque —
Outside Holes: 30–40 in-lb max
Mounting Torque —
Center Hole: 8–10 in-lb max
Seating Plane 1 mil per in.
Flatness (between mounting holes)
POWERTAP MECHANICAL DATA
APPLIES OVER OPERATING TEMPERATURE
Vertical Pull
250 lbs. max 2 in. Lever Pull
50 lbs. max
Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact
Note: between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very
Note: flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.
2
MBRP60035CTL
http://onsemi.com
261
MOUNTING PROCEDURE
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper
heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal
contact between the POWERTAP and heat sink.
2–3 TURNS 2–3 TURNS 2–3 TURNS
POWER TAP
HEAT SINK
STEP 2:
Finger tighten the center bolt. The bolt may
catch on the threads of the heat sink so it is
important to make sure the face of the bolt or
washer is in contact with the surface of the
POWERTAP.
2–3 TURNS FINGER-TIGHT 2–3 TURNS
POWER TAP
HEAT SINK
STEP 3:
Tighten each of the end bolts between 5 to 10
in-lb. POWER TAP
HEAT SINK
5–10 IN-LB FINGER-TIGHT 5–10 IN-LB
STEP 4:
T ighten the center bolt between 8 to 10 in-lb.
5–10 IN-LB 8–10 IN-LB 5–10 IN-LB
POWER TAP
HEAT SINK
STEP 5:
Finally, tighten the end bolts between 30 to 40
in-lb.
30–40 IN-LB 8–10 IN-LB 30–40 IN-LB
POWER TAP
HEAT SINK
STEP 1:
Locate the POWERTAP on the heat sink and
start mounting bolts into the threads by hand
(2 or 3 turns).
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 262 Publication Order Number:
MBRP20045CT/D

Preferred Device
  
 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Dual Diode Construction —
May Be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage
175°C Operating Junction Temperature
Guaranteed Reverse Avalanche
Mechanical Characteristics:
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques:
See procedure given in the Package Outline Section
Shipped 25 units per foam
Marking: B20045T
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(Rated VR, TC = 140°C) Per Leg
Per Device
IF(AV) 100
200
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 140°C) Per Leg
IFRM
200
A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 1500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) Per Leg IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
SCHOTTKY
BARRIER RECTIFIER
200 AMPERES
45 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP20045CT POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B20045T
B20045T = Device Code
YY = Year
WW = Work Week
YYWW
MBRP20045CT
http://onsemi.com
263
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 0.6 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Instantaneous Forward Voltage (Note 1.)
(iF = 200 Amps, TJ = 25°C)
(iF = 200 Amps, TJ = 125°C)
vF0.89
0.78
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR50
0.5
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MAXIMUM MECHANICAL RATINGS
Terminal Penetration: 0.235 max
Terminal Torque: 25–40 in-lb max
Mounting Torque —
Outside Holes: 30–40 in-lb max
Mounting Torque —
Center Hole: 8–10 in-lb max
Seating Plane 1 mil per in.
Flatness (between mounting holes)
POWERTAP MECHANICAL DATA
APPLIES OVER OPERATING TEMPERATURE
Vertical Pull
250 lbs. max 2 in. Lever Pull
50 lbs. max
Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact
Note: between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very
Note: flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.
2
MBRP20045CT
http://onsemi.com
264
MOUNTING PROCEDURE
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper
heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal
contact between the POWERTAP and heat sink.
2–3 TURNS 2–3 TURNS 2–3 TURNS
POWER TAP
HEAT SINK
STEP 2:
Finger tighten the center bolt. The bolt may
catch on the threads of the heat sink so it is
important to make sure the face of the bolt or
washer is in contact with the surface of the
POWERTAP.
2–3 TURNS FINGER-TIGHT 2–3 TURNS
POWER TAP
HEAT SINK
STEP 3:
Tighten each of the end bolts between 5 to 10
in-lb. POWER TAP
HEAT SINK
5–10 IN-LB FINGER-TIGHT 5–10 IN-LB
STEP 4:
T ighten the center bolt between 8 to 10 in-lb.
5–10 IN-LB 8–10 IN-LB 5–10 IN-LB
POWER TAP
HEAT SINK
STEP 5:
Finally, tighten the end bolts between 30 to 40
in-lb.
30–40 IN-LB 8–10 IN-LB 30–40 IN-LB
POWER TAP
HEAT SINK
STEP 1:
Locate the POWERTAP on the heat sink and
start mounting bolts into the threads by hand
(2 or 3 turns).
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 265 Publication Order Number:
MBRP30045CT/D

Preferred Device
  
 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Dual Diode Construction —
May Be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage
175°C Operating Junction Temperature
Guaranteed Reverse Avalanche
Mechanical Characteristics:
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques:
See procedure given in the Package Outline Section
Shipped 25 units per foam
Marking: B30045T
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR45
V
Average Rectified Forward Current
(Rated VR, TC = 140°C) Per Leg
Per Device
IF(AV) 150
300
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 140°C) Per Leg
IFRM
300
A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz) Per Leg
IFSM 2500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) Per Leg IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
SCHOTTKY
BARRIER RECTIFIER
300 AMPERES
45 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP30045CT POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
B30045T= Device Code
YY = Year
WW = Work Week
MARKING DIAGRAM
B30045TYYWW
MBRP30045CT
http://onsemi.com
266
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 0.45 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Instantaneous Forward Voltage (Note 1.)
(iF = 150 Amps, TJ = 25°C)
(iF = 300 Amps, TJ = 25°C)
vF0.70
0.82
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR75
0.8
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MAXIMUM MECHANICAL RATINGS
Terminal Penetration: 0.235 max
Terminal Torque: 25–40 in-lb max
Mounting Torque —
Outside Holes: 30–40 in-lb max
Mounting Torque —
Center Hole: 8–10 in-lb max
Seating Plane 1 mil per in.
Flatness (between mounting holes)
POWERTAP MECHANICAL DATA
APPLIES OVER OPERATING TEMPERATURE
Vertical Pull
250 lbs. max 2 in. Lever Pull
50 lbs. max
Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact
Note: between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very
Note: flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.
2
MBRP30045CT
http://onsemi.com
267
MOUNTING PROCEDURE
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper
heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal
contact between the POWERTAP and heat sink.
2–3 TURNS 2–3 TURNS 2–3 TURNS
POWER TAP
HEAT SINK
STEP 2:
Finger tighten the center bolt. The bolt may
catch on the threads of the heat sink so it is
important to make sure the face of the bolt or
washer is in contact with the surface of the
POWERTAP.
2–3 TURNS FINGER-TIGHT 2–3 TURNS
POWER TAP
HEAT SINK
STEP 3:
Tighten each of the end bolts between 5 to 10
in-lb. POWER TAP
HEAT SINK
5–10 IN-LB FINGER-TIGHT 5–10 IN-LB
STEP 4:
T ighten the center bolt between 8 to 10 in-lb.
5–10 IN-LB 8–10 IN-LB 5–10 IN-LB
POWER TAP
HEAT SINK
STEP 5:
Finally, tighten the end bolts between 30 to 40
in-lb.
30–40 IN-LB 8–10 IN-LB 30–40 IN-LB
POWER TAP
HEAT SINK
STEP 1:
Locate the POWERTAP on the heat sink and
start mounting bolts into the threads by hand
(2 or 3 turns).
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 268 Publication Order Number:
MBRP40045CTL/D


  
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Features:
Dual Diode Construction —
May be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
150°C Operating Junction Temperature
Recyclable Epoxy
Guaranteed Reverse Avalanche Energy Capability
Improved Mechanical Ratings
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
45 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) Per Leg
Per Device
IF(AV) 200
400
A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM 400 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 2500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) IRRM 2.0 A
Storage and Operating Case
Temperature Range Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/s
SCHOTTKY
BARRIER RECTIFIER
400 AMPERES
45 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP40045CTL POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
MARKING DIAGRAM
B40045L
B40045L = Device Code
YY = Year
WW = Work Week
YYWW
MBRP40045CTL
http://onsemi.com
269
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction–to–Case Per Leg RθJC 0.45 °C/W
ELECTRICAL CHARACTERISTICS
Rating Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 1.) Per Leg VFTC = 25°C TC = 125°CV
(IF = 200 A)
(IF = 400 A) 0.57
0.73 0.52
0.68
Maximum Instantaneous Reverse Current (Note 1.) Per Leg IRTC = 25°C TC = 125°CmA
(Rated DC Voltage) 10 400
1. Pulse Test: Pulse Width = 380 µs, Duty Cycle 2%.
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current

   


  






      



°
°°
°

°
°
°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 0 270 Publication Order Number:
MBRP20060CT/D

Preferred Device
  
 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Dual Diode Construction —
May Be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage
175°C Operating Junction Temperature
Mechanical Characteristics:
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques:
See procedure given in the Package Outline Section
Shipped 25 units per foam
Marking: B20060T
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
60 V
Average Rectified Forward Current
(Rated VR, TC = 140°C) Per Leg
Per Device
IF(AV) 100
200
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 140°C) Per Leg
IFRM
200
A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 1500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) Per Leg IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
SCHOTTKY
BARRIER RECTIFIER
200 AMPERES
60 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP20060CT POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
B20060T
B20060T = Device Code
YY = Year
WW = Work Week
YYWW
MBRP20060CT
http://onsemi.com
271
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 0.6 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Instantaneous Forward Voltage (Note 1.)
(iF = 200 Amps, TJ = 25°C)
(iF = 200 Amps, TJ = 100°C)
vF0.91
0.80
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR50
0.5
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
   


    



  



  

°
°
   
°
°
°
°
MBRP20060CT
http://onsemi.com
272


Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current
Figure 5. Current Derating
(PER LEG) Figure 6. Forward Power Dissipation
(PER LEG)
 
 
   
  
  °
  


   



 





   



 















°
°
°
°
°





 
 





 
 
  

     

°
MBRP20060CT
http://onsemi.com
273
Figure 7. Capacitance
Figure 8. Thermal Response
Figure 9. Test Circuit for Repetitive
Reverse Current

  

°




 

 



 


 





       



 

 



MBRP20060CT
http://onsemi.com
274
MAXIMUM MECHANICAL RATINGS
Terminal Penetration: 0.235 max
Terminal Torque: 25–40 in-lb max
Mounting Torque —
Outside Holes: 30–40 in-lb max
Mounting Torque —
Center Hole: 8–10 in-lb max
Seating Plane 1 mil per in.
Flatness (between mounting holes)
POWERTAP MECHANICAL DATA
APPLIES OVER OPERATING TEMPERATURE
Vertical Pull
250 lbs. max 2 in. Lever Pull
50 lbs. max
Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact
Note: between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very
Note: flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.
2
MOUNTING PROCEDURE
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper
heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal
contact between the POWERTAP and heat sink.
2–3 TURNS 2–3 TURNS 2–3 TURNS
POWER TAP
HEAT SINK
STEP 2:
Finger tighten the center bolt. The bolt may
catch on the threads of the heat sink so it is
important to make sure the face of the bolt or
washer is in contact with the surface of the
POWERTAP.
2–3 TURNS FINGER-TIGHT 2–3 TURNS
POWER TAP
HEAT SINK
STEP 3:
Tighten each of the end bolts between 5 to 10
in-lb. POWER TAP
HEAT SINK
5–10 IN-LB FINGER-TIGHT 5–10 IN-LB
STEP 4:
T ighten the center bolt between 8 to 10 in-lb.
5–10 IN-LB 8–10 IN-LB 5–10 IN-LB
POWER TAP
HEAT SINK
STEP 5:
Finally, tighten the end bolts between 30 to 40
in-lb.
30–40 IN-LB 8–10 IN-LB 30–40 IN-LB
POWER TAP
HEAT SINK
STEP 1:
Locate the POWERTAP on the heat sink and
start mounting bolts into the threads by hand
(2 or 3 turns).
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 275 Publication Order Number:
MBRP30060CT/D

Preferred Device
  
 
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Dual Diode Construction —
May Be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage
175°C Operating Junction Temperature
Mechanical Characteristics:
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques:
See procedure given in the Package Outline Section
Shipped 25 units per foam
Marking: B30060T
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
60 V
Average Rectified Forward Current
(Rated VR, TC = 140°C) Per Leg
Per Device
IF(AV) 150
300
A
Peak Repetitive Forward Current,
(Rated VR, Square W ave,
20 kHz, TC = 140°C) Per Leg
IFRM
300
A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz) Per Leg
IFSM 2500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) Per Leg IRRM 2.0 A
Storage Temperature Range Tstg –55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 10,000 V/s
SCHOTTKY
BARRIER RECTIFIER
300 AMPERES
60 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP30060CT POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
B30060T= Device Code
YY = Year
WW = Work Week
MARKING DIAGRAM
B30060TYYWW
MBRP30060CT
http://onsemi.com
276
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 0.45 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Instantaneous Forward Voltage (Note 1.)
(iF = 150 Amps, TJ = 25°C)
(iF = 300 Amps, TJ = 25°C)
vF0.79
0.89
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR75
0.8
mA
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MAXIMUM MECHANICAL RATINGS
Terminal Penetration: 0.235 max
Terminal Torque: 25–40 in-lb max
Mounting Torque —
Outside Holes: 30–40 in-lb max
Mounting Torque —
Center Hole: 8–10 in-lb max
Seating Plane 1 mil per in.
Flatness (between mounting holes)
POWERTAP MECHANICAL DATA
APPLIES OVER OPERATING TEMPERATURE
Vertical Pull
250 lbs. max 2 in. Lever Pull
50 lbs. max
Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact
Note: between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very
Note: flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.
2
MBRP30060CT
http://onsemi.com
277
MOUNTING PROCEDURE
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper
heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal
contact between the POWERTAP and heat sink.
2–3 TURNS 2–3 TURNS 2–3 TURNS
POWER TAP
HEAT SINK
STEP 2:
Finger tighten the center bolt. The bolt may
catch on the threads of the heat sink so it is
important to make sure the face of the bolt or
washer is in contact with the surface of the
POWERTAP.
2–3 TURNS FINGER-TIGHT 2–3 TURNS
POWER TAP
HEAT SINK
STEP 3:
Tighten each of the end bolts between 5 to 10
in-lb. POWER TAP
HEAT SINK
5–10 IN-LB FINGER-TIGHT 5–10 IN-LB
STEP 4:
T ighten the center bolt between 8 to 10 in-lb.
5–10 IN-LB 8–10 IN-LB 5–10 IN-LB
POWER TAP
HEAT SINK
STEP 5:
Finally, tighten the end bolts between 30 to 40
in-lb.
30–40 IN-LB 8–10 IN-LB 30–40 IN-LB
POWER TAP
HEAT SINK
STEP 1:
Locate the POWERTAP on the heat sink and
start mounting bolts into the threads by hand
(2 or 3 turns).
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 278 Publication Order Number:
MBRP400100CTL/D


  
. . . using the Schottky Barrier principle with a platinum barrier
metal. These state–of–the–art devices have the following features:
Features:
Dual Diode Construction —
May be Paralleled for Higher Current Output
Guardring for Stress Protection
Low Forward Voltage Drop
150°C Operating Junction Temperature
Recyclable Epoxy
Guaranteed Reverse Avalanche Energy Capability
Improved Mechanical Ratings
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) Per Leg
Per Device
IF(AV) 200
400
A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM 400 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 2500 A
Peak Repetitive Reverse Current
(2.0 s, 1.0 kHz) IRRM 2.0 A
Storage and Operating Case
Temperature Range Tstg, TC–55 to +150 °C
Operating Junction Temperature TJ–55 to +150 °C
Voltage Rate of Change (Rated VR) dv/dt 1000 V/s
SCHOTTKY
BARRIER RECTIFIER
400 AMPERES
100 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP400100CTL POWERTAP II 25 Units/Tray
POWERTAP II
CASE 357C
PLASTIC
http://onsemi.com
MARKING DIAGRAM
B400100L
B400100L = Device Code
YY = Year
WW = Work Week
YYWW
MBRP400100CTL
http://onsemi.com
279
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction–to–Case Per Leg RθJC 0.45 °C/W
ELECTRICAL CHARACTERISTICS
Rating Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 1.) Per Leg VFTC = 25°C TC = 125°CV
(IF = 200 A)
(IF = 400 A) 0.83
0.97 0.69
0.82
Maximum Instantaneous Reverse Current (Note 1.) Per Leg IRTC = 25°C TC = 125°CmA
(Rated DC Voltage) 6.0 80
1. Pulse Test: Pulse Width = 380 µs, Duty Cycle 2%.
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current

   


  






      



°
°
°°

°
°
°

Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 280 Publication Order Number:
MBRP20035L/D


  
POWERTAP III Package
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State of the art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency switching
power supplies, free wheeling diode and polarity protection diodes.
Very Low Forward Voltage Drop
Highly Stable Oxide Passivated Junction
Guardring for Stress Protection
High dv/dt Capability
Mechanical Characteristics:
Dual Die Construction
Case: Epoxy, Molded with Plated Copper Heatsink Base
Weight: 40 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Base Plate Torques: See procedure given in the
Package Outline Section
Top Terminal Torque: 25–40 lb–in max.
Shipped 50 units per foam
Marking: MBRP20035L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) IO200 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM 400 A
Non–Repetitive Peak Surge Current
(Surge applied at rated load
conditions, halfwave, single phase,
60 Hz)
IFSM 2000 A
Peak Repetitive Reverse Surge
Current (2.0 µs, 1.0 kHz) IRRM 2.0 A
Storage/Operating Case
Temperature Range Tstg, TC55 to +150 °C
Operating Junction Temperature TJ55 to +150 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/µs
SCHOTTKY
BARRIER RECTIFIER
200 AMPERES
35 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP20035L POWERTAP III 50 Units/Foam
POWERTAP III
CASE 357D
PLASTIC
http://onsemi.com
MARKING DIAGRAM
MBRP20035L
MBRP20035L = Device Code

MBRP20035L
http://onsemi.com
281
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction–to–Case RθJC 0.45 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(I 200 A)
VFTJ = 25°C TJ = 100°CVolts
g( )
(IF = 200 A) 0.57 0.5
Maximum Instantaneous Reverse Current
(V 35 V)
IRTJ = 25°C TJ = 100°CmA
(VR = 35 V) 10 250
1. Pulse Test: Pulse Width 380 µs, Duty Cycle 2%.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 282 Publication Order Number:
MBRP30035L/D


  
POWERTAP III Package
. . . employing the Schottky Barrier principle in a large area
metal–to–silicon power diode. State of the art geometry features
epitaxial construction with oxide passivation and metal overlay
contact. Ideally suited for low voltage, high frequency switching
power supplies, free wheeling diode and polarity protection diodes.
Very Low Forward Voltage Drop
Highly Stable Oxide Passivated Junction
Guardring for Stress Protection
High dv/dt Capability
Mechanical Characteristics:
Dual Die Construction
Case: Epoxy, Molded with Plated Copper Heatsink Base
Weight: 40 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Base Plate Torques: See procedure given in the
Package Outline Section
Top Terminal Torque: 25–40 lb–in max.
Shipped 50 units per foam
Marking: MBRP30035L
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
35 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) IO300 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 100°C)
IFRM 600 A
Non–Repetitive Peak Surge Current
(Surge applied at rated load
conditions, halfwave, single phase,
60 Hz)
IFSM 3000 A
Peak Repetitive Reverse Surge
Current (2.0 µs, 1.0 kHz) IRRM 2.0 A
Storage/Operating Case
Temperature Range Tstg, TC55 to +150 °C
Operating Junction Temperature TJ55 to +150 °C
Voltage Rate of Change
(Rated VR, TJ = 25°C) dv/dt 10,000 V/µs
SCHOTTKY
BARRIER RECTIFIER
300 AMPERES
35 VOLTS
Device Package Shipping
ORDERING INFORMATION
MBRP30035L POWERTAP III 50 Units/Foam
POWERTAP III
CASE 357D
PLASTIC
http://onsemi.com
MARKING DIAGRAM
MBRP30035L
MBRP30035L = Device Code

MBRP30035L
http://onsemi.com
283
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction–to–Case RθJC 0.4 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(I 300 A)
VFTJ = 25°C TJ = 100°CVolts
g( )
(IF = 300 A) 0.57 0.5
Maximum Instantaneous Reverse Current
(V 35 V)
IRTJ = 25°C TJ = 100°CmA
(VR = 35 V) 10 250
1. Pulse Test: Pulse Width 380 µs, Duty Cycle 2%.
http://onsemi.com
284
http://onsemi.com
285
CHAPTER 4
Ultrafast Data Sheets
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 5 286 Publication Order Number:
MURS120T3/D
 
Preferred Devices
 
  
MURS105T3, MURS110T3, MURS115T3,
MURS120T3, MURS140T3, MURS160T3
Ideally suited for high voltage, high frequency rectification, or as
free wheeling and protection diodes in surface mount applications
where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
High Temperature Glass Passivated Junction
Low Forward Voltage Drop (0.71 to 1.05 Volts Max @ 1.0 A,
TJ = 150°C)
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Polarity: Polarity Band Indicates Cathode Lead
Marking: U1A, U1B, U1C, U1D, U1G, U1J
MAXIMUM RATINGS
Please See the Table on the Following Page U1x= Device Code
x = Specific Device Code
= A, B, C, D, G or J
Preferred devices are recommended choices for future use
and best overall value.
http://onsemi.com
See detailed ordering and shipping information in the table on
page 287 of this data sheet.
ORDERING INFORMATION
MARKING DIAGRAM
See general marking information in the device marking table
on page 287 of this data sheet.
DEVICE MARKING INFORMATION
ULTRAFAST RECTIFIERS
1.0 AMPERE
50–600 VOLTS
SMB
CASE 403A
U1x
MURS120T3 Series
http://onsemi.com
287
MAXIMUM RATINGS
MURS
Rating Symbol 105T3 110T3 115T3 120T3 140T3 160T3 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 150 200 400 600 Volts
Average Rectified Forward Current IF(AV) 1.0 @ TL = 155°C
2.0 @ TL = 145°C1.0 @ TL = 150°C
2.0 @ TL = 125°CAmps
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
IFSM 40 35 Amps
Operating Junction Temperature TJ65 to +175 °C
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Lead
(TL = 25°C) RθJL 13 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 1.0 A, TJ = 25°C)
(iF = 1.0 A, TJ = 150°C)
vF0.875
0.71 1.25
1.05
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 150°C)
iR2.0
50 5.0
150
µA
Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 A/µs)
(iF = 0.5 A, iR = 1.0 A, IR to 0.25 A)
trr 35
25 75
50
ns
Maximum Forward Recovery Time
(iF = 1.0 A, di/dt = 100 A/µs, Rec. to 1.0 V) tfr 25 50 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
DEVICE MARKING AND ORDERING INFORMATION
Device Marking Package Shipping
MURS105T3 U1A SMB 2500 Units/Tape & Reel
MURS110T3 U1B SMB 2500 Units/Tape & Reel
MURS115T3 U1C SMB 2500 Units/Tape & Reel
MURS120T3 U1D SMB 2500 Units/Tape & Reel
MURS140T3 U1G SMB 2500 Units/Tape & Reel
MURS160T3 U1J SMB 2500 Units/Tape & Reel
MURS120T3 Series
http://onsemi.com
288
MURS105T3, MURS110T3, MURS115T3, MURS120T3
Figure 1. Typical Forward Voltage
   
  















 
  
  












°
  
Figure 2. Typical Reverse Current*
  °
 











        
  










 
Figure 3. Typical Capacitance
Figure 4. Current Derating, Case






   
    

Figure 5. Power Dissipation




  
°
°
°
 




°
°
 

  

 
           
        
          
 
  
°
°

 


°

 


  

MURS120T3 Series
http://onsemi.com
289
MURS140T3, MURS160T3
Figure 6. Typical Forward Voltage
   
  















 
  
  











°
 
Figure 7. Typical Reverse Current*
  °












        
  






 
Figure 8. Typical Capacitance
Figure 9. Current Derating, Case






   
    

Figure 10. Power Dissipation




  
°
°
°





°
°
 
  

 
           
        
          
 
  
°
°

 


°
 
 


 

 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 290 Publication Order Number:
MURS220T3/D

Preferred Device
 
  
Ideally suited for high voltage, high frequency rectification, or as
free wheeling and protection diodes in surface mount applications
where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
High Temperature Glass Passivated Junction
Low Forward Voltage Drop
(0.77 Volts Max @ 2.0 A, TJ = 150°C)
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Polarity: Polarity Band Indicates Cathode Lead
Marking: U2D
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Current IF(AV) 2.0 @ TL =
145°CA
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM 40 A
Operating Junction Temperature Range TJ–65 to
+175 °C
U2D
ULTRAFAST RECTIFIERS
2 AMPERES
200 VOLTS
http://onsemi.com
Device Package Shipping
ORDERING INFORMATION
MURS220T3 SMB 2500/Tape & Reel
SMB
CASE 403A
Preferred devices are recommended choices for future use
and best overall value.
MARKING
DIAGRAM
U2D = Specific Device Code
MURS220T3
http://onsemi.com
291
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Lead
(TL = 25°C) RθJL 13 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 2.0 A, TJ = 25°C)
(iF = 2.0 A, TJ = 150°C)
vF0.95
0.77
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 150°C)
iR2.0
50
µA
Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 A/µs)
(iF = 0.5 A, iR = 1.0 A, IR to 0.25 A)
trr 35
25
ns
Maximum Forward Recovery Time
(iF = 1.0 A, di/dt = 100 A/µs, Rec. to 1.0 V) tfr 25 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage
   
  















 



  
°
°
°
 




   
  
Figure 2. Maximum Forward Voltage

°
    
°
°












MURS220T3
http://onsemi.com
292
  
  












°
   




°
°
           
        
          
 
  






        

°
°
°
Figure 3. Typical Reverse Current* Figure 4. Maximum Reverse Current
  °
 











        
  










 
Figure 5. Typical Capacitance Figure 6. Current Derating, Case






   
    

Figure 7. Power Dissipation
 

  

 
  
°
°

 


°

 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 293 Publication Order Number:
MURS230T3/D
 
Preferred Device
 
  
Ideally suited for high voltage, high frequency rectification, or as
free wheeling and protection diodes in surface mount applications
where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
High Temperature Glass Passivated Junction
Low Forward Voltage Drop (0.95 Volts Max @ 2.0 A, TJ = 150°C)
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Polarity: Polarity Band Indicates Cathode Lead
Marking: U2F, U2G
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MURS230T3
MURS240T3
VRRM
VRWM
VR300
400
V
Average Rectified Forward Current IF(AV) 1.0 @ TL =
150°C
2.0 @ TL =
125°C
A
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM 35 A
Operating Junction Temperature Range TJ–65 to
+175 °C
Device Package Shipping
ORDERING INFORMATION
MURS230T3 SMB 2500/Tape & Reel
MURS240T3 SMB
http://onsemi.com
2500/Tape & Reel
ULTRAFAST RECTIFIERS
2 AMPERES
300–400 VOLTS
SMB
CASE 403A
MARKING
DIAGRAM
Preferred devices are recommended choices for future use
and best overall value.
x = F (230T3)
G (240T3)
U2x
MURS230T3, MURS240T3
http://onsemi.com
294
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance, Junction to Lead
(TL = 25°C) RθJL 13 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 2.0 A, TJ = 25°C)
(iF = 2.0 A, TJ = 150°C)
vF1.15
0.95
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 150°C)
iR5.0
150
µA
Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 A/µs)
(iF = 0.5 A, iR = 1.0 A, IR to 0.25 A)
trr 65
50
ns
Maximum Forward Recovery Time
(iF = 1.0 A, di/dt = 100 A/µs, Rec. to 1.0 V) tfr 50 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
   
















 




°
°
°
  
   
















 




°
°
°
   

A)
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
MURS230T3, MURS240T3
http://onsemi.com
295
  
 










 °
 




°
°

  
  
 











°
 



°
°

  
           
        
          
 
A)
A)
Figure 3. Typical Reverse Current* Figure 4. Maximum Reverse Current*
  °
 


       
  




 

   
    

 

 

 
  
°
°

 


°

 



  




 

 

 



Figure 5. Typical Capacitance Figure 6. Maximum Capacitance
Figure 7. Current Derating, Case Figure 8. Power Dissipation
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 296 Publication Order Number:
MURS260T3/D

Preferred Device
 
  
Ideally suited for high voltage, high frequency rectification, or as
free wheeling and protection diodes in surface mount applications
where compact size and weight are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
High Temperature Glass Passivated Junction
Low Forward Voltage Drop (1.20 Volts Max @ 2.0 A, TJ = 150°C)
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 12 mm Tape and Reel, 2500 units per reel
Polarity: Polarity Band Indicates Cathode Lead
Marking: U2J
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 Volts
Average Rectified Forward Current IF(AV) 2.0 @ TL =
125°CAmps
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM 35 Amps
Operating Junction Temperature TJ65 to
+175 °C
U2J
ULTRAFAST RECTIFIERS
2 AMPERES
600 VOLTS
Device Package Shipping
ORDERING INFORMATION
MURS260T3 SMB 2500/Tape & Reel
SMB
CASE 403A
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
MARKING
DIAGRAM
U2J = Specific Device Code
MURS260T3
http://onsemi.com
297
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Lead
(TL = 25°C) RθJL 13 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 2.0 A, TJ = 25°C)
(iF = 2.0 A, TJ = 150°C)
vF1.45
1.20
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 150°C)
iR5.0
150
µA
Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 A/µs)
(iF = 0.5 A, iR = 1.0 A, IR to 0.25 A)
trr 75
50
ns
Maximum Forward Recovery Time
(iF = 1.0 A, di/dt = 100 A/µs, Rec. to 1.0 V) tfr 50 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage
   
  














 



  
°
°
°

 




   
  
Figure 2. Maximum Forward Voltage

°
    
°
°












MURS260T3
http://onsemi.com
298
  
  



°
 


°
°
           
        
          
 

  





      

°
°
°
Figure 3. Typical Reverse Current* Figure 4. Maximum Reverse Current
  °












        
  






 
Figure 5. Typical Capacitance Figure 6. Current Derating, Case






   
    

Figure 7. Power Dissipation
 
  

 
  
°
°

 


°
 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 299 Publication Order Number:
MURS320T3/D
 

Preferred Devices
 
  
. . . employing state–of–the–art epitaxial construction with oxide
passivation and metal overlay contact. Ideally suited for high voltage,
high frequency rectification, or as free wheeling and protection
diodes, in surface mount applications where compact size and weight
are critical to the system.
Small Compact Surface Mountable Package with J–Bend Leads
Rectangular Package for Automated Handling
Highly Stable Oxide Passivated Junction
Low Forward Voltage Drop
(0.71 to 1.05 Volts Max @ 3.0 A, TJ = 150°C)
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 217 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 16 mm Tape and Reel, 2500 units per reel
Polarity: Notch in Plastic Body Indicates Cathode Lead
Marking: U3D, U3G, U3J
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
SMC
CASE 403
PLASTIC
http://onsemi.com
MURS320T3 SMC 2500/Tape & Reel
ULTRAFAST
RECTIFIERS
3.0 AMPERES
200–600 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MURS340T3 SMC 2500/Tape & Reel
MURS360T3 SMC 2500/Tape & Reel
MARKING DIAGRAM
U3x
U3x = Device Code
x = D, G , or J
MURS320T3, MURS340T3, MURS360T3
http://onsemi.com
300
MAXIMUM RATINGS
Rating Symbol MURS320T3 MURS340T3 MURS360T3 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 400 600 Volts
Average Rectified Forward Current IF(AV) 3.0 @ TL = 140°C
4.0 @ TL = 130°C3.0 @ TL = 130°C
4.0 @ TL = 115°C3.0 @ TL = 130°C
4.0 @ TL = 115°CAmps
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
IFSM 75 Amps
Operating Junction Temperature TJ65 to +175 °C
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Lead RθJL 11 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 3.0 A, TJ = 25°C)
(iF = 4.0 A, TJ = 25°C)
(iF = 3.0 A, TJ = 150°C)
vF0.875
0.89
0.71
1.25
1.28
1.05
1.25
1.28
1.05
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 150°C)
iR5.0
15 10
250 10
250
µA
Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 A/µs)
(iF = 0.5 A, iR = 1.0 A, IREC to 0.25 A)
trr 35
25 75
50 75
50
ns
Maximum Forward Recovery Time
(iF = 1.0 A, di/dt = 100 A/µs, Recovery to 1.0 V) tfr 25 50 50 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MURS320T3, MURS340T3, MURS360T3
http://onsemi.com
301
MURS320T3
Figure 1. Typical Forward Voltage
   
  











  
  












°
  
Figure 2. Typical Reverse Current*
  °












        
    









 
Figure 3. Power Dissipation
Figure 4. Current Derating, Case







   
  
Figure 5. Typical Capacitance


  
°
°
°
 




°
°
 


           
        
          

  
°
°

 


   

 


 




    



MURS320T3, MURS340T3, MURS360T3
http://onsemi.com
302
MURS340T3, MURS360T3
Figure 6. Typical Forward Voltage
   
  











  
 











°
 
Figure 7. Typical Reverse Current*
  °












       
    









 
Figure 8. Power Dissipation
Figure 9. Current Derating, Case





   
  
Figure 10. Typical Capacitance


  
°
°
°





°
°
 


           
        
          


 


   

 
 


    











 


 

 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 303 Publication Order Number:
MURD320/D

Preferred Device

 
DPAK Surface Mount Package
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 35 Nanosecond Recovery Time
Low Forward Voltage Drop
Low Leakage
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 75 units per plastic tube
Available in 16 mm Tape and Reel, 2500 units per reel, by adding a
“T4’’ suffix to the part number
Marking: U320
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Current
(Rated VR, TC = 158°C) IF(AV) 3.0 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 158°C)
IFRM 6.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, 60 Hz)
IFSM 75 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °CDevice Package Shipping
ORDERING INFORMATION
http://onsemi.com
DPAK
CASE 369A
PLASTIC
ULTRAFAST
RECTIFIER
3.0 AMPERES
200 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MURD320 DPAK 75 Units/Rail
13
4
MURD320T4 DPAK 2500/Tape & Reel
4
1
3
MARKING DIAGRAM
U320
U320 = Device Code
MURD320
http://onsemi.com
304
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance, Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 6
80 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage Drop (Note 2.)
(iF = 3 Amps, TJ = 25°C)
(iF = 3 Amps, TJ = 125°C)
vF0.95
0.75
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(TJ = 25°C, Rated dc Voltage)
(TJ = 125°C, Rated dc Voltage)
iR5
500
µA
Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 Amps/µs, VR = 30 V, TJ = 25°C)
(IF = 0.5 Amp, iR = 1 Amp, IREC = 0.25 A, VR = 30 V, TJ = 25°C)
trr 35
25
ns
1. Rating applies when surface mounted on the minimum pad sizes recommended.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage
   
 















  
  












°
  
Figure 2. Typical Reverse Current*
    









 
Figure 3. Average Power Dissipation




 
°
°°
 




°
°
 


           
        
          
°






°

 
 



°
MURD320
http://onsemi.com
305
  °










       
Figure 4. Current Derating, Case






   
  °

Figure 5. Current Derating, Ambient
  
°

 

 


°
    



 

 
  
   
  
°

°
  







 
Figure 6. Typical Capacitance




°

  
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 306 Publication Order Number:
MURD620CT/D

Preferred Device

 
DPAK Surface Mount Package
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 35 Nanosecond Recovery Time
Low Forward Voltage Drop
Low Leakage
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 75 units per plastic tube
Available in 16 mm Tape and Reel, 2500 units per reel, by adding a
“T4’’ suffix to the part number
Marking: U620T
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Current
(Rated VR, TC = 140°C) Per Diode
Per Device
IF(AV) 3.0
6.0
A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 145°C) Per Diode
IF6.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, 60 Hz)
IFSM 50 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °CDevice Package Shipping
ORDERING INFORMATION
http://onsemi.com
DPAK
CASE 369A
PLASTIC
ULTRAFAST
RECTIFIER
6.0 AMPERES
200 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MURD620CT DPAK 75 Units/Rail
13
4
MURD620CTT4 DPAK 2500/Tape & Reel
MARKING DIAGRAM
U620T
U620T = Device Code
MURD620CT
http://onsemi.com
307
THERMAL CHARACTERISTICS (Per Diode)
Rating Symbol Value Unit
Thermal Resistance, Junction to Case
Junction to Ambient (Note 1.) RθJC
RθJA 9
80 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode)
Maximum Instantaneous Forward Voltage Drop (Note 2.)
(iF = 3 Amps, TC = 25°C)
(iF = 3 Amps, TC = 125°C)
(iF = 6 Amps, TC = 25°C)
(iF = 6 Amps, TC = 125°C)
vF1
0.96
1.2
1.13
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(TJ = 25°C, Rated dc Voltage)
(TJ = 125°C, Rated dc Voltage)
iR5
250
µA
Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 Amps/µs, VR = 30 V, TJ = 25°C)
(IF = 0.5 Amp, iR = 1 Amp, IREC = 0.25 A, VR = 30 V, TJ = 25°C)
trr 35
25
ns
1. Rating applies when surface mounted on the minimum pad sizes recommended.
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage (Per Leg)
   
 















  
  





°
  
Figure 2. Typical Leakage Current* (Per Leg)
    









 
Figure 3. Average Power Dissipation (Per Leg)




 
°
°°
 


°
°
 


           
        
          
°






°








°
MURD620CT
http://onsemi.com
308
  °










       
Figure 4. Current Derating, Case (Per Leg)






   
  °

Figure 5. Current Derating, Ambient (Per Leg)
  
°

 

 


°
    



 

 
  
   
  
°

°
  







 
Figure 6. Typical Capacitance (Per Leg)




°

  


Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 309 Publication Order Number:
MSRD620CT/D


  
 
Plastic DPAK Package
State of the art geometry features epitaxial construction with glass
passivation and metal overlay contact. Ideally suited for low voltage,
high frequency switching power supplies, free wheeling diode and
polarity protection diodes.
Soft Ultrafast Recovery (35 ns typ.)
Highly Stable Oxide Passivated Junction
Matched Dual Die Construction — May Be Paralleled for High
Current Output
Short Heat Sink Tab Manufactured — Not Sheared
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 75 units per plastic tube
Available in 16 mm Tape and Reel, 2500 units per Reel,
Add “T4’’ to Suffix part number
Marking: S620T
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Current
(At Rated VR, T C = 137°C) Per Leg
Per Package
IO3.0
6.0
A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 138°C) Per Leg
IFRM 6.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz) Per Package
IFSM 50 A
Storage/Operating Case
Temperature Range Tstg, TC–55 to +175 °C
Operating Junction
Temperature Range TJ–55 to +175 °C
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
DPAK
CASE 369A
PLASTIC
SOFT ULTRAFAST
RECTIFIER
6.0 AMPERES
200 VOLTS
MSRD620CT DPAK 75 Units/Rail
13
2
MSRD620CTT4 DPAK 2500/Tape & Reel
MARKING DIAGRAM
S620T
S620T = Device Code
MSRD620CT
http://onsemi.com
310
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance – Junction to Case Per Leg
– Junction to Ambient Per Leg RθJC
RθJA 9.0
80 °C/W
ELECTRICAL CHARACTERISTICS
Rating Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 1.), see Figure 2. Per Leg VFTJ = 25°C TJ = 150°CV
(IF = 3.0 A)
(IF = 6.0 A) 1.15
1.35 1.05
1.30
Maximum Instantaneous Reverse Current, see Figure 4. Per Leg IRTJ = 25°C TJ = 150°CA
(VR = 200 V)
(VR = 100 V) 5.0
2.0 200
100
Maximum Reverse Recovery Time (Note 2.) Per Leg
(VR = 30 V, IF = 1.0 A, di/dt = 50 A/s)
(VR = 30 V, IF = 3.0 A, di/dt = 50 A/s)
trr 45
55
ns
Maximum Peak Reverse Recovery Current Per Leg
(VR = 30 V, IF = 1.0 A, di/dt = 50 A/s)
(VR = 30 V, IF = 3.0 A, di/dt = 50 A/s)
IRM 2.0
3.0
A
1. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
2. trr measured projecting from 25% of IRM to ground.
Figure 1. Typical Forward Voltage, Per Leg Figure 2. Maximum Forward Voltage, Per Leg
Figure 3. Typical Reverse Current, Per Leg Figure 4. Maximum Reverse Current, Per Leg

   


 
  









     
   
°
°

°
°

    




     
°
°

°
 

°
°
°
 
  






     

°
°
°

MSRD620CT
http://onsemi.com
311
  °










       
Figure 5. Current Derating, Case (Per Leg)




   
  °

Figure 6. Current Derating, Ambient (Per Leg)
  
  
°
°

 


   


 

   
  
°
°
 

 



   
  
Figure 7. Typical Capacitance (Per Leg)

   
°
 
Figure 8. Transient Thermal Response (RJA)
         
  






MSRD620CT
http://onsemi.com
312
Figure 9. Transient Thermal Response (RJC)
       
  





Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 313 Publication Order Number:
MURB1620CT/D

Preferred Device

 
D2PAK Power Surface Mount Package
Designed for use in switching power supplies, inverters and as free
wheeling diodes, these state–of–the–art devices have the following
features:
Package Designed for Power Surface Mount Applications
Ultrafast 35 Nanosecond Recovery Times
175°C Operating Junction Temperature
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
Low Leakage Specified @ 150°C Case Temperature
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to Industrial Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per reel by adding a
“T4” suffix to the part number
Marking: U1620T
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Current
(Rated VR, TC = 150°C) Total Device IF(AV) 8.0
16 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 150°C)
IFM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MURB1620CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
16 AMPERES
200 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MURB1620CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
U1620T
U1620T = Device Code
MURB1620CT
http://onsemi.com
314
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 3°C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.) RθJA 50 °C/W
Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds TL260 °C
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 8 Amp, TC = 150°C)
(iF = 8 Amp, TC = 25°C)
vF0.895
0.975
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR250
5
µA
Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1 Amp, IREC = 0.25 Amp)
trr 35
25
ns
1. See Chapter 7 for mounting conditions
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%







  °













  
µ
















    
  
Figure 1. Typical Forward Voltage, Per Leg


° °°
    
°
°
°
 
θ°

 
    





°

 


Figure 2. Typical Reverse Current, Per Leg*
Figure 3. Current Derating Case, Per Leg Figure 4. Power Dissipation, Per Leg
MURB1620CT
http://onsemi.com
315
Figure 5. Thermal Response







         
  

θ  θ
   
  
  
  

θ




 
Figure 6. Typical Capacitance, Per Leg
  

  



°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 316 Publication Order Number:
MURB1660CT/D

Preferred Device

 
D2PAK Power Surface Mount Package
Designed for use in switching power supplies, inverters and as free
wheeling diodes, these state–of–the–art devices have the following
features:
Package Designed for Power Surface Mount Applications
Ultrafast 60 Nanosecond Recovery Times
175°C Operating Junction Temperature
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
High Voltage Capability to 600 V
Low Leakage Specified @ 150°C Case Temperature
Short Heat Sink Tab Manufactured – Not Sheared!
Similar in Size to Industrial Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per reel by adding a
“T4” suffix to the part number
Marking: U1660T
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 V
Average Rectified Forward Current
(Rated VR, TC = 150°C) Total Device IF(AV) 8.0
16 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 150°C)
IFM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MURB1660CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
16 AMPERES
600 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MURB1660CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
U1660T
U1660T = Device Code
MURB1660CT
http://onsemi.com
317
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 2°C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.) RθJA 50 °C/W
Temperature for Soldering Purposes: 1/8 from Case for 5 Seconds TL260 °C
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 8 Amp, TC = 150°C)
(iF = 8 Amp, TC = 25°C)
vF1.20
1.50
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR500
10
µA
Maximum Reverse Recovery Time
(IF = 1 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1 Amp, IREC = 0.25 Amp)
trr 60
50
ns
1. See Chapter 7 for mounting conditions
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
  °













 
θ°

 







  
µ

















     
  

°
°
°
    






 
 
°
°
°




°




Figure 1. Typical Forward Voltage, Per Leg Figure 2. Typical Reverse Current, Per Leg
Figure 3. Current Derating, Case, Per Leg Figure 4. Power Dissipation, Per Leg
MURB1660CT
http://onsemi.com
318








         
  

θ  θ
   
  
  
  

θ




 
Figure 5. Thermal Response
Figure 6. Typical Capacitance, Per Leg
  

  



°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 319 Publication Order Number:
MURHB840CT/D

Preferred Device

 
D2PAK Power Surface Mount Package
Designed for use in switching power supplies, inverters and as free
wheeling diodes, these state–of–the–art devices have the following
features:
Package Designed for Power Surface Mount Applications
Ultrafast 28 Nanosecond Recovery Times
175°C Operating Junction Temperature
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
High Voltage Capability
Low Leakage Specified @ 150°C Case Temperature
Short Heat Sink Tab Manufactured – Not Sheared!
Similar in Size to Industrial Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per reel by adding a
“T4” suffix to the part number
Marking: UH840
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
400 V
Average Rectified Forward Current
(Rated VR, TC = 120°C) Total Device IF(AV) 4.0
8.0 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 120°C)
IFM 8.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Controlled Avalanche Energy WAVAL 20 mJ
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MURHB840CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
8.0 AMPERES
400 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MURHB840CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
UH840
UH840 = Device Code
MURHB840CT
http://onsemi.com
320
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 3.0 °C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.) RθJA 50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 2.) (iF = 4.0 Amps, TC = 150°C)
(iF = 4.0 Amps, TC = 25°C) vF1.9
2.2 Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C) iR500
10 µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 28 ns
1. See Chapter 7 for mounting conditions
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current, Per Leg
Figure 3. Current Derating, Case Figure 4. Typical Capacitance, Per Leg







  

°
°
°
  
µ










       

  °


      
°
°
°
 
θ°




  




  

MURHB840CT
http://onsemi.com
321
Figure 5. Forward Power Dissipation, Per Leg

    







°
 

Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 322 Publication Order Number:
MURHB860CT/D

Preferred Device

 
D2PAK Power Surface Mount Package
Designed for use in switching power supplies, inverters and as free
wheeling diodes, these state–of–the–art devices have the following
features:
Package Designed for Power Surface Mount Applications
Ultrafast 35 Nanosecond Recovery Times
175°C Operating Junction Temperature
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
High Voltage Capability to 600 Volts
Low Leakage Specified @ 150°C Case Temperature
Short Heat Sink Tab Manufactured — Not Sheared!
Similar in Size to Industry Standard TO–220 Package
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.7 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Available in 24 mm Tape and Reel, 800 units per reel by adding a
“T4” suffix to the part number
Marking: UH860
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 V
Average Rectified Forward Current
(Rated VR, TC = 120°C) Total Device IF(AV) 4.0
8.0 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 120°C)
IFM 8.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MURHB860CT D2PAK
http://onsemi.com
D2PAK
CASE 418B
STYLE 3
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
8.0 AMPERES
600 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MURHB860CTT4 D2PAK 800/Tape & Reel
MARKING DIAGRAM
UH860
UH860 = Device Code
MURHB860CT
http://onsemi.com
323
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 3.0 °C/W
Maximum Thermal Resistance, Junction to Ambient RθJA 50 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 1.) (iF = 4.0 Amps, TC = 150°C)
(iF = 4.0 Amps, TC = 25°C) vF2.5
2.8 Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C) iR500
10 µA
Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 35 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 5 324 Publication Order Number:
MUR120/D
 
Preferred Devices

 
MUR105, MUR110, MUR115, MUR120,
MUR130, MUR140, MUR160
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 25, 50 and 75 Nanosecond Recovery Times
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Reverse Voltage to 600 Volts
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: MUR105, MUR110, MUR115, MUR120, MUR130,
MUR140, MUR160
MAXIMUM RATINGS
Please See the Table on the Following Page
Preferred devices are recommended choices for future use
and best overall value.
http://onsemi.com
See detailed ordering and shipping information in the package
dimensions section on page 325 of this data sheet.
ORDERING INFORMATION
MARKING DIAGRAM
ULTRAFAST RECTIFIERS
1.0 AMPERE
50–600 VOLTS
AXIAL LEAD
CASE 59–04
PLASTIC
MUR1xx
MUR1= Device Code
xx = Specific Device Code
MUR120 Series
http://onsemi.com
325
MAXIMUM RATINGS
MUR
Rating Symbol 105 110 115 120 130 140 160 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 150 200 300 400 600 Volts
Average Rectified Forward Current
(Square Wave Mounting Method #3 Per Note 2.) IF(AV) 1.0 @ TA = 130°C1.0 @ TA = 120°C Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave,
single phase, 60 Hz)
IFSM 35 Amps
Operating Junction Temperature and
Storage Temperature TJ, Tstg 65 to +175 °C
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Ambient RθJA See Note 2. °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 1.0 Amp, TJ = 150°C)
(iF = 1.0 Amp, TJ = 25°C)
vF0.710
0.875 1.05
1.25
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 150°C)
(Rated dc Voltage, TJ = 25°C)
iR50
2.0 150
5.0
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 A)
trr 35
25 75
50
ns
Maximum Forward Recovery Time
(IF = 1.0 A, di/dt = 100 A/µs, IREC to 1.0 V) tfr 25 50 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
ORDERING INFORMATION
Device Marking Package Shipping
MUR105 MUR105 Axial Lead 1000 Units/Bag
MUR105RL MUR105 Axial Lead 5000 Units/Tape & Reel
MUR110 MUR110 Axial Lead 1000 Units/Bag
MUR110RL MUR110 Axial Lead 5000 Units/Tape & Reel
MUR115 MUR115 Axial Lead 1000 Units/Bag
MUR115RL MUR115 Axial Lead 5000 Units/Tape & Reel
MUR120 MUR120 Axial Lead 1000 Units/Bag
MUR120RL MUR120 Axial Lead 5000 Units/Tape & Reel
MUR130 MUR130 Axial Lead 1000 Units/Bag
MUR130RL MUR130 Axial Lead 5000 Units/Tape & Reel
MUR140 MUR140 Axial Lead 1000 Units/Bag
MUR140RL MUR140 Axial Lead 5000 Units/Tape & Reel
MUR160 MUR160 Axial Lead 1000 Units/Bag
MUR160RL MUR160 Axial Lead 5000 Units/Tape & Reel
MUR120 Series
http://onsemi.com
326
MUR105, MUR110, MUR115, MUR120
Figure 1. Typical Forward Voltage
   
  















  
  





°
  
Figure 2. Typical Reverse Current*
    






    
  °







Figure 3. Current Derating
(Mounting Method #3 Per Note 1)
Figure 4. Power Dissipation




 
  
Figure 5. Typical Capacitance




 
° °
°
 


°
°
 
           
        
          



°


  


°

°

 


 
 



  
MUR120 Series
http://onsemi.com
327
MUR130, MUR140, MUR160
Figure 6. Typical Forward Voltage
   
  















  
  





°

Figure 7. Typical Reverse Current*
    






    
  °







Figure 8. Current Derating
(Mounting Method #3 Per Note 1)
Figure 9. Power Dissipation




 
  
Figure 10. Typical Capacitance




 
°
°
°



°
°
 
           
        
          



°


  


°

°

 

 
 



  





 
MUR120 Series
http://onsemi.com
328
Lead Length, L
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
52
67
RθJA
65 72
80 87
50
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction to
ambient (RθJA) for the mountings shown is to be
used as typical guideline values for preliminary
engineering or in case the tie point temperature
cannot be measured.
NOTE 2. — AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
L L
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Pin Mounting
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 3/8
Board Ground Plane
P.C. Board with
1–1/2 X 1–1/2 Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 0 329 Publication Order Number:
MUR180E/D
 
MUR1100E is a Preferred Device

 
Ultrafast “E” Series with High Reverse
Energy Capability
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
10 mjoules Avalanche Energy Guaranteed
Excellent Protection Against Voltage Transients in Switching
Inductive Load Circuits
Ultrafast 75 Nanosecond Recovery Time
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Reverse Voltage to 1000 Volts
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: MUR180E, MUR1100E
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MUR180E
MUR1100E
VRRM
VRWM
VR800
1000
V
Average Rectified Forward Current
(Note 1.) (Square Wave Mounting
Method #3 Per Note 3.)
IF(AV) 1.0 @
TA = 95°CA
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 35 A
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to
+175 °C
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
MUR180ERL Axial Lead 5000/Tape & Reel
MUR180E Axial Lead 1000 Units/Bag
ULTRAFAST
RECTIFIERS
1.0 AMPERES
800–1000 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
AXIAL LEAD
CASE 059–04
PLASTIC
MARKING DIAGRAM
MUR1x0E
MUR1x0E = Device Code
x = 8 or 10
MUR1100ERL Axial Lead 5000/Tape & Reel
MUR1100E Axial Lead 1000 Units/Bag
MUR180E, MUR1100E
http://onsemi.com
330
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Ambient RθJA See Note 3. °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(iF = 1.0 Amp, TJ = 150°C)
(iF = 1.0 Amp, TJ = 25°C)
vF1.50
1.75
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 100°C)
(Rated dc Voltage, TJ = 25°C)
iR600
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp)
trr 100
75
ns
Maximum Forward Recovery Time
(IF = 1.0 Amp, di/dt = 100 Amp/µs, Recovery to 1.0 V) tfr 75 ns
Controlled Avalanche Energy (See Test Circuit in Figure 6) WAVAL 10 mJ
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR180E, MUR1100E
http://onsemi.com
331
ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage
   
  















  
  





°
  
Figure 2. Typical Reverse Current*
    






    
  °







Figure 3. Current Derating
(Mounting Method #3 Per Note 1)
Figure 4. Power Dissipation




 
  
Figure 5. Typical Capacitance




 
°
°°
 


°
°
 
           
         
         


°


  


°

°

 


 
 


  

MUR180E, MUR1100E
http://onsemi.com
332



  



Figure 6. Test Circuit Figure 7. Current–Voltage Waveforms
The unclamped inductive switching circuit shown in
Figure 6 was used to demonstrate the controlled avalanche
capability of the new “E’’ series Ultrafast rectifiers. A
mercury switch was used instead of an electronic switch to
simulate a noisy environment when the switch was being
opened.
When S 1 is closed at t0 the current in the inductor IL ramps
up linearly; and energy is stored in the coil. At t1 the switch
is opened and the voltage across the diode under test begins
to rise rapidly , due to di/dt ef fects, when this induced voltage
reaches the breakdown voltage of the diode, it is clamped at
BVDUT and the diode begins to conduct the full load current
which now starts to decay linearly through the diode, and
goes to zero at t2.
By solving the loop equation at the point in time when S1
is opened; and calculating the energy that is transferred to
the diode it can be shown that the total energy transferred is
equal t o the ener gy stored in the inductor plus a finite amount
of energy from the VDD power supply while the diode is in
breakdown (from t1 to t2) minus any losses due to finite
component resistances. Assuming the component resistive
elements are small Equation (1) approximates the total
energy transferred to the diode. It can be seen from this
equation that if the VDD voltage is low compared to the
breakdown voltage of the device, the amount of energy
contributed b y the supply during breakdown is small and the
total ener gy can be assumed to be nearly equal to the ener gy
stored in the coil during the time when S1 was closed,
Equation (2).
The oscilloscope picture in Figure 8, shows the
information obtained for the MUR8100E (similar die
construction as the MUR1100E Series) in this test circuit
conducting a peak current of one ampere at a breakdown
voltage of 1300 volts, and using Equation (2) the energy
absorbed by the MUR8100E is approximately 20 mjoules.
Although it is not recommended to design for this
condition, the new “E’’ series provides added protection
against those unforeseen transient viruses that can produce
unexplained random failures in unfriendly environments.
WAVAL 1
2LI2
LPKBVDUT
BVDUT–VDD
WAVAL 1
2LI2
LPK
Figure 8. Current–Voltage Waveforms
 
 
 

 
 
 
EQUATION (1):
EQUATION (2):
CH1 CH2 REF REF
CH1
CH2
ACQUISITIONS
SAVEREF SOURCE
1 217:33 HRS
STACK
A20s 953 V VERT500V
50mV
MUR180E, MUR1100E
http://onsemi.com
333
Lead Length, L
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
52
67
RθJA
65 72
80 87
50
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction to
ambient (RθJA) for the mountings shown is to be
used as typical guideline values for preliminary
engineering or in case the tie point temperature
cannot be measured.
NOTE 3. — AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
L L
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Pin Mounting
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 3/8
Board Ground Plane
P.C. Board with
1–1/2 X 1–1/2 Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 334 Publication Order Number:
MUR220/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 25 Nanosecond Recovery Times
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: MUR220
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200
Volts
Average Rectified Forward Current
(Note 1.) (Square Wave Mounting
Method #3 Per Note 3.)
IF(AV) 2.0 @
TA = 90°CAmps
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 35 Amps
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to
+175 °C
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Device Package Shipping
ORDERING INFORMATION
AXIAL LEAD
CASE 059–04
PLASTIC
http://onsemi.com
MUR220RL Axial Lead 5000/Tape & Reel
MUR220 Axial Lead 1000 Units/Bag
ULTRAFAST
RECTIFIER
2 AMPERES
200 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
MUR220
MUR220 = Device Code
MUR220
http://onsemi.com
335
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Ambient RθJA See Note 3. °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(IF = 2.0 Amp, TJ = 150°C)
(IF = 2.0 Amp, TJ = 25°C)
vF0.75
0.95
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 150°C)
(Rated dc Voltage, TJ = 25°C)
iR50
2.0
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, IR = 1.0 Amp, IREC = 0.25 A)
trr 35
25
ns
Maximum Forward Recovery Time
(IF = 1.0 A, di/dt = 100 A/µs, IREC to 1.0 V) tfr 25 ns
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
  




   
Figure 1. Maximum Forward Voltage

  
°
°
°
°
Figure 2. Typical Forward Voltage
   
 





 
°
°
°
  
°
MUR220
http://onsemi.com
336




 
  
Figure 3. Maximum Reverse Current
  



   
°
°
°
°
  
   




Figure 4. Typical Reverse Current



°
°


°
°
    





    
  °







Figure 5. Current Derating Figure 6. Power Dissipation
Figure 7. Typical Capacitance





 
  




 
  

°
  


MUR220
http://onsemi.com
337
Lead Length, L
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
52
67
RθJA
65 72
80 87
50
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction to
ambient (RθJA) for the mountings shown is to be
used as typical guideline values for preliminary
engineering or in case the tie point temperature
cannot be measured.
NOTE 3. – AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
L L
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Pin Mounting
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 3/8
Board Ground Plane
P.C. Board with
1–1/2 X 1–1/2 Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 338 Publication Order Number:
MUR240/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast Recovery Times
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: MUR240
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
400
V
Average Rectified Forward Current
(Note 1.) (Square Wave Mounting
Method #3 Per Note 3.)
IF(AV) 2.0 @
TA = 85°CA
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 35 A
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to
+175 °C
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
MUR240RL Axial Lead 5000/Tape & Reel
MUR240 Axial Lead 1000 Units/Bag
ULTRAFAST
RECTIFIER
2 AMPERES
400 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
AXIAL LEAD
CASE 059–04
PLASTIC
MARKING DIAGRAM
MUR240
MUR240 = Device Code
MUR240
http://onsemi.com
339
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Ambient RθJA See Note 3. °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(IF = 2.0 Amp, TJ = 150°C)
(IF = 2.0 Amp, TJ = 25°C)
VF0.95
1.15
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 150°C)
(Rated dc Voltage, TJ = 25°C)
IR150
5.0
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs) trr 65 ns
Maximum Forward Recovery Time
(IF = 1.0 A, di/dt = 100 A/µs) trr 50 ns
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
VF, INSTANTANEOUS VOLTAGE (VOLTS)
1.3
1.0
10
IF
0.1 0.5 1.1
Figure 1. Maximum Forward Current
, INSTANTANEOUS FORWARD CURRENT (AMPS)
0.7 0.9
VF @ 175°C
25°C
100°C
Figure 2. Typical Forward Current
VF, INSTANTANEOUS VOLTAGE (VOLTS)
0.3 0.70.5
0.1
10
, INSTANTANEOUS FORWARD CURRENT (AMPS)
F
1.5
1.0
I
1.1 1.3
VF @ 175°C
25°C
100°C
1.7 0.91.5
MUR240
http://onsemi.com
340
0
0.1
10
1000
VR, REVERSE VOLTAGE (VOLTS)
Figure 3. Maximum Reverse Current
300 400
1.0
100 200
IR @ 175°C
25°C
100°C
VR, REVERSE VOLTAGE (VOLTS)
0 100 200
0.001
0.1
1.0
IR
400
Figure 4. Typical Reverse Current
300
0.01
, REVERSE CURRENT ( A)
100°C
25°C
100 IR @ 175°C
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
0
0.5
1.0
1.5
2.5
PF(AV)
00.5 1.0 1.5 2.0 3.0
TA, AMBIENT TEMPERATURE (°C)
050
0
2.0
1.0
3.0
5.0
4.0
I
200
Figure 5. Current Derating Figure 6. Power Dissipation
Figure 7. Typical Capacitance
150100
, AVERAGE POWER DISSIPATION (WATTS)
, A VERAGE FORW ARD CURRENT (AMPS)
F(AV)

SQUARE WAVE
SQUARE WAVE dc
0
10
25
30
010 20
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
TJ = 25°C
30 40 50
5.0
20
Figure 8. Maximum Capacitance
0
10
30
35
010 20
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
TJ = 25°C
30 40 50
5.0
20
10
2.5
2.0
15 15
25
IR, REVERSE CURRENT ( A)
100
MUR240
http://onsemi.com
341
Lead Length, L
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
52
67
RθJA
65 72
80 87
50
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction to
ambient (RθJA) for the mountings shown is to be
used as typical guideline values for preliminary
engineering or in case the tie point temperature
cannot be measured.
NOTE 3. – AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
ÉÉÉÉÉÉÉÉÉÉÉ
L L
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Pin Mounting
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 3/8
Board Ground Plane
P.C. Board with
1–1/2 X 1–1/2 Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 342 Publication Order Number:
MUR260/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 50 Nanosecond Recovery Times
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: MUR260
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600
Volts
Average Rectified Forward Current
(Note 1.) (Square Wave Mounting
Method #3 Per Note 3.)
IF(AV) 2.0 @
TA = 60°CAmps
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 35 Amps
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to
+175 °C
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
MUR260RL Axial Lead 5000/Tape & Reel
MUR260 Axial Lead 1000 Units/Bag
ULTRAFAST
RECTIFIER
2 AMPERES
600 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
AXIAL LEAD
CASE 059–04
PLASTIC
MARKING DIAGRAM
MUR260
MUR260 = Device Code
MUR260
http://onsemi.com
343
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Ambient RθJA See Note 3. °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(IF = 2.0 Amp, TJ = 150°C)
(IF = 2.0 Amp, TJ = 25°C)
vF1.15
1.35
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 150°C)
(Rated dc Voltage, TJ = 25°C)
iR150
5.0
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, IR = 1.0 Amp, IREC = 0.25 A)
trr 75
50
ns
Maximum Forward Recovery Time
(IF = 1.0 A, di/dt = 100 A/µs, IREC to 1.0 V) tfr 50 ns
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
  




   
Figure 1. Maximum Forward Voltage

  
°
°
°
°
Figure 2. Typical Forward Voltage
   
 





 
°
°
°
  
°
MUR260
http://onsemi.com
344
Figure 3. Maximum Reverse Current Figure 4. Typical Reverse Current
Figure 5. Current Derating Figure 6. Power Dissipation
Figure 7. Typical Capacitance




 
  

°
  





 
  
  


   
°
°
°
°

  
 







°
°


°
°


  °









 
    




    

  

MUR260
http://onsemi.com
345
Lead Length, L
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
52
67
RθJA
65 72
80 87
50
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction to
ambient (RθJA) for the mountings shown is to be
used as typical guideline values for preliminary
engineering or in case the tie point temperature
cannot be measured.
NOTE 3. — AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
L L
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Pin Mounting
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 3/8
Board Ground Plane
P.C. Board with
1–1/2 X 1–1/2 Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 346 Publication Order Number:
MUR2100E/D

Preferred Device

 
Ultrafast “E” Series with High Reverse
Energy Capability
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
20 mjoules Avalanche Energy Guaranteed
Excellent Protection Against Voltage Transients in Switching
Inductive Load Circuits
Ultrafast 75 Nanosecond Recovery Time
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag
Available Tape and Reeled, 5000 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: MUR2100E
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
1000 Volts
Average Rectified Forward Current
(Note 1.) (Square Wave Mounting
Method #3 Per Note 3.)
IF(AV) 2.0 @
TA = 35°CAmps
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 35 Amps
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to
+175 °C
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
MUR2100ERL Axial Lead 5000/Tape & Reel
MUR2100E Axial Lead 1000 Units/Bag
ULTRAFAST
RECTIFIER
2 AMPERES
1000 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
AXIAL LEAD
CASE 059–04
PLASTIC
MARKING DIAGRAM
MUR2100E
MUR2100E = Device Code
MUR2100E
http://onsemi.com
347
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Ambient RθJA See Note 3. °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 2.)
(IF = 2.0 Amp, TJ = 150°C)
(IF = 2.0 Amp, TJ = 25°C)
vF1.75
2.20
Volts
Maximum Instantaneous Reverse Current (Note 2.)
(Rated dc Voltage, TJ = 100°C)
(Rated dc Voltage, TJ = 25°C)
iR600
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, IR = 1.0 Amp, IREC = 0.25 A)
trr 100
75
ns
Maximum Forward Recovery Time
(IF = 1.0 A, di/dt = 100 A/µs, IREC to 1.0 V) tfr 75 ns
Controlled Avalanche Energy (See Test Circuit in Figure 6) WAVAL 10 mJ
2. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
  



   
Figure 1. Maximum Forward Voltage

 
°
°
°
°
Figure 2. Typical Forward Voltage
   
 





 
°
°
°
  
°

MUR2100E
http://onsemi.com
348




  
Figure 3. Maximum Reverse Current



  
°
°
°
°
  
  




Figure 4. Typical Reverse Current


°
°


°
°
    





    
  °






Figure 5. Current Derating Figure 6. Power Dissipation
Figure 7. Typical Capacitance





 
 












 
  

°
  


MUR2100E
http://onsemi.com
349
Lead Length, L
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
52
67
RθJA
65 72
80 87
50
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction to
ambient (RθJA) for the mountings shown is to be
used as typical guideline values for preliminary
engineering or in case the tie point temperature
cannot be measured.
NOTE 3. — AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
ÉÉÉÉÉÉÉÉÉÉÉ
L L
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Pin Mounting
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 3/8
Board Ground Plane
P.C. Board with
1–1/2 X 1–1/2 Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 350 Publication Order Number:
MUR420/D
  
  
MUR420 and MUR460 are Preferred Devices

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 25, 50 and 75 Nanosecond Recovery Times
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Reverse Voltage to 600 Volts
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 5,000 per bag
Available Tape and Reeled, 1500 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode indicated by Polarity Band
Marking: MUR405, MUR410, MUR415, MUR420, MUR440,
MUR460
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 267–03
STYLE 1
ULTRAFAST RECTIFIERS
4.0 AMPERES
50–600 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
MUR405 Axial Lead 5000 Units/Bag
MUR405RL Axial Lead 1500/Tape & Reel
MUR410 Axial Lead 5000 Units/Bag
MUR410RL Axial Lead 1500/Tape & Reel
MUR415 Axial Lead 5000 Units/Bag
MUR415RL Axial Lead 1500/Tape & Reel
MARKING DIAGRAM
MUR4xx
MUR4xx= Device Code
xx = 05, 10, 15, 20, 40, 60
MUR420 Axial Lead 5000 Units/Bag
MUR420RL Axial Lead 1500/Tape & Reel
MUR440 Axial Lead 5000 Units/Bag
MUR440RL Axial Lead 1500/Tape & Reel
MUR460 Axial Lead 5000 Units/Bag
MUR460RL Axial Lead 1500/Tape & Reel
MUR405, MUR410, MUR415, MUR420, MUR440, MUR460
http://onsemi.com
351
MAXIMUM RATINGS
MUR
Rating Symbol 405 410 415 420 440 460 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 150 200 400 600 Volts
Average Rectified Forward Current (Square Wave)
(Mounting Method #3 Per Note 2.) IF(AV) 4.0 @ TA = 80°C4.0 @
TA = 40°CAmps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions, half wave,
single phase, 60 Hz)
IFSM 125 70 Amps
Operating Junction Temperature & Storage Temperature TJ, Tstg 65 to +175 °C
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Ambient RθJA See Note 2. °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 3.0 Amps, TJ = 150°C)
(iF = 3.0 Amps, TJ = 25°C)
(iF = 4.0 Amps, TJ = 25°C)
vF0.710
0.875
0.890
1.05
1.25
1.28
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 150°C)
(Rated dc Voltage, TJ = 25°C)
iR150
5.0 250
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp)
trr 35
25 75
50
ns
Maximum Forward Recovery Time
(IF = 1.0 A, di/dt = 100 A/µs, Recovery to 1.0 V) tfr 25 50 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR405, MUR410, MUR415, MUR420, MUR440, MUR460
http://onsemi.com
352
MUR405, MUR410, MUR415, MUR420
Figure 1. Typical Forward Voltage
   
  














  
  












°
  
Figure 2. Typical Reverse Current
  °







Figure 3. Current Derating
(Mounting Method #3 Per Note 1)
Figure 4. Power Dissipation





  
    

Figure 5. Typical Capacitance



  
°
°
°
 




°
°
 



   






 



°
   





  







  
°







 
MUR405, MUR410, MUR415, MUR420, MUR440, MUR460
http://onsemi.com
353
MUR440, MUR460
Figure 6. Typical Forward Voltage
   
  














  
 












°
 
Figure 7. Typical Reverse Current
  °







Figure 8. Current Derating
(Mounting Method #3 Per Note 1)
Figure 9. Power Dissipation





  
    

Figure 10. Typical Capacitance



  
°
°
°





°
°
 





   





 



°
   





  







  
°

 



 
MUR405, MUR410, MUR415, MUR420, MUR440, MUR460
http://onsemi.com
354
Lead Length, L (IN)
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
50
58
RθJA
51 53
59 61
28
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mountings shown is to be used as typical
guideline values for preliminary engineering or in case the
tie point temperature cannot be measured.
NOTE 2. — AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
3/4
55
63
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
L L
P.C. Board Where Available Copper
Surface area is small.
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Push–In Terminals T–28
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 1/2
Board Ground Plane
P.C. Board with
1–1/2x 1–1/2Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 0 355 Publication Order Number:
MUR480E/D
 

 
Ultrafast “E’’ Series with High Reverse
Energy Capability
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
20 mJ Avalanche Energy Guaranteed
Excellent Protection Against Voltage Transients in Switching
Inductive Load Circuits
Ultrafast 75 Nanosecond Recovery Time
175°C Operating Junction Temperature
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Reverse Voltage to 1000 Volts
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 5,000 per bag
Available Tape and Reeled, 1500 per reel, by adding a “RL’ suffix to
the part number
Polarity: Cathode indicated by Polarity Band
Marking: MUR480E, MUR4100E
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MUR480E
MUR4100E
VRRM
VRWM
VR800
1000
V
Average Rectified Forward Current
(Square Wave)
(Mounting Method #3 Per Note 2.)
IF(AV) 4.0 @
TA = 35°CA
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 70 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
AXIAL LEAD
CASE 267–03
STYLE 1
ULTRAFAST
RECTIFIER
4.0 AMPERES
800–1000 VOLTS
MUR480E Axial Lead 5000 Units/Bag
MUR480ERL Axial Lead 1500/Tape & Reel
MUR4100E Axial Lead 5000 Units/Bag
MUR4100ERL Axial Lead 1500/Tape & Reel
MARKING DIAGRAM
MUR4x0E
MUR4x0E = Device Code
x = 8 or 10
MUR480E, MUR4100E
http://onsemi.com
356
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC See Note 2. °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Max Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 3.0 Amps, TJ = 150°C)
(iF = 3.0 Amps, TJ = 25°C)
(iF = 4.0 Amps, TJ = 25°C)
vF1.53
1.75
1.85
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 100°C)
(Rated dc Voltage, TJ = 25°C)
iR900
25
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp)
trr 100
75
ns
Maximum Forward Recovery Time
(IF = 1.0 Amp, di/dt = 100 Amp/µs, Recovery to 1.0 V) tfr 75 ns
Controlled Avalanche Energy (See Test Circuit in Figure 6. ) WAVAL 20 mJ
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR480E, MUR4100E
http://onsemi.com
357
MUR480E, MUR4100E
Figure 1. Typical Forward Voltage
   
  














  
 












°
 
Figure 2. Typical Reverse Current*
  °







Figure 3. Current Derating
(Mounting Method #3 Per Note 1)
Figure 4. Power Dissipation






    

Figure 5. Typical Capacitance



 
°
°°





°
°
 


 

  





 


°
   





  







  
°




 
  



        
       
        
      


 °
MUR480E, MUR4100E
http://onsemi.com
358




Figure 6. Test Circuit Figure 7. Current–Voltage Waveforms


 
The unclamped inductive switching circuit shown in
Figure 6. was used to demonstrate the controlled avalanche
capability of the new “E’’ series Ultrafast rectifiers. A
mercury switch was used instead of an electronic switch to
simulate a noisy environment when the switch was being
opened.
When S 1 is closed at t0 the current in the inductor IL ramps
up linearly; and energy is stored in the coil. At t1 the switch
is opened and the voltage across the diode under test begins
to rise rapidly , due to di/dt ef fects, when this induced voltage
reaches the breakdown voltage of the diode, it is clamped at
BVDUT and the diode begins to conduct the full load current
which now starts to decay linearly through the diode, and
goes to zero at t2.
By solving the loop equation at the point in time when S1
is opened; and calculating the energy that is transferred to
the diode it can be shown that the total energy transferred is
equal t o the ener gy stored in the inductor plus a finite amount
of energy from the VDD power supply while the diode is in
breakdown (from t1 to t2) minus any losses due to finite
component resistances. Assuming the component resistive
elements are small Equation (1) approximates the total
energy transferred to the diode. It can be seen from this
equation that if the VDD voltage is low compared to the
breakdown voltage of the device, the amount of energy
contributed b y the supply during breakdown is small and the
total ener gy can be assumed to be nearly equal to the ener gy
stored in the coil during the time when S1 was closed,
Equation (2).
The oscilloscope picture in Figure 8. , shows the
information obtained for the MUR8100E (similar die
construction as the MUR4100E Series) in this test circuit
conducting a peak current of one ampere at a breakdown
voltage of 1300 volts, and using Equation (2) the energy
absorbed by the MUR8100E is approximately 20 mjoules.
Although it is not recommended to design for this
condition, the new “E’’ series provides added protection
against those unforeseen transient viruses that can produce
unexplained random failures in unfriendly environments.
WAVAL 1
2LI2
LPKBVDUT
BVDUT–VDD
WAVAL 1
2LI2
LPK
Figure 8. Current–Voltage Waveforms
 
 
 

 
 
 
EQUATION (1):
EQUATION (2):
CH1 CH2 REF REF
CH1
CH2
ACQUISITIONS
SAVEREF SOURCE
1 217:33 HRS
STACK
A20s 953 V VERT500V
50mV
MUR480E, MUR4100E
http://onsemi.com
359
Lead Length, L (IN)
Mounting
Method 1/8 1/4 1/2 Units
1
2
3
50
58
RθJA
51 53
59 61
28
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction–to–ambient
(RθJA) for the mountings shown is to be used as typical
guideline values for preliminary engineering or in case the
tie point temperature cannot be measured.
NOTE 2. – AMBIENT MOUNTING DATA
MOUNTING METHOD 1
MOUNTING METHOD 2
MOUNTING METHOD 3
3/4
55
63
ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ
L L
P.C. Board Where Available Copper
Surface area is small.
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
L L
Vector Push–In Terminals T–28
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
L = 1/2
Board Ground Plane
P.C. Board with
1–1/2x 1–1/2Copper Surface
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 360 Publication Order Number:
MUR5150E/D

Preferred Device

 
For Use As A Damper Diode
In High and Very High Resolution Monitors
The MUR5150E is a state-of-the-art Ultrafast Power Rectifier
specifically designed for use as a damper diode in horizontal
deflection circuits for high and very high resolution monitors. In these
applications, the outstanding performance of the MUR5150E is fully
realized when paired with the appropriate 1500 V SCANSWITCH
Bipolar Power Transistor.
1500 V Blocking Voltage
20 mjoules Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 17 Volts (typical)
Forward Recovery Time Specified, 175 ns (typical)
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U5150E
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
1500 V
Average Rectified Forward Current
(Rated VR, TC = 100°C) IF(AV) 5.0 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 100°C) Per Leg
IFRM 10 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +125 °C
Controlled Avalanche Energy WAVAL 20 mJ Device Package Shipping
ORDERING INFORMATION
MUR5150E TO–220
http://onsemi.com
TO–220AC
CASE 221B
STYLE 1
50 Units/Rail
3
4
1
SCANSWITCH
RECTIFIER
5.0 AMPERES
1500 VOLTS
MARKING DIAGRAM
U5150E
U5150E = Device Code
Preferred devices are recommended choices for future use
and best overall value.
MUR5150E
http://onsemi.com
361
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Typ Max Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 2.0 Amps, TJ = 25°C)
(iF = 5.0 Amps, TJ = 25°C)
vF1.7
2.0 2.0
2.4
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR100
10 500
50
µA
Maximum Reverse Recovery Time (IF = 1.0 Amps, di/dt = 50 Amps/µs) trr 130 175 ns
Maximum Forward Recovery Time (IF = 6.5 Amps, di/dt = 12 Amps/µs) tfr 175 225 ns
Peak Transient Overshoot Voltage VRFM 17 20 Volts
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS



°









       
  
Figure 1. Typical Forward Voltage
°
°
°

  
   







µ
Figure 2. Typical Reverse Leakage Current
°
°
    




Figure 3. Forward Power Dissipation






  °

Figure 4. Current Derating Case


  







  



 
θ°
°
MUR5150E
http://onsemi.com
362
TYPICAL ELECTRICAL CHARACTERISTICS




  
  
Figure 5. Typical Capacitance












  







  
    
  











Figure 6. Typical Reverse Switching Characteristics
 µ
 µ

  µ
 µ
 
 
   
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 363 Publication Order Number:
MUR620CT/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 35 Nanosecond Recovery Time
175°C Operating Junction Temperature
Popular TO–220 Package
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U620
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Voltage
(Rated VR, TC = 130°C) Per Diode
Total Device
IF(AV) 3.0
6.0
A
Peak Repetitive Forward Current
per Diode Leg (Rated VR, Square
Wave, 20 kHz, TC = 130°C)
IFRM 6.0 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 75 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MUR620CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
6.0 AMPERES
200 VOLTS

Preferred devices are recommended choices for future use
and best overall value.
2
MARKING DIAGRAM
U620
U620 = Device Code
MUR620CT
http://onsemi.com
364
THERMAL CHARACTERISTICS (Per Diode Leg)
Rating Symbol Typical Maximum Unit
Thermal Resistance, Junction to Case RθJC 5.0–6.0 7.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Instantaneous Forward Voltage (Note 1.)
(iF = 3.0 Amps, TC = 150°C)
(iF = 3.0 Amps, TC = 25°C)
vF0.80
0.94 0.895
0.975
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR2.0–10
0.01–3.0 250
5.0
µA
Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 20–30 35 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
  
µ








     
   
Figure 1. Typical Forward Voltage


°
°
°

Figure 2. Typical Reverse Current
  











 °
   



°
°

°
°
MUR620CT
http://onsemi.com
365





  °











 
 
    





 
Figure 3. Total Device Current Derating, Case Figure 4. Total Device Current Derating, Ambient
Figure 5. Power Dissipation
  °









        
 


 

° 
   

°
    
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 366 Publication Order Number:
MSR860/D

 
  
Plastic TO–220 Package
Designed for use as free wheeling diodes in variable speed motor
control applications and switching power supplies. These
state–of–the–art devices have the following features:
Soft Recovery with Guaranteed Low Reverse Recovery Charge
(QRR) and Peak Reverse Recovery Current (IRRM)
150°C Operating Junction Temperature
Popular TO–220 Package
Epoxy meets UL94, VO @ 1/8
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Mechanical Characteristics:
Case: Molded Epoxy
Weight: 1.9 Grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 50 Units per Plastic Tube
Marking: MSR860
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 V
Average Rectified Forward Current
(At Rated VR, TC = 125°C) IO8.0 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TC = 125°C)
IFRM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Storage/Operating Case
Temperature Range Tstg, TC–65 to +150 °C
Operating Junction
Temperature Range TJ–65 to +150 °C
THERMAL CHARACTERISTICS
Thermal Resistance –
Junction–to–Case
Thermal Resistance –
Junction–to–Ambient
RJC
RJA 1.6
72.8 °C/W
Device Package Shipping
ORDERING INFORMATION
MSR860 TO–220
http://onsemi.com
TO–220AC
CASE 221B
STYLE 1
50 Units/Rail
3
4
1
SOFT RECOVERY
POWER RECTIFIER
8.0 AMPERES
600 VOLTS
MARKING DIAGRAM
MSR860
MSR860 = Device Code
MSR860
http://onsemi.com
367
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 1.) VFTJ = 25°C TJ = 150°CV
a u s a a eous o a d o age ( o e )
(IF = 8.0 A)
Typical
F
1.7
1.4
1.3
1.1
Maximum Instantaneous Reverse Current IRTJ = 25°C TJ = 150°CA
a u s a a eous e e se Cu e
(VR = 600 V)
Typical
R
10
2.0
1000
80
Maximum Reverse Recovery Time (Note 2.) trr TJ = 25°C TJ = 125°Cns
a u e e se eco e y e ( o e )
(VR = 400 V, IF = 8.0 A, di/dt = 200 A/s)
Typical
rr
120
95
190
125
s
Typical Recovery Softness Factor
(VR = 400 V, IF = 8.0 A, di/dt = 200 A/s) s = tb/ta
2.5 3.0
Maximum Peak Reverse Recovery Current
(VR = 400 V, IF = 8.0 A, di/dt = 200 A/s) IRRM 5.8 8.3 A
Maximum Reverse Recovery Charge
(VR = 400 V, IF = 8.0 A, di/dt = 200 A/s) QRR 350 700 nC
1. Pulse Test: Pulse Width 380 µs, Duty Cycle 2%
2. TRR measured projecting from 25% of IRRM to zero current
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage

  
Figure 2. Typical Reverse Current
      °
Figure 3. Current Derating, Case














°
°
°
 


 
 
°
°
°
°
MSR860
http://onsemi.com
368
TYPICAL ELECTRICAL CHARACTERISTICS
  °
Figure 4. Current Derating, Ambient
    
Figure 5. Power Dissipation















 

 

°

 
Figure 6. Typical Reverse Recovery Time Figure 7. Typical Reverse Recovery Time
 
 
 






 
Figure 8. Typical Peak Reverse Recovery
Current
Figure 9. Typical Peak Reverse Recovery
Current
 
 
  










     



   


 



°


°




°


°

MSR860
http://onsemi.com
369
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 10. Typical Reverse Recovery Charge Figure 11. Typical Reverse Recovery Charge
  
  




    









°


°










Figure 12. Typical Switching Off Losses Figure 13. Typical Switching Off Losses
  






   









   

°





°



Figure 14. Thermal Response
  



   




θ  θ
θ° 
   
  
 


θ

  




 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 370 Publication Order Number:
MUR820/D
  
  
Preferred Devices

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 25, 50 and 75 Nanosecond Recovery Time
175°C Operating Junction Temperature
Popular TO–220 Package
Epoxy Meets UL94, VO @ 1/8
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Reverse Voltage to 600 Volts
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U805, U810, U815, U820, U840, U860
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MUR805 TO–220
http://onsemi.com
CASE 221B
TO–220AC
PLASTIC
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIERS
8.0 AMPERES
50–600 VOLTS
MARKING DIAGRAM
U8xx
U8xx = Device Code
xx = 05, 10, 15,
= 20, 40 or 60
Preferred devices are recommended choices for future use
and best overall value.
MUR810 TO–220 50 Units/Rail
MUR815 TO–220 50 Units/Rail
MUR820 TO–220 50 Units/Rail
MUR840 TO–220 50 Units/Rail
MUR860 TO–220 50 Units/Rail
MUR805, MUR810, MUR815, MUR820, MUR840, MUR860
http://onsemi.com
371
MAXIMUM RATINGS
MUR
Rating Symbol 805 810 815 820 840 860 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 150 200 400 600 Volts
Average Rectified Forward Current
Total Device, (Rated VR), TC = 150°CIF(AV) 8.0 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC = 150°CIFM 16 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave,
single phase, 60 Hz)
IFSM 100 Amps
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to +175 °C
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case RθJC 3.0 2.0 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 8.0 Amps, TC = 150°C)
(iF = 8.0 Amps, TC = 25°C)
vF0.895
0.975 1.00
1.30 1.20
1.50
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 150°C)
(Rated dc Voltage, TJ = 25°C)
iR250
5.0 500
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp)
trr 35
25 60
50
ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR805, MUR810, MUR815, MUR820, MUR840, MUR860
http://onsemi.com
372
MUR805, MUR810, MUR815, MUR820
Figure 1. Typical Forward Voltage
   
  















  
  




 °
  
Figure 2. Typical Reverse Current*
  °






    
  °
 






Figure 3. Current Derating, Case
Figure 4. Current Derating, Ambient



 
    
Figure 5. Power Dissipation




 
°
°°
 


°
°

           
         
         

°


  


 

 
 
  
    





    










 

 

°
°
  
MUR805, MUR810, MUR815, MUR820, MUR840, MUR860
http://onsemi.com
373
MUR840
Figure 6. Typical Forward Voltage
   
 














  
  





°
  
Figure 7. Typical Reverse Current*
  °






    
  °
 






Figure 8. Current Derating, Case
Figure 9. Current Derating, Ambient



 
    
Figure 10. Power Dissipation





°
°°
 


°
°

           
         
         

°


  


 

 
 
  
    

 


    










 

 

°
°
  
°
MUR805, MUR810, MUR815, MUR820, MUR840, MUR860
http://onsemi.com
374
MUR860
Figure 11. Typical Forward Voltage
   
 














  
 





°
 
Figure 12. Typical Reverse Current*
  °






    
  °
 






Figure 13. Current Derating, Case
Figure 14. Current Derating, Ambient



 
    
Figure 15. Power Dissipation





°
°
°



°
°

           
         
         

°


  


 

 
 
  
    





    













 

°
°
  








MUR805, MUR810, MUR815, MUR820, MUR840, MUR860
http://onsemi.com
375







               
  
Figure 16. Thermal Response


 

  
θ  θ
   
  
 


θ




 
  
Figure 17. Typical Capacitance






°
 

θ  ° 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 376 Publication Order Number:
MUR8100E/D
 
MUR8100E is a Preferred Device

 
Ultrafast “E’’ Series with High Reverse
Energy Capability
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
20 mjoules Avalanche Energy Guaranteed
Excellent Protection Against Voltage Transients in Switching
Inductive Load Circuits
Ultrafast 75 Nanosecond Recovery Time
175°C Operating Junction Temperature
Popular TO–220 Package
Epoxy Meets UL94, VO @ 1/8
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Reverse Voltage to 1000 Volts
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U880E, U8100E
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage MUR880E
MUR8100E
VRRM
VRWM
VR800
1000
V
Average Rectified Forward Current
(Rated VR, TC = 150°C)
Total Device
IF(AV) 8.0 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 150°C)
IFM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MUR8100E TO–220
http://onsemi.com
TO–220AC
CASE 221B
PLASTIC
50 Units/Rail
3
4
1
ULTRAFAST RECTIFIERS
8.0 AMPERES
800–1000 VOLTS
MARKING DIAGRAM
U8x0E
U8x0E = Device Code
x = 8 or 10
MUR880E TO–220 50 Units/Rail
Preferred devices are recommended choices for future use
and best overall value.
MUR8100E, MUR880E
http://onsemi.com
377
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol MUR880E MUR8100E Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 8.0 Amps, TC = 150°C)
(iF = 8.0 Amps, TC = 25°C)
vF1.5
1.8
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 100°C)
(Rated dc Voltage, TC = 25°C)
iR500
25
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp)
trr 100
75
ns
Controlled Avalanche Energy
(See Test Circuit in Figure 6. ) WAVAL 20 mJ
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR8100E, MUR880E
http://onsemi.com
378
            
         
         
Figure 1. Typical Forward Voltage
Figure 2. Typical Reverse Current*
Figure 3. Current Derating, Case
Figure 4. Current Derating, Ambient Figure 5. Power Dissipation

  





  



  °





 
  °




    









   
    



 

 

  











  








   




 °
 

 
 

°
°
°
°
°
°





°
°
  
 

 


°
MUR8100E, MUR880E
http://onsemi.com
379




Figure 6. Test Circuit Figure 7. Current–Voltage Waveforms


 
The unclamped inductive switching circuit shown in
Figure 6. was used to demonstrate the controlled avalanche
capability of the new “E’’ series Ultrafast rectifiers. A
mercury switch was used instead of an electronic switch to
simulate a noisy environment when the switch was being
opened.
When S 1 is closed at t0 the current in the inductor IL ramps
up linearly; and energy is stored in the coil. At t1 the switch
is opened and the voltage across the diode under test begins
to rise rapidly , due to di/dt ef fects, when this induced voltage
reaches the breakdown voltage of the diode, it is clamped at
BVDUT and the diode begins to conduct the full load current
which now starts to decay linearly through the diode, and
goes to zero at t2.
By solving the loop equation at the point in time when S1
is opened; and calculating the energy that is transferred to
the diode it can be shown that the total energy transferred is
equal t o the ener gy stored in the inductor plus a finite amount
of energy from the VDD power supply while the diode is in
breakdown (from t1 to t2) minus any losses due to finite
component resistances. Assuming the component resistive
elements are small Equation (1) approximates the total
energy transferred to the diode. It can be seen from this
equation that if the VDD voltage is low compared to the
breakdown voltage of the device, the amount of energy
contributed b y the supply during breakdown is small and the
total ener gy can be assumed to be nearly equal to the ener gy
stored in the coil during the time when S1 was closed,
Equation (2).
The oscilloscope picture in Figure 8. , shows the
MUR8100E in this test circuit conducting a peak current of
one ampere at a breakdown voltage of 1300 volts, and using
Equation (2) the energy absorbed by the MUR8100E is
approximately 20 mjoules.
Although it is not recommended to design for this
condition, the new “E’’ series provides added protection
against those unforeseen transient viruses that can produce
unexplained random failures in unfriendly environments.
WAVAL 1
2LI2
LPKBVDUT
BVDUT–VDD
WAVAL 1
2LI2
LPK
Figure 8. Current–Voltage Waveforms
 
 
 

 
 
 
EQUATION (1):
EQUATION (2):
CH1 CH2 REF REF
CH1
CH2
ACQUISITIONS
SAVEREF SOURCE
1 217:33 HRS
STACK
A20s 953 V VERT500V
50mV
MUR8100E, MUR880E
http://onsemi.com
380
  





  







    









        
°

Figure 9. Thermal Response
Figure 10. Typical Capacitance




 
θ  θ
θ° 
   
  
 


θ

  
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 381 Publication Order Number:
MURH840CT/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 28 Nanosecond Recovery Time
175°C Operating Junction Temperature
Popular TO–220 Package
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
High Voltage Capability to 400 Volts
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: UH840
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
400 V
Average Rectified Forward Current
(Rated VR, TC = 120°C) Per Leg
Total Device
IF(AV) 4.0
8.0
A
Peak Repetitive Forward Current
per Diode Leg (Rated VR, Square
Wave, 20 kHz, TC = 120°C)
IFM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Controlled Avalanche Energy WAVAL 20 mJ
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MURH840CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
8.0 AMPERES
400 VOLTS

Preferred devices are recommended choices for future use
and best overall value.
2
MARKING DIAGRAM
UH840
UH840 = Device Code
MURH840CT
http://onsemi.com
382
THERMAL CHARACTERISTICS (Per Diode Leg)
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 3.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 4.0 Amps, TC = 150°C)
(iF = 4.0 Amps, TC = 25°C)
vF1.9
2.2
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR500
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 28 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage
Figure 2. Typical Reverse Current, Per Leg
Figure 3. Forward Current Derating, Ambient, Per Leg







  

°
°
°
  
µ










       
 
  °

      
°
°
°





MURH840CT
http://onsemi.com
383
Figure 4. Current Derating, Case, Per Leg

  




  
Figure 5. Typical Capacitance, Per Leg

  °


      
 



Figure 6. Forward Power Dissipation, Per Leg

    






 
 

Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 384 Publication Order Number:
MURH860CT/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state-of-the-art devices have the following
features:
Ultrafast 35 Nanosecond Recovery Times
175°C Operating Junction Temperature
Popular TO-220 Package
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
High Voltage Capability to 600 Volts
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: UH860
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 V
Average Rectified Forward Current
(Rated VR, TC = 120°C)
Total Device
IF(AV) 4.0
8.0
A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 120°C)
IFM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MURH860CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
8.0 AMPERES
600 VOLTS

Preferred devices are recommended choices for future use
and best overall value.
2
MARKING DIAGRAM
UH860
UH860 = Device Code
MURH860CT
http://onsemi.com
385
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 3.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 4.0 Amps, TC = 150°C)
(iF = 4.0 Amps, TC = 25°C)
vF2.5
2.8
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR500
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 35 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%








     
  

Figure 1. Typical Forward Voltage, Per Leg
°°
°











  
Figure 2. Typical Reverse Leakage Current, Per Leg
 µ









    
Figure 3. Typical Forward Dissipation, Per Leg

°





  °
Figure 4. Typical Current Derating, Case, Per Leg
      


  
θ°
°
°
°
MURH860CT
http://onsemi.com
386














    
Figure 5. Typical Recovery Characteristics




  µ
Figure 6. Typical Capacitance, Per Leg















  

Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 387 Publication Order Number:
MUR10120E/D

Preferred Device

 
For High and Very High Resolution Monitors
This state–of–the–art power rectifier is specifically designed for use
as a damper diode in horizontal deflection circuits for high and very
high resolution monitors.
1200 Volt Blocking Voltage
20 mJ Avalanche Energy (Guaranteed)
12 Volt (Typical) Peak Transient Overshoot Voltage
135 ns (Typical) Forward Recovery Time
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U10120E
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
1200 V
Average Rectified Forward Current
(Rated VR, TC = 125°C) IF(AV) 10 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 125°C) Per Leg
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction
Temperature Range TJ–65 to +125 °C
Controlled Avalanche Energy WAVAL 20 mJ
Device Package Shipping
ORDERING INFORMATION
MUR10120E TO–220
http://onsemi.com
TO–220AC
CASE 221B
STYLE 1
50 Units/Rail
3
4
1
SCANSWITCH
RECTIFIER
10 AMPERES
1200 VOLTS
MARKING DIAGRAM
U10120E
U10120E = Device Code
Preferred devices are recommended choices for future use
and best overall value.
MUR10120E
http://onsemi.com
388
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Typ Max Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 6.5 Amps, TJ = 125°C)
(iF = 6.5 Amps, TJ = 25°C)
vF1.7
1.9 2.0
2.2
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 125°C)
iR25
750 100
1000
µA
Maximum Reverse Recovery Time
(IF = 1.0 A, di/dt = 50 Amps/µs) trr 150 175 ns
Maximum Forward Recovery Time
IF = 6.5 Amps, di/dt = 12 Amps/µs (As Measured on a Deflection Circuit) tfr 135 175 ns
Peak Transient Overshoot Voltage VRFM 12 14 Volts
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Figure 1. Typical Forward Voltage
Figure 2. Typical Reverse Current
Figure 3. Current Derating, Case

  





  



  °








   
    



 








 
    








 
 

°
°
°
°
°°
°
°



MUR10120E
http://onsemi.com
389
Figure 4. Current Derating, Ambient Figure 5. Power Dissipation
 
  °




    







 

  


      




 °
 

°
Figure 6. Typical Capacitance
  









°
 
 
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 390 Publication Order Number:
MUR10150E/D

Preferred Device

 
For Use As A Damper Diode
In High and Very High Resolution Monitors
The MUR10150E is a state-of-the-art Power Rectifier specifically
designed for use as a damper diode in horizontal deflection circuits for
high and very high resolution monitors.
1500 V Blocking Voltage
20 mJ Avalanche Energy Guaranteed
Peak Transient Overshoot Voltage Specified, 14 Volts (typical)
Forward Recovery Time Specified, 135 ns (typical)
Epoxy Meets UL94, VO at 1/8
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U10150E
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
1500 V
Average Rectified Forward Current
(Rated VR, TC = 125°C) IF(AV) 10 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 125°C) Per Leg
IFRM 20 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +125 °C
Controlled Avalanche Energy WAVAL 20 mJ
Device Package Shipping
ORDERING INFORMATION
MUR10150E TO–220
http://onsemi.com
TO–220AC
CASE 221B
STYLE 1
50 Units/Rail
3
4
1
SCANSWITCH
RECTIFIER
10 AMPERES
1500 VOLTS
MARKING DIAGRAM
U10150E
U10150E = Device Code
Preferred devices are recommended choices for future use
and best overall value.
MUR10150E
http://onsemi.com
391
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Typ Max Unit
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 6.5 Amps, TJ = 125°C)
(iF = 6.5 Amps, TJ = 25°C)
vF1.7
1.9 2.2
2.4
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TJ = 125°C)
(Rated dc Voltage, TJ = 25°C)
iR750
25 1000
100
µA
Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 150 175 ns
Maximum Forward Recovery Time (IF = 6.5 Amps, di/dt = 12 Amps/µs) tfr 135 175 ns
Peak Transient Overshoot Voltage VRFM 14 16 Volts
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%





  
      
Figure 1. Typical Forward Voltage
°
°
°


µ






    
Figure 2. Typical Reverse Current
  
°
°
°









°
  
    
Figure 3. Forward Power Dissipation
 
  


MUR10150E
http://onsemi.com
392


 
  
  °
Figure 4. Current Derating Case
 
θ°









     
  
Figure 5. Typical Capacitance
 
 














  
Figure 6. Typical Reverse Recovery Time

  µ
 µ













  µ
 µ


  
Figure 7. Typical Stored Recovery Charge
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 393 Publication Order Number:
MUR1520/D
 
 

Preferred Devices

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 35 and 60 Nanosecond Recovery Time
175°C Operating Junction Temperature
Popular TO–220 Package
High Voltage Capability to 600 Volts
Low Forward Drop
Low Leakage Specified @ 150°C Case Temperature
Current Derating Specified @ Both Case and Ambient Temperatures
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes: 260°C Max. for
10 Seconds
Shipped 50 units per plastic tube
Marking: U1510, U1515, U1520, U1540, U1560
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
TO–220AC
CASE 221B
PLASTIC
3
4
1
ULTRAFAST
RECTIFIERS
15 AMPERES
100–600 VOLTS
MARKING DIAGRAM
U15xx
U15xx = Device Code
xx = 10, 15, 20,
= 40 or 60
Preferred devices are recommended choices for future use
and best overall value.
MUR1510 TO–220 50 Units/Rail
MUR1515 TO–220 50 Units/Rail
MUR1520 TO–220 50 Units/Rail
MUR1540 TO–220 50 Units/Rail
MUR1560 TO–220 50 Units/Rail
MUR1510, MUR1515, MUR1520, MUR1540, MUR1560
http://onsemi.com
394
MAXIMUM RATINGS
MUR
Rating Symbol 1510 1515 1520 1540 1560 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 150 200 400 600 Volts
Average Rectified Forward Current
(Rated VR)IF(AV) 15
@ TC = 150°C15
@ TC = 145°CAmps
Peak Rectified Forward Current
(Rated VR, Square Wave, 20 kHz) IFRM 30
@ TC = 150°C30
@ TC = 145°CAmps
Nonrepetitive Peak Surge Current (Surge applied at
rated load conditions halfwave, single phase, 60 Hz) IFSM 200 150 Amps
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to +175 °C
THERMAL CHARACTERISTICS
Maximum Thermal Resistance, Junction to Case RθJC 1.5 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 15 Amps, TC = 150°C)
(iF = 15 Amps, TC = 25°C)
vF0.85
1.05 1.12
1.25 1.20
1.50
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR500
10 500
10 1000
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 35 60 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR1510, MUR1515, MUR1520, MUR1540, MUR1560
http://onsemi.com
395
MUR1510, MUR1515, MUR1520
Figure 1. Typical Forward Voltage
   
  














  
  







°
  
Figure 2. Typical Reverse Current
  °









      
  °
 








Figure 3. Current Derating, Case
Figure 4. Current Derating, Ambient





  
    

Figure 5. Power Dissipation



 
°
°
 




°
°
 


 


°
   




  


 



°


 
 


  
 
 

       
°
°  
  
 


  π
MUR1510, MUR1515, MUR1520, MUR1540, MUR1560
http://onsemi.com
396
MUR1540
Figure 6. Typical Forward Voltage
   
  














  
  







°
  
Figure 7. Typical Reverse Current
  °

  °
 








Figure 8. Current Derating, Case
Figure 9. Current Derating, Ambient
    

Figure 10. Power Dissipation



 
°
°°
 




°
°
 



  


 











       




  
 

°
   






 
 


  
 
 

       
°
°  
  
 


  π
MUR1510, MUR1515, MUR1520, MUR1540, MUR1560
http://onsemi.com
397
MUR1560
Figure 11. Typical Forward Voltage
   
  














  
   







°
  
Figure 12. Typical Reverse Current
  °

  °
 








Figure 13. Current Derating, Case
Figure 14. Current Derating, Ambient
    

Figure 15. Power Dissipation



 
°
°
°
 




°
°
 



  


 











       




  
 

°
   








 


  
 
 

       
°
°  
  
 


  π



MUR1510, MUR1515, MUR1520, MUR1540, MUR1560
http://onsemi.com
398







               
  
Figure 16. Thermal Response


 

  
θ  θ
θ° 
   
  
 


θ





 
  
Figure 17. Typical Capacitance






    
°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 399 Publication Order Number:
MUR2020R/D

Preferred Device
 
 
. . . designed for use in negative switching power supplies, inverters
and as free wheeling diode. Also, used in conjunction with a standard
cathode dual Ultrafast Rectifier, makes a single phase full–wave
bridge. These state–of–the–art devices have the following features:
Reverse Polarity Rectifier
Ultrafast 95 Nanosecond Reverse Recovery Times
Exhibits Soft Recovery Characteristics
High Temperature Glass Passivated Junction
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Case Temperature
Epoxy Meets UL94, VO @ 1/8
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U2020R
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 Volts
Average Rectified Forward Voltage,
(Rated VR), TC = 125°CIF(AV) 20 Amps
Peak Repetitive Forward Current
(Rated VR), TC = 125°CIFRM 40 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions
halfwave, single phase, 60 Hz)
IFSM 250 Amps
Operating Junction Temperature and
Storage Temperature Range TJ, Tstg –65 to
+175 °C
ULTRAFAST RECTIFIER
20 AMPERES
200 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
http://onsemi.com
MARKING DIAGRAM
TO–220AC
CASE 221B
PLASTIC
4
13
3
4
U2020R
Device Package Shipping
ORDERING INFORMATION
MUR2020R TO–220AC 50 Units/Rail
14
3
1
MUR2020R
http://onsemi.com
400
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Thermal Resistance – Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(IF = 20 Amps, TC = 25°C)
(IF = 20 Amps, TC = 150°C)
VF1.1
1.0
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 25°C)
(Rated dc Voltage, TC = 150°C)
IR50
1µA
mA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs)
(IF = 1.0 Amp, di/dt = 100 Amps/µs)
trr 95
75
ns
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.
10
15
5
0
20
1.00
0
20
200
30
150100
TC, CASE TEMPERATURE (°C)
IF(AV), AVERAGE FORWARD
10
050
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 7. Current Derating Figure 8. Power Dissipation
PF(AV), AVERAGE POWER DISSIPATION
(WATTS)
0.3
100
10
1.10.90.7
1
0.1 0.5 1.3 1.5
Figure 9. Maximum Forward Voltage
VF, INSTANTANEOUS VOLTAGE (VOLTS)
Figure 10. Maximum Reverse Current
VR, REVERSE VOLTAGE (VOLTS)
IR, REVERSE CURRENT (µA)
IF, INSTANTANEOUS FORWARD CURRENT
(AMPS)
40
0202515105
0 20015010050
10.00
100.00
1000.00
dc
Square Wave
VF @ 25°C
dc
Square Wave
VF @ 100°C
VF @ 175°CIr @ 175°C
Ir @ 100°C
Ir @ 25°C
TJ = 175°C
TJ = 175°C
MUR2020R
http://onsemi.com
401
100
10
0.1
1
0.001
0.010
0.100
1.000
10.00
100.000
1000.000
Figure 11. Typical Forward Voltage
VF, INSTANTANEOUS VOLTAGE (VOLTS)
Figure 12. Typical Reverse Current
VR, REVERSE VOLTAGE (VOLTS)
IF, INSTANTANEOUS FORWARD CURRENT
(AMPS)
IR, REVERSE CURRENT (µA)
0.3 1.10.90.70.5 1.3 1.5 50 1000 150 200
VF @ 25°C
VF @ 100°C
VF @ 175°CIr @ 175°C
Ir @ 100°C
Ir @ 25°C
10
1
0.1
0.01
0.001
Figure 13. Thermal Response
t, TIME (s)
Rjc(t), TRANSIENT THERMAL RESISTANCE (°C/W)
0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10 100
Single Pulse
0.1
0.05
D = 0.5
0.1
10000
1000
100 10010
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
1
VR, REVERSE VOLTAGE (VOLTS)
Figure 14. Maximum Capacitance Figure 15. Typical Capacitance
C, CAPACITANCE (pF)
TJ = 25°C
TJ = 25°C
10000
1000
100
0.1 100101
P(pk) t1t2
DUTY CYCLE, D = t1/t2
ZθJC(t) = r(t) RθJC
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT T1
TJ(pk) – TC = P(pk) ZθJC(t)
0.1
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 402 Publication Order Number:
MUR1620CT/D
 
 


 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 35 and 60 Nanosecond Recovery Times
175°C Operating Junction Temperature
Popular TO–220 Package
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
High Voltage Capability to 600 Volts
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U1610, U1615, U1620, U1640, U1660
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MUR1610CT TO–220
http://onsemi.com
TO–220AB
CASE 221A
PLASTIC
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIERS
8.0 AMPERES
100–600 VOLTS

2
MARKING DIAGRAM
U16xx
U16xx = Device Code
xx = 10, 15, 20, 40 or 60
MUR1615CT TO–220 50 Units/Rail
MUR1620CT TO–220 50 Units/Rail
MUR1640CT TO–220 50 Units/Rail
MUR1660CT TO–220 50 Units/Rail
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
http://onsemi.com
403
MAXIMUM RATINGS
MUR16
Rating Symbol 10CT 15CT 20CT 40CT 60CT Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
100 150 200 400 600 Volts
Average Rectified Forward Current Per Leg
Total Device, (Rated VR), TC = 150°C Total Device IF(AV) 8.0
16 Amps
Peak Rectified Forward Current Per Diode Leg
(Rated VR, Square Wave, 20 kHz), TC = 150°CIFM 16 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single
phase, 60 Hz)
IFSM 100 Amps
Operating Junction Temperature and Storage Temperature TJ, Tstg 65 to +175 °C
THERMAL CHARACTERISTICS (Per Diode Leg)
Maximum Thermal Resistance, Junction to Case RθJC 3.0 2.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 8.0 Amps, TC = 150°C)
(iF = 8.0 Amps, TC = 25°C)
vF0.895
0.975 1.00
1.30 1.20
1.50
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR250
5.0 500
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs)
(IF = 0.5 Amp, IR = 1.0 Amp, IREC = 0.25 Amp)
trr 35
25 60
50
ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
http://onsemi.com
404
MUR1610CT, MUR1615CT, MUR1620CT
Figure 1. Typical Forward Voltage, Per Leg
   
  
















  
  











 °
  
Figure 2. Typical Reverse Current, Per Leg*
  °









        
  °
 








 
Figure 3. Current Derating, Case, Per Leg
Figure 4. Current Derating, Ambient, Per Leg






   
    

Figure 5. Power Dissipation, Per Leg




  
°
°
° 





°
°
 


           
        
          


 


°

 
    





 


 

 


°
°
 
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
http://onsemi.com
405
MUR1640CT
Figure 6. Typical Forward Voltage, Per Leg
   
 
















  
  









°
  
Figure 7. Typical Reverse Current, Per Leg*
  °









        
  °
 








 
Figure 8. Current Derating, Case, Per Leg
Figure 9. Current Derating, Ambient, Per Leg






   
    

Figure 10. Power Dissipation, Per Leg





°
°
 




°
°
 


           
        
          
°
°
  

 


°
 
    





 


 

 




°
°
MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
http://onsemi.com
406
MUR1660CT
Figure 11. Typical Forward Voltage, Per Leg
   
 















  
  









°
 
Figure 12. Typical Reverse Current, Per Leg*
  °









        
  °
 








 
Figure 13. Current Derating, Case, Per Leg
Figure 14. Current Derating, Ambient, Per Leg






   
    

Figure 15. Power Dissipation, Per Leg




 
°
°
°





°
°
 


           
        
          


 


°

 
    





 


 

 


°
°
  










MUR1610CT, MUR1615CT, MUR1620CT, MUR1640CT, MUR1660CT
http://onsemi.com
407







               
  
Figure 16. Thermal Response


 

  
θ  θ
   
  
 


θ






  
  
Figure 17. Typical Capacitance, Per Leg

°
  
  


Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 408 Publication Order Number:
MUR1620CTR/D

Preferred Device
 
  
. . . designed for use in negative switching power supplies, inverters
and as free wheeling diodes. Also, used in conjunction with common
cathode dual Ultrafast Rectifiers, makes a single phase full–wave
bridge. These state–of–the–art devices have the following features:
Common Anode Dual Rectifier (8.0 A per Leg or 16 A per Package)
Ultrafast 35 Nanosecond Reverse Recovery Times
Exhibits Soft Recovery Characteristics
High Temperature Glass Passivated Junction
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
Epoxy Meets UL94, VO @ 1/8
Complement to MUR1620CT Common Cathode Device
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U1620R
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 V
Average Rectified Forward Voltage
(Rated VR, TC = 160°C) Per Leg
Per Total Device
IF(AV) 8.0
16
A
Peak Repetitive Surge Current
(Rated VR, Square W ave,
20 kHz, TC = 140°C) Per Diode
IFM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MUR1620CTR TO–220
http://onsemi.com
TO–220AB
CASE 221A
STYLE 7
50 Units/Rail
3
4
1
ULTRAFAST
RECTIFIER
16 AMPERES
200 VOLTS

Preferred devices are recommended choices for future use
and best overall value.
2
MARKING DIAGRAM
U1620R
U1620R = Device Code
MUR1620CTR
http://onsemi.com
409
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Value Unit
Thermal Resistance — Junction to Case RθJC 2.0 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 8.0 Amps, TC = 25°C)
(iF = 8.0 Amps, TC = 150°C)
vF1.2
1.1
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 25°C)
(Rated dc Voltage, TC = 150°C)
iR5.0
500
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs)
(IF = 0.5 Amp, di/dt = 100 Amps/µs)
trr 85
35
ns
1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%.
Figure 1. Typical Forward Voltage (Per Leg)
   
 














  
  










°
  
Figure 2. Typical Reverse Current* (Per Leg)
  °
 








Figure 3. Current Derating, Case (Per Leg)



 
°
°
°
 




°
°
 

 


 


°
°

°
          
        
        
  
MUR1620CTR
http://onsemi.com
410
  °









      
Figure 4. Current Derating, Ambient (Per Leg)





  
    

Figure 5. Power Dissipation (Per Leg)





°



   




°








               
  
Figure 6. Thermal Response


 

  
θ  θ
   
  
 


θ





  
  
Figure 7. Typical Capacitance (Per Leg)









            
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 411 Publication Order Number:
MURF1620CT/D

Preferred Device

 
Designed for use in switching power supplies, inverters and as free
wheeling diodes, these state–of–the–art devices have the following
features:
Ultrafast 35 Nanosecond Recovery Times
150°C Operating Junction Temperature
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
Electrically Isolated. No Isolation Hardware Required.
UL Recognized File #E69369 (Note 1.)
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U1620
MAXIMUM RATINGS
Please See the Table on the Following Page
1. UL Recognized mounting method is per Figure 4.
Device Package Shipping
ORDERING INFORMATION
MURF1620CT TO–220
http://onsemi.com
ISOLATED TO–220
CASE 221D
STYLE 3
50 Units/Rail
3
1
ULTRAFAST
RECTIFIER
16 AMPERES
200 VOLTS
2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
U1620
U1620 = Device Code
MURF1620CT
http://onsemi.com
412
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 Volts
Average Rectified Forward Current
Total Device, (Rated VR), TC = 150°C Total Device IF(AV) 8
16 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC = 150°CIFM 16 Amps
Non–repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 100 Amps
Operating Junction and Storage Temperature TJ, Tstg 65 to +150 °C
RMS Isolation Voltage (t = 1 second, R.H. 30%, TA = 25°C) (Note 3.) Per Figure 3.
Per Figure 4. (Note 2.)
Per Figure 5.
Viso1
Viso2
Viso3
4500
3500
1500
Volts
THERMAL CHARACTERISTICS (Per Leg)
Maximum Thermal Resistance, Junction to Case RθJC 4.2 °C/W
Lead Temperature for Soldering
Purposes: 1/8 from the Case for 5 seconds TL260 °C
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 4.)
(iF = 8.0 Amp, TC = 150°C)
(iF = 8.0 Amp, TC = 25°C)
vF0.895
0.975
Volts
Maximum Instantaneous Reverse Current (Note 4.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR250
5.0
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp)
trr 35
25
ns
2. UL Recognized mounting method is per Figure 4.
3. Proper strike and creepage distance must be provided.
4. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
  
µ





















     
  
Figure 1. Typical Forward Voltage, Per Leg

°°
    
°
°

Figure 2. Typical Reverse Current, Per Leg*
MURF1620CT
http://onsemi.com
413
TEST CONDITIONS FOR ISOLATION TESTS*

 



 
Figure 3. Clip Mounting Position
for Isolation Test Number 1
* Measurement made between leads and heatsink with all leads shorted together.


 



  

 



 
Figure 4. Clip Mounting Position
for Isolation Test Number 2 Figure 5. Screw Mounting Position
for Isolation Test Number 3
MOUNTING INFORMATION**
 
 

 



Figure 6. Typical Mounting Techniques
6a. Screw–Mounted 6b. Clip–Mounted
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting
technique, a screw torque of 6 to 8 in .lbs is sufficient to provide maximum power dissipation capability. The compression
washer helps to maintain a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20
in .lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 2 0 i n.lbs without adversely affecting
the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does
not recommend exceeding 10 in .lbs of mounting torque under any mounting conditions.
**For more information about mounting power semiconductors see Application Note AN1040.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 414 Publication Order Number:
MURHF860CT/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state-of-the-art devices have the following
features:
Ultrafast 35 Nanosecond Recovery Times
175°C Operating Junction Temperature
Electrically Isolated. No Isolation Hardware Required.
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
High Voltage Capability to 600 Volts
Low Leakage Specified @ 150°C Case Temperature
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: UH860
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 V
Average Rectified Forward Current
(Rated VR, TC = 120°C) Total Device IF(AV) 4.0
8.0 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 120°C)
IFM 16 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 100 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +150 °C
Device Package Shipping
ORDERING INFORMATION
MURHF860CT TO–220
http://onsemi.com
ISOLATED TO–220
CASE 221D
STYLE 4
50 Units/Rail
3
1
ULTRAFAST
RECTIFIER
8.0 AMPERES
600 VOLTS
2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
UH860
UH860 = Device Code
MURHF860CT
http://onsemi.com
415
THERMAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Maximum Thermal Resistance, Junction to Case RθJC 4.1 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(iF = 4.0 Amps, TC = 150°C)
(iF = 4.0 Amps, TC = 25°C)
vF2.5
2.8
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR500
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 35 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 416 Publication Order Number:
MURF1660CT/D

Preferred Device

 
Designed for use in switching power supplies, inverters and as free
wheeling diodes, these state–of–the–art devices have the following
features:
Ultrafast 60 Nanosecond Recovery Times
150°C Operating Junction Temperature
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
Low Leakage Specified @ 150°C Case Temperature
Current Derating @ Both Case and Ambient Temperatures
Electrically Isolated. No Isolation Hardware Required.
UL Recognized File #E69369 (Note 1.)
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.9 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 50 units per plastic tube
Marking: U1660
MAXIMUM RATINGS
Please See the Table on the Following Page
1. UL Recognized mounting method is per Figure 4.
Device Package Shipping
ORDERING INFORMATION
MURF1660CT TO–220
http://onsemi.com
ISOLATED TO–220
CASE 221D
STYLE 3
50 Units/Rail
3
1
ULTRAFAST
RECTIFIER
16 AMPERES
600 VOLTS
2
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
U1660
U1660 = Device Code
MURF1660CT
http://onsemi.com
417
MAXIMUM RATINGS (Per Leg)
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 Volts
Average Rectified Forward Current Per Diode
Total Device, (Rated VR), TC = 150°C Per Device IF(AV) 8
16 Amps
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz), TC = 150°CIFM 16 Amps
Non–repetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) IFSM 100 Amps
Operating Junction and Storage Temperature TJ, Tstg 65 to +150 °C
RMS Isolation Voltage (t = 1 second, R.H. 30%, TA = 25°C) (Note 3.) Per Figure 3.
Per Figure 4. (Note 2.)
Per Figure 5.
Viso1
Viso2
Viso3
4500
3500
1500
Volts
THERMAL CHARACTERISTICS (Per Leg)
Maximum Thermal Resistance, Junction to Case RθJC 3.0 °C/W
Lead Temperature for Soldering
Purposes: 1/8 from Case for 5 Seconds TL260 °C
ELECTRICAL CHARACTERISTICS (Per Leg)
Characteristic Symbol Value Unit
Maximum Instantaneous Forward Voltage (Note 4.)
(iF = 8.0 Amp, TC = 150°C)
(iF = 8.0 Amp, TC = 25°C)
vF1.20
1.50
Volts
Maximum Instantaneous Reverse Current (Note 4.)
(Rated dc Voltage, TC = 150°C)
(Rated dc Voltage, TC = 25°C)
iR500
10
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amp/µs)
(IF = 0.5 Amp, iR = 1.0 Amp, IREC = 0.25 Amp)
trr 60
50
ns
2. UL Recognized mounting method is per Figure 4.
3. Proper strike and creepage distance must be provided.
4. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
  
µ














     
  
Figure 1. Typical Forward Voltage, Per Leg
°
°
°
 
°°

°
Figure 2. Typical Reverse Current, Per Leg*
MURF1660CT
http://onsemi.com
418
TEST CONDITIONS FOR ISOLATION TESTS*

 



 
Figure 3. Clip Mounting Position
for Isolation Test Number 1
* Measurement made between leads and heatsink with all leads shorted together.


 



  

 



 
Figure 4. Clip Mounting Position
for Isolation Test Number 2 Figure 5. Screw Mounting Position
for Isolation Test Number 3
MOUNTING INFORMATION**
 
 

 



Figure 6. Typical Mounting Techniques
6a. Screw–Mounted 6b. Clip–Mounted
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting
technique, a screw torque of 6 to 8 in .lbs is sufficient to provide maximum power dissipation capability. The compression
washer helps to maintain a constant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20
in .lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 2 0 i n.lbs without adversely affecting
the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does
not recommend exceeding 10 in .lbs of mounting torque under any mounting conditions.
**For more information about mounting power semiconductors see Application Note AN1040.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 419 Publication Order Number:
MUR3040/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 100 Nanosecond Recovery Time
175°C Operating Junction Temperature
High Voltage Capability to 400 Volts
Low Forward Voltage Drop
High Temperature Glass Passivated Junction
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: U3040
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
400 V
Average Rectified Forward Current
TC = 70°CIF(AV) 30 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 150°C)
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 300 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MUR3040 TO–218
http://onsemi.com
TO–218
CASE 340E
STYLE 1
30 Units/Rail
4
1
ULTRAFAST
RECTIFIER
30 AMPERES
400 VOLTS
3
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
U3040
U3040 = Device Code
MUR3040
http://onsemi.com
420
THERMAL CHARACTERISTICS
Rating Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage (Note 1.)
@ IF = 30 Amps, TC = 100°C
@ IF = 30 Amps, TC = 25°C
VF1.4
1.5
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated dc Voltage, TC = 100°C
@ Rated dc Voltage, TC = 25°C
IR6.0
35 mA
µA
Reverse Recovery Time
IF = 1.0 Amp, dI/dt = 15 Amp/µstRR 100 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
  

   

  °



°°
°
°

     



     
  
  

  °






   


 µ
  

°
°

   
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 421 Publication Order Number:
MUR3080/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 75 ns (Typ) Soft Recovery Time
175°C Operating Junction Temperature
High Voltage Capability to 800 Volts
Low Forward Voltage Drop
High Temperature Glass Passivated Junction
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: U3080
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
800 V
Average Rectified Forward Current
(Rated VR, TC = 70°C) IF(AV) 30 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 150°C)
IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 300 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MUR3080 TO–218
http://onsemi.com
TO–218
CASE 340E
STYLE 1
30 Units/Rail
4
1
ULTRAFAST
RECTIFIER
30 AMPERES
800 VOLTS
3
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
U3080
U3080 = Device Code
MUR3080
http://onsemi.com
422
THERMAL CHARACTERISTICS
Rating Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS (Typical Data)
Instantaneous Forward Voltage (Note 1.)
@ IF = 30 Amps, TC = 25°C
@ IF = 30 Amps, TC = 100°C
VF1.9
1.8
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated DC Voltage, TC = 25°C
@ Rated DC Voltage, TC = 100°C
IR100
5.0 µA
mA
Reverse Recovery Time
IF = 1.0 Amp, VR = 30 V, dI/dt = 50 A/µstRR 110 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 423 Publication Order Number:
MUR6040/D

Preferred Device

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 100 Nanosecond Recovery Time
175°C Operating Junction Temperature
High Voltage Capability to 400 Volts
Low Forward Voltage Drop
High Temperature Glass Passivated Junction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 Units Per Plastic Tube
Marking: U6040
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
400 V
Average Rectified Forward Current
TC = 70°CIF(AV) 60 A
Peak Repetitive Forward Current
(Rated VR, Square W ave,
20 kHz, TC = 150°C)
IFRM 60 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 600 A
Operating Junction and Storage
Temperature Range TJ, Tstg –65 to +175 °C
Device Package Shipping
ORDERING INFORMATION
MUR6040 TO–218
http://onsemi.com
TO–218
CASE 340E
STYLE 1
30 Units/Rail
4
1
ULTRAFAST
RECTIFIER
60 AMPERES
400 VOLTS
3
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
U6040
U6040 = Device Code
MUR6040
http://onsemi.com
424
THERMAL CHARACTERISTICS
Rating Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 0.8 °C/W
ELECTRICAL CHARACTERISTICS
Instantaneous Forward Voltage (Note 1.)
@ IF = 60 Amps, TC = 100°C
@ IF = 60 Amps, TC = 25°C
VF1.4
1.5
Volts
Instantaneous Reverse Current (Note 1.)
@ Rated dc Voltage, TC = 100°C
@ Rated dc Voltage, TC = 25°C
IR10
60 mA
µA
Reverse Recovery Time
IF = 1.0 Amp, dI/dt = 15 Amp/µstRR 100 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%
TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current
Figure 3. Current Derating, Case Figure 4. Current Derating, Ambient
  

   

  °



°
°
°
°

     



     
  
  

  °







  


 µ
  

°
°

   

Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 5 425 Publication Order Number:
MUR3020PT/D
 


 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 35 and 60 Nanosecond Recovery Time
175°C Operating Junction Temperature
High Voltage Capability to 600 Volts
Low Forward Drop
Low Leakage Specified @ 150°C Case Temperature
Current Derating Specified @ Both Case and Ambient Temperatures
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and
Terminal Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 units per plastic tube
Marking: U3020, U3040, U3060
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MUR3020PT SOT–93
http://onsemi.com
TO–218AC
CASE 340D
STYLE 2
30 Units/Rail
2
4
1
ULTRAFAST
RECTIFIERS
30 AMPERES
200–600 VOLTS
3
MARKING DIAGRAM
U30x0
U30x0 = Device Code
x = 2, 4 or 6
MUR3040PT SOT–93 30 Units/Rail
MUR3060PT SOT–93 30 Units/Rail
MUR3020PT, MUR3040PT, MUR3060PT
http://onsemi.com
426
MAXIMUM RATINGS (Per Leg)
Rating Symbol MUR3020PT MUR3040PT MUR3060PT Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 400 600 Volts
Average Rectified Forward Current (Rated VR)
Per Leg
Per Device
IF(AV) 15 @ TC = 150°C
30 @ TC = 150°C15 @ TC =
30 145°C
Amps
Peak Rectified Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz, TC = 150°C) IFRM 30
@ TC = 150°C30
@ TC =145°CAmps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz) Per Leg
IFSM 200 150 Amps
Operating Junction and Storage Temperature TJ, Tstg 65 to +175 °C
THERMAL CHARACTERISTICS (Per Diode Leg)
Maximum Thermal Resistance — Junction to Case
— Junction to Ambient RθJC
RθJA 1.5
40 °C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(IF = 15 Amp, TC = 150°C)
(IF = 15 Amp, TC = 25°C)
VF0.85
1.05 1.12
1.25 1.2
1.5
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated DC Voltage, TJ = 150°C)
(Rated DC Voltage, TJ = 25°C)
iR500
10 1000
10
µA
Maximum Reverse Recovery Time
(iF = 1.0 Amp, di/dt = 50 Amps/µs) trr 35 60 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR3020PT, MUR3040PT, MUR3060PT
http://onsemi.com
427
MUR3020PT










      
  
Figure 1. Typical Forward Voltage (Per Leg)
°°
°










         
 µ
  
Figure 2. Typical Reverse Current (Per Leg)
°
°
°




    

  °
Figure 3. Current Derating, Case (Per Leg)
 
  




         
  °
Figure 4. Current Derating, Ambient (Per Leg)
 




    
Figure 5. Power Dissipation (Per Leg)

  
θ°  
  
 

 

θ°
    
   
 
°
 



  

π
  


MUR3020PT, MUR3040PT, MUR3060PT
http://onsemi.com
428
MUR3040PT










      
  
Figure 6. Typical Forward Voltage (Per Leg)










         
 µ
  
Figure 7. Typical Reverse Current (Per Leg)




    

  °
Figure 8. Current Derating, Case (Per Leg)




    
  °
Figure 9. Current Derating, Ambient (Per Leg)
 




    
Figure 10. Power Dissipation (Per Leg)

  



°°°
°
°
°
 
  
θ°  
  
 
 


θ°
    
   
 
    
  

π
°
 

  

MUR3020PT, MUR3040PT, MUR3060PT
http://onsemi.com
429
MUR3060PT










      
  
Figure 11. Typical Forward Voltage (Per Leg)










 µ
  
Figure 12. Typical Reverse Current (Per Leg)




    

  °
Figure 13. Current Derating, Case (Per Leg)


    
  °
Figure 14. Current Derating, Ambient (Per Leg)
 




    
Figure 15. Power Dissipation (Per Leg)

  


°
°
°
         
°
°
°
 
  

θ°
    
   
 
 

θ°  
  
 
    


  

 
°


π
 

MUR3020PT, MUR3040PT, MUR3060PT
http://onsemi.com
430






            
  
Figure 16. Thermal Response




 

  
θ  θ
θ° 
   
  
 


θ








   
  
Figure 17. Typical Capacitance (Per Leg)

°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 431 Publication Order Number:
MUR3020WT/D
 
Preferred Devices

 
. . . designed for use in switching power supplies, inverters and as
free wheeling diodes, these state–of–the–art devices have the
following features:
Ultrafast 35 and 60 Nanosecond Recovery Time
175°C Operating Junction Temperature
Popular TO–247 Package
High Voltage Capability to 600 Volts
Low Forward Drop
Low Leakage Specified @ 150°C Case Temperature
Current Derating Specified @ Both Case and Ambient Temperatures
Epoxy Meets UL94, VO @ 1/8
High Temperature Glass Passivated Junction
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 4.3 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped 30 units per plastic tube
Marking: U3020, U3060
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MUR3020WT TO–247
http://onsemi.com
TO–247 PSI
CASE 340L
PLASTIC
30 Units/Rail
2
1
ULTRAFAST
RECTIFIERS
30 AMPERES
200–600 VOLTS

3
MARKING DIAGRAM
U30x0
U30x0 = Device Code
x = 2 or 6
Preferred devices are recommended choices for future use
and best overall value.
MUR3060WT TO–247 30 Units/Rail
MUR3020WT, MUR3060WT
http://onsemi.com
432
MAXIMUM RATINGS (Per Leg)
Rating Symbol MUR3020WT MUR3060WT Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 600 Volts
Average Rectified Forward Current @ 145°CTotal Device IF(AV) 15
30 Amps
Peak Repetitive Surge Current
(Rated VR, Square Wave, 20 kHz, TC = 145°C) IFM 30 Amps
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 200 150 Amps
Operating Junction and Storage Temperature TJ, Tstg 65 to +175 °C
THERMAL CHARACTERISTICS (Per Leg)
Maximum Thermal Resistance — Junction to Case
— Junction to Ambient RθJC
RθJA 1.5
40 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Maximum Instantaneous Forward Voltage (Note 1.)
(IF = 15 Amp, TC = 150°C)
(IF = 15 Amp, TC = 25°C)
VF0.85
1.05 1.4
1.7
Volts
Maximum Instantaneous Reverse Current (Note 1.)
(Rated DC Voltage, TJ = 150°C)
(Rated DC Voltage, TJ = 25°C)
iR500
10 1000
10
µA
Maximum Reverse Recovery Time
(iF = 1.0 A, di/dt = 50 Amps/µs) trr 35 60 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
MUR3020WT, MUR3060WT
http://onsemi.com
433
MUR3020WT










      
  
Figure 1. Typical Forward Voltage (Per Leg)
°°
°










         
 µ
  
Figure 2. Typical Reverse Current (Per Leg)*
°
°
°
             
            
     




    

  °
Figure 3. Current Derating, Case (Per Leg)
 
  




         
  °
Figure 4. Current Derating, Ambient (Per Leg)
 




    
Figure 5. Power Dissipation (Per Leg)

  
θ°  
  
 

 

θ°
    
   
 
°
 



  

π
  


MUR3020WT, MUR3060WT
http://onsemi.com
434
MUR3060WT










      
  
Figure 6. Typical Forward Voltage (Per Leg)










 µ
  
Figure 7. Typical Reverse Current (Per Leg)*
             
            
     




    

  °
Figure 8. Current Derating, Case (Per Leg)


    
  °
Figure 9. Current Derating, Ambient (Per Leg)
 




    
Figure 10. Power Dissipation (Per Leg)

  


°
°
°
         
°
°
°
 
  

θ°
    
   
 
 

θ°  
  
 
    


  

 
°


π
 

MUR3020WT, MUR3060WT
http://onsemi.com
435






            
  
Figure 11. Thermal Response




 

  
θ  θ
θ° 
   
  
 


θ








   
  
Figure 12. Typical Capacitance (Per Leg)

°
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 436 Publication Order Number:
MURP20020CT/D


Preferred Devices
  
 

. . . designed for use in switching power supplies, inverters, and as
free wheeling diodes. These state–of–the–art devices have the
following features:
Dual Diode Construction
Low Leakage Current
Low Forward Voltage
175°C Operating Junction Temperature
Labor Saving POWERTAP Package
Mechanical Characteristics:
Case: Epoxy, Molded with metal heatsink base
Weight: 80 grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25–40 lb–in max
Base Plate Torques: See procedure given in the
Package Outline Section
Shipped 25 units per foam
Marking: UP20020, UP20040
MAXIMUM RATINGS
Please See the Table on the Following Page
ULTRAFAST
RECTIFIERS
200 AMPERES
200–400 VOLTS
Device Package Shipping
ORDERING INFORMATION
MURP20020CT POWERTAP II 25 Units/Tray
PLASTIC
CASE 357C
POWERTAP II
http://onsemi.com
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
UP200x0
UP200x0 = Device Code
x = 2 or 4
YY = Year
WW = Work Week
YYWW
MURP20040CT POWERTAP II 25 Units/Tray
MURP20020CT, MURP20040CT
http://onsemi.com
437
MAXIMUM RATINGS
Rating Symbol MURP20020CT MURP20040CT Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 400 Volts
Average Rectified Forward Current Per Device
(Rated VR) Per Leg IF(AV) 200 (TC = 130°C)
100 (TC = 130°C) 200 (TC = 100°C)
100 (TC = 100°C) Amps
Peak Repetitive Forward Current, Per Leg
(Rated VR, Square Wave, 20 kHz), TC = 95°CIFRM 200 200 Amps
Nonrepetitive Peak Surge Current Per Leg (Surge applied at rated
load conditions halfwave, single phase, 60 Hz) IFSM 800 800 Amps
Operating Junction Temperature TJ55 to +175 55 to +175 °C
Storage Temperature Tstg 55 to +150 55 to +150 °C
THERMAL CHARACTERISTICS (Per Leg)
Rating Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 0.45 0.45 °C/W
ELECTRICAL CHARACTERISTICS (Per Leg)
Instantaneous Forward Voltage (Note 1.)
(iF = 100 Amps, TC = +25°C)
(iF = 200 Amps, TC = 25°C)
(iF = 100 Amps, TC = 125°C)
vF1.00
1.10
0.95
1.30
1.75
1.15
Volts
Instantaneous Reverse Current (Note 1.)
(Rated dc Voltage, TC = 125°C)
(Rated dc Voltage, TC = 25°C)
iR1000
150 500
50
µA
Maximum Reverse Recovery Time
(IF = 1.0 Amp, di/dt = 50 Amps/µs) trr 50 75 ns
1. Pulse Test: Pulse Width = 300 µs, Duty Cycle 2.0%.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 438 Publication Order Number:
MSRP10040/D


 
 
POWERTAP III Package
State of the art geometry features epitaxial construction with glass
passivation and metal overlay contact. Ideally suited for low voltage,
high frequency switching power supplies, free wheeling diode and
polarity protection diodes.
Soft Recovery Rectifier
Low IRRM Losses
Highly Stable Glass Passivated Junction
Mechanical Characteristics:
Dual Die Construction
Case: Epoxy, Molded with Plated Copper Heatsink Base
Weight: 40 Grams (approximately)
Finish: All External Surfaces Corrosion Resistant
Top Terminal Torque: 25 – 40 lb–in max.
Shipped 50 Units per Foam
Marking: MSRP10040
MAXIMUM RATINGS
Rating Symbol Max Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
400 V
Average Rectified Forward Current
(At Rated VR, TC = 100°C) IO100 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
100 kHz, TC = TBD°C)
IFRM 200 A
Non–Repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions Halfwave, Single
Phase, 60 Hz)
IFSM 800 A
Storage/Operating Case
Temperature Range Tstg, TC–55 to +150 °C
Operating Junction
Temperature Range TJ–55 to +150 °C
SOFT RECOVERY
RECTIFIER
100 AMPERES
400 VOLTS
Device Package Shipping
ORDERING INFORMATION
MSRP10040 POWERTAP III 50 Units/Tray
POWERTAP III
CASE 357D
PLASTIC
http://onsemi.com
MARKING DIAGRAM
MSRP10040
MSRP10040 = Device Code
MSRP10040
http://onsemi.com
439
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance — Junction–to–Case RθJC 0.5 °C/W
ELECTRICAL CHARACTERISTICS
Typical Instantaneous Forward Voltage (Note 1.) VFTJ = 25°C TJ = 100°CVolts
(IF = 100 A)
(IF = 200 A) 1.75
2.00 1.25
1.50
Typical Instantaneous Reverse Current IRTJ = 25°C TJ = 100°CA
(VR = 400 V)
(VR = 200 V) 100
50 500
250
Typical Reverse Recovery Time (Note 2.)
(VR = 30 V, IF = 10 A, di/dt = 200 A/s) trr 75 ns
Typical Peak Reverse Recovery Current
(VR = 30 V, IF = 10 A, di/dt = 200 A/s) Irm 7.0 Amps
1. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
2. trr measured projecting from 25% of IRM to zero.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 440 Publication Order Number:
MSR1560/D


  
Designed for boost converter or hard–switched converter
applications, especially for Power Factor Correction application. It
could also be used as a free wheeling diode in variable speed motor
control applications and switching mode power supplies. These
state–of–the–art devices have the following features:
Soft Recovery with Low Reverse Recovery Charge (QRR) and Peak
Reverse Recovery Current (IRRM)
150°C Operating Junction Temperature
Popular TO–220 Package
Epoxy meets UL94, VO @ 1/8
Low Forward Voltage
Low Leakage Current
High Temperature Glass Passivated Junction
Mechanical Characteristics:
Case: Molded Epoxy
Weight: 1.9 Grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Shipped in 50 Units per Plastic Tube
Marking: MSR1560
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
600 V
Average Rectified Forward Current
(At Rated VR, TC = 125°C) IO15 A
Peak Repetitive Forward Current (At Rated
VR, Square Wave, 20 kHz,TC = 125°C) IFRM 30 A
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 100 A
Storage/Operating Case Temperature Tstg, TC–65 to
+150 °C
Operating Junction Temperature TJ–65 to
+150 °C
THERMAL CHARACTERISTICS
Parameter Symbol Value Unit
Thermal Resistance – Junction–to–Case
Thermal Resistance –
Junction–to–Ambient
RJC
RJA
1.6
72.8
°C/W
SOFT RECOVERY
POWER RECTIFIER
15 AMPERES
600 VOLTS
http://onsemi.com
MARKING
DIAGRAM
TO–220
CASE 221B
PLASTIC
4
13
14
3
13
4
MSR1560
Device Package Shipping
ORDERING INFORMATION
MSR1560 TO–220 50 Units/Rail
MSR1560
http://onsemi.com
441
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.) (IF = 15 A) VFTJ = 25°C TJ = 150°CV
a u s a a eous o a d o age ( o e ) ( F5)
Typical
F
1.8
1.5
1.4
1.2
Maximum Instantaneous Reverse Current (VR = 600 V) IRTJ = 25°C TJ = 150°CA
a u s a a eous e e se Cu e ( R600 )
Typical
R
15
0.4
5000
100
Maximum Reverse Recovery Time (Note 2.) (VR = 30 V, IF = 1 A, di/dt = 100 A/s) trr TJ = 25°C TJ = 100°Cns
a u e ese eco ey e( oe )( R30 , F, d /d 00 /s)
Typical
rr
45
35
65
54
s
Typical Recovery Softness Factor (VR = 30 V, IF = 1 A, di/dt = 100 A/s) s = tb/ta
.67 .74
Typical Peak Reverse Recovery Current (VR = 30 V, IF = 1 A, di/dt = 100 A/s) IRRM 2.3 3.2 A
Typical Reverse Recovery Charge (VR = 30 V, IF = 1 A, di/dt = 100 A/s) QRR 31 78 nC
1. Pulse Test: Pulse Width 380 µs, Duty Cycle 2%
2. TRR measured projecting from 25% of IRRM to zero current
0.3
100
10
1
0.1 1.91.51.10.7 2.3 2.7
Figure 1. Maximum Forward Voltage
VF, INTANTANEOUS VOLTAGE (VOLTS)
IF, INSTANTANEOUS FORWARD CURRENT (AMPS)
VF @ 25°C
VF @ 100°C
VF @ 175°C
Figure 2. Typical Forward Voltage
VF, INSTANTANEOUS FORWARD CURRENT (AMPS)
IF, INSTANTANEOUS FORWARD CURRENT (AMPS)
0.3 1.10.90.70.5 1.3 1.5 1.7 1.9 2.1
100
10
1
0.1
zl
VF @ 25°C
VF @ 100°C
VF @ 175°C
MSR1560
http://onsemi.com
442
0.001
0.01
0.1
1
10
100
1000
VR, REVERSE VOLTAGE (VOLTS)
IR, REVERSE CURRENT (µA)
0 400300200 500100 600
Ir @ 25°C
Ir @ 175°C
Ir @ 100°C
10
Figure 3. Maximum Reverse Current
VR, REVERSE VOLTAGE (VOLTS)
IR, REVERSE CURRENT (µA)
0 400 500300200 600100
0.1
100
1
1000
10000
Figure 4. Typical Reverse Current
VF @ 25°C
VF @ 100°C
VF @ 175°C
20
10
0
30
5
20
100
0
15
500 150
TC, CASE TEMPERATURE (°C)
IF(AV), AVERAGE FORWARD
10
IF(AV), AVERAGE FORWARD CURRENT (AMPS)
Figure 5. Current Derating Figure 6. Power Dissipation
PF(AV), AVERAGE POWER DISSIPATION
(WATTS)
25
200 0 10 20
dc
Square Wave
dc
Square Wave
350
300
250
200
150
100
50
0
400
350
20
300
250
3010040
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
200
150
100
50
0
VR, REVERSE VOLTAGE (VOLTS)
Figure 7. Maximum Capacitance Figure 8. Typical Capacitance
C, CAPACITANCE (pF)
50 0 40 50302010
TJ = 25°CTJ = 25°C
TJ = 175°CTJ = 175°C
MSR1560
http://onsemi.com
443
60
50
40
30
20
10
0
80
60
40
20
0
Figure 9. Typical Trr vs. di/dt
dI/dt (A/µS)
Figure 10. Typical Trr vs. Temperature
TEMPERATURE (°C)
Time (nsec)
Time (nsec)
25017510025 75 12525 175
Trr vs. di/dt @ 25°C
ta vs. di/dt @ 25°C
tb vs. di/dt @ 25°C
trr
ta
tb
3
2
1
0
50
40
30
20
Figure 11. Typical Peak Reverse Recovery
Current
dI/dt (A/µS)
Figure 12. Typical Reverse Recovery Charge
dIF/dt (A/µS))
IRRM, PEAK RECOVERY CURRENT
(AMPS)
QRR, REVERSE RECOVERY CHARGE (nC)
IF = 1 A
25 22517512575 25 250175100
35
25
45
55
65
dIF/dt (A/µS)
EOFF, SWITCHING OFF LOSSES (µJ)
Figure 13. Typical Switching Off Losses
25 175100 250
IF = 1 A
IF = 1 A
TJ = 25°CTJ = 25°C
VR = 30 V
MSR1560
http://onsemi.com
444
1
0.1
10
Figure 14. Transient Thermal Response
t, Time (S)
R(t), TRANSIENT THERMAL RESISTANCE
0.0001 0.010.001 0.1 1 10
ID = 0.5
0.1
0.05
0.01
Single Pulse
http://onsemi.com
445
CHAPTER 5
Standard and Fast Recovery Data Sheets
http://onsemi.com
446
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 6 447 Publication Order Number:
1N4001/D
  
  

1N4004 and 1N4007 are Preferred Devices
  
 
This data sheet provides information on subminiature size, axial
lead mounted rectifiers for general–purpose low–power applications.
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag.
Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix to
the part number
Available in Fan–Fold Packaging, 3000 per box, by adding a “FF”
suffix to the part number
Polarity: Cathode Indicated by Polarity Band
Marking: 1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006,
1N4007
MAXIMUM RATINGS
Rating Symbol 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 Unit
*Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 200 400 600 800 1000 Volts
*Non–Repetitive Peak Reverse Voltage
(halfwave, single phase, 60 Hz) VRSM 60 120 240 480 720 1000 1200 Volts
*RMS Reverse Voltage VR(RMS) 35 70 140 280 420 560 700 Volts
*Average Rectified Forward Current
(single phase, resistive load,
60 Hz, TA = 75°C)
IO1.0 Amp
*Non–Repetitive Peak Surge Current
(surge applied at rated load
conditions)
IFSM 30 (for 1 cycle) Amp
Operating and Storage Junction
Temperature Range TJ
Tstg –65 to +175 °C
*Indicates JEDEC Registered Data
http://onsemi.com
CASE 59
AXIAL LEAD
PLASTIC
LEAD MOUNTED RECTIFIERS
50–1000 VOLTS
DIFFUSED JUNCTION
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
See detailed ordering and shipping information on page 448
of this data sheet.
ORDERING INFORMATION
AL = Assembly Location
1N400x = Device Number
x = 1, 2, 3, 4, 5, 6 or 7
YY = Year
WW = Work Week
AL
1N
400x
YYWW
1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007
http://onsemi.com
448
ELECTRICAL CHARACTERISTICS*
Rating Symbol Typ Max Unit
Maximum Instantaneous Forward Voltage Drop
(iF = 1.0 Amp, TJ = 25°C) vF0.93 1.1 Volts
Maximum Full–Cycle Average Forward Voltage Drop
(IO = 1.0 Amp, TL = 75°C, 1 inch leads) VF(AV) 0.8 Volts
Maximum Reverse Current (rated dc voltage)
(TJ = 25°C)
(TJ = 100°C)
IR0.05
1.0 10
50
µA
Maximum Full–Cycle Average Reverse Current
(IO = 1.0 Amp, TL = 75°C, 1 inch leads) IR(AV) 30 µA
*Indicates JEDEC Registered Data
ORDERING & SHIPPING INFORMATION
Device Package Shipping
1N4001 Axial Lead 1000 Units/Bag
1N4001FF Axial Lead 3000 Units/Box
1N4001RL Axial Lead 5000/Tape & Reel
1N4002 Axial Lead 1000 Units/Bag
1N4002FF Axial Lead 3000 Units/Box
1N4002RL Axial Lead 5000/Tape & Reel
1N4003 Axial Lead 1000 Units/Bag
1N4003FF Axial Lead 3000 Units/Box
1N4003RL Axial Lead 5000/Tape & Reel
1N4004 Axial Lead 1000 Units/Bag
1N4004FF Axial Lead 3000 Units/Box
1N4004RL Axial Lead 5000/Tape & Reel
1N4005 Axial Lead 1000 Units/Bag
1N4005FF Axial Lead 3000 Units/Box
1N4005RL Axial Lead 5000/Tape & Reel
1N4006 Axial Lead 1000 Units/Bag
1N4006FF Axial Lead 3000 Units/Box
1N4006RL Axial Lead 5000/Tape & Reel
1N4007 Axial Lead 1000 Units/Bag
1N4007FF Axial Lead 3000 Units/Box
1N4007RL Axial Lead 5000/Tape & Reel
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 449 Publication Order Number:
1N5400/D
  
1N5404 and 1N5406 are Preferred Devices
 
 
Lead mounted standard recovery rectifiers are designed for use in
power supplies and other applications having need of a device with the
following features:
High Current to Small Size
High Surge Current Capability
Low Forward Voltage Drop
Void–Free Economical Plastic Package
Available in Volume Quantities
Plastic Meets UL 94V–0 for Flammability
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Polarity: Cathode Indicated by Polarity Band
Marking: 1N5400, 1N5401, 1N5402, 1N5404, 1N5406, 1N5407,
1N5408
MAXIMUM RATINGS
Please See the Table on the Following Page
STANDARD RECOVERY
RECTIFIERS
50–1000 VOLTS
3.0 AMPERES
http://onsemi.com
Device Package Shipping
ORDERING INFORMATION
1N5400 Axial Lead 500 Units/Box
1N5400RL Axial Lead 1200/Tape & Reel
AXIAL LEAD
CASE 267–05
STYLE 1
Preferred devices are recommended choices for future use
and best overall value.
1N5401 Axial Lead 500 Units/Box
1N5401RL Axial Lead 1200/Tape & Reel
1N5402 Axial Lead 500 Units/Box
1N5402RL Axial Lead 1200/Tape & Reel
1N5404 Axial Lead 500 Units/Box
1N5404RL Axial Lead 1200/Tape & Reel
1N5406 Axial Lead 500 Units/Box
1N5406RL Axial Lead 1200/Tape & Reel
1N5407 Axial Lead 500 Units/Box
1N5407RL Axial Lead 1200/Tape & Reel
1N5408 Axial Lead 500 Units/Box
1N5408RL Axial Lead 1200/Tape & Reel
AL = Assembly Location
1N540x = Device Number
x = 0, 1, 2, 4, 6, 7 or 8
YY = Year
WW = Work Week
MARKING DIAGRAM
AL
1N
540x
YYWW
1N5400 thru 1N5408
http://onsemi.com
450
MAXIMUM RATINGS
Rating Symbol 1N5400 1N5401 1N5402 1N5404 1N5406 1N5407 1N5408 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 200 400 600 800 1000 Volts
Non–repetitive Peak Reverse Voltage VRSM 100 200 300 525 800 1000 1200 Volts
Average Rectified Forward Current
(Single Phase Resistive Load,
1/2 Leads, TL = 105°C)
IO3.0 Amp
Non–repetitive Peak Surge Current
(Surge Applied at Rated Load
Conditions)
IFSM 200 (one cycle) Amp
Operating and Storage Junction
Temperature Range TJ
Tstg 65 to +170
65 to +175 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Typ Unit
Thermal Resistance, Junction to Ambient (PC Board Mount, 1/2 Leads) RθJA 53 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Typ Max Unit
Forward Voltage (IF = 3.0 Amp, TA = 25°C) vF 1.0 Volts
Reverse Current (Rated dc Voltage)
TA = 25°C
TA = 150°C
IR
10
100
µA
Ratings at 25°C ambient temperature unless otherwise specified.
60 Hz resistive or inductive loads.
For capacitive load, derate current by 20%.
Lead Length, L (IN)
Mounting
Method 1/8 1/4 1/2
1
2
3
50
58
RθJA
51 53
59 61
28
°C/W
°C/W
°C/W
TYPICAL VALUES FOR RθJA IN STILL AIR
Data shown for thermal resistance junction–to–ambient (RθJA)
for the mountings shown is to be used as typical guideline values
for preliminary engineering or in case the tie point temperature
cannot be measured.
NOTE 1 — AMBIENT MOUNTING DATA
MOUNTING METHOD 1
P.C. Board Where Available
Copper Surface area is small
MOUNTING METHOD 2
Vector Push–In Terminals T–28
MOUNTING METHOD 3
P.C. Board with
1–1/2” x 1–1/2”
Copper Surface
3/4
55
63
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
L L
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
L L
É
É
É
É
É
L = 1/2”
Board Ground Plane
1N5400 thru 1N5408
http://onsemi.com
451
Figure 1. Forward Voltage
vF, INSTANTANEOUS VOLTAGE (VOLTS)
0.8 2.01.2 2.8
0.3
1.0
3.0
2.0
20
10
0.2
200
70
30
5.0
50
0.5
, INSTANTANEOUS FORWARD CURRENT (AMPS)
F
Figure 2. Maximum Nonrepetitive Surge Current
Figure 3. Current Derating Various Lead Lengths
7.0
100
0.7
TJ = 25°C
i
0.4 1.6 2.4
400
200
300
401.0 NUMBER OF CYCLES

50
60
70
80
90
100
2.0 3.0 5.0 10
3.2
Figure 4. Current Derating PC Board Mounting
7.0 20 30 50 70 100
40 60 80 100 120 140 160 180
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
40 60 80 100 120 140 160 180
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
RθJA = 50°C/W
RθJA = 28°C/W
I(PK)
I(AV) = π
Note for Resistive Load
5.0
10
20
TA, AMBIENT TEMPERATURE (°C)
I(PK)
I(AV) = π
Capacitive Loads
Surge Applied
at Rated Load
Conditions
f = 60Hz
1 CYCLE
Resistive Load
Both Leads to Heat
Sink with Lengths
as Shown
1/4”
L = 1/32”
1/2”
TL, LEAD TEMPERATURE (°C)
TYPICAL
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 452 Publication Order Number:
1N4933/D
  
 
1N4935 and 1N4937 are Preferred Devices
 

Axial–lead, fast–recovery rectifiers are designed for special
applications such as dc power supplies, inverters, converters,
ultrasonic systems, choppers, low RF interference and free wheeling
diodes. A complete line of fast recovery rectifiers having typical
recovery time of 150 nanoseconds providing high efficiency at
frequencies to 250 kHz.
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 0.4 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 1000 per bag.
Available Tape and Reeled, 5000 per reel, by adding a “RL” suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: 1N4933, 1N4934, 1N4935, 1N4936, 1N4937
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
FAST RECOVERY
RECTIFIERS
1.0 AMPERE
50–600 VOLTS
Preferred devices are recommended choices for future use
and best overall value.
1N4933 Axial Lead 1000 Units/Bag
1N4933RL Axial Lead 5000/Tape & Reel
1N4934 Axial Lead 1000 Units/Bag
1N4934RL Axial Lead 5000/Tape & Reel
1N4935 Axial Lead 1000 Units/Bag
1N4935RL Axial Lead 5000/Tape & Reel
1N4936 Axial Lead 1000 Units/Bag
1N4936RL Axial Lead 5000/Tape & Reel
1N4937 Axial Lead 1000 Units/Bag
1N4937RL Axial Lead 5000/Tape & Reel
CASE 59
AXIAL LEAD
PLASTIC
MARKING DIAGRAM
AL = Assembly Location
1N493x = Device Number
x = 3, 4, 5, 6 or 7
YY = Year
WW = Work Week
AL
1N
493x
YYWW
1N4933, 1N4934, 1N4935, 1N4936, 1N4937
http://onsemi.com
453
MAXIMUM RATINGS (Note 1.)
Rating Symbol 1N4933 1N4934 1N4935 1N4936 1N4937 Unit
*Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 200 400 600 Volts
*Non–Repetitive Peak Reverse Voltage
RMS Reverse Voltage VRSM
VR(RMS) 75
35 150
70 250
140 450
280 650
420 Volts
*Average Rectified Forward Current
(Single phase, resistive load, TA = 75°C) (Note 2.) IO1.0 Amp
*Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions) IFSM 30 Amps
Operating Junction Temperature Range
Storage Temperature Range TJ
Tstg 65 to +150
65 to +150 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient
(Typical Printed Circuit Board Mounting) RθJC 65 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Typ Max Unit
Instantaneous Forward Voltage
(IF = 3.14 Amp, TJ = 125°C) vF 1.0 1.2 Volts
Forward Voltage
(IF = 1.0 Amp, TA = 25°C) VF 1.0 1.1 Volts
*Reverse Current (Rated dc Voltage) TA = 25°C
TA = 100°CIR
1.0
50 5.0
100 µA
*REVERSE RECOVERY CHARACTERISTICS
Characteristic Symbol Min Typ Max Unit
Reverse Recovery Time
(IF = 1.0 Amp to VR = 30 Vdc)
(IFM = 15 Amp, di/dt = 10 A/µs)
trr
150
175 200
300
ns
Reverse Recovery Current
(IF = 1.0 Amp to VR = 30 Vdc) IRM(REC) 1.0 2.0 Amp
1. Ratings at 25°C ambient temperature unless otherwise specified.
2. Derate by 20% for capacitive loads.
*Indicates JEDEC Registered Data for 1N4933 Series.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 454 Publication Order Number:
MR850/D
  
 
MR852 and MR856 are Preferred Devices
  
 
Axial lead mounted fast recovery power rectifiers are designed for
special applications such as dc power supplies, inverters, converters,
ultrasonic systems, choppers, low RF interference and free wheeling
diodes. A complete line of fast recovery rectifiers having typical
recovery time of 100 nanoseconds providing high efficiency at
frequencies to 250 kHz.
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 1.1 gram (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
220°C Max. for 10 Seconds, 1/16 from case
Shipped in plastic bags, 500 per box
Available Tape and Reeled, 1200 per reel, by adding a “RL” suffix to
the part number
Polarity: Cathode Indicated by Polarity Band
Marking: MR850, MR851, MR852, MR854, MR856
MAXIMUM RATINGS
Please See the Table on the Following Page
FAST RECOVERY
POWER RECTIFIERS
3.0 AMPERES
50–600 VOLTS
http://onsemi.com
Device Package Shipping
ORDERING INFORMATION
MR850 Axial Lead 500 Units/Box
MR850RL Axial Lead 1200/Tape & Reel
AXIAL LEAD
CASE 267–05
STYLE 1
Preferred devices are recommended choices for future use
and best overall value.
MR851 Axial Lead 500 Units/Box
MR851RL Axial Lead 1200/Tape & Reel
MR852 Axial Lead 500 Units/Box
MR852RL Axial Lead 1200/Tape & Reel
MR854 Axial Lead 500 Units/Box
MR854RL Axial Lead 1200/Tape & Reel
MR856 Axial Lead 500 Units/Box
MR856RL Axial Lead 1200/Tape & Reel
AL = Assembly Location
MR85x = Device Number
x = 0, 1, 2, 4 or 6
YY = Year
WW = Work Week
MARKING DIAGRAM
AL
MR
85x
YYWW
MR850, MR851, MR852, MR854, MR856
http://onsemi.com
455
MAXIMUM RATINGS
Rating Symbol MR850 MR851 MR852 MR854 MR856 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 200 400 600 Volts
Non–Repetitive Peak Reverse Voltage VRSM 75 150 250 450 650 Volts
RMS Reverse Voltage VR(RMS) 35 70 140 280 420 Volts
Average Rectified Forward Current
(Single phase resistive load, TA = 80°C) IO3.0 Amp
Non–Repetitive Peak Surge Current
(surge applied at rated load conditions) IFSM 100
(one cycle) Amp
Operating and Storage Junction
Temperature Range TJ,
Tstg 65 to +125
65 to +150 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Ambient
(Recommended Printed Circuit Board Mounting) RθJA 28 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Typ Max Unit
Forward Voltage
(IF = 3.0 Amp, TJ = 25°C) VF 1.04 1.25 Volts
Reverse Current (rated dc voltage) TJ = 25°C
MR850
MR851
MR852
MR854
MR856
TJ = 80°C
IR
2.0
60
100
10
150
150
200
250
300
µA
REVERSE RECOVERY CHARACTERISTICS
Characteristic Symbol Min Typ Max Unit
Reverse Recovery Time
(IF = 1.0 Amp to VR = 30 Vdc)
(IF = 15 Amp, di/dt = 10 A/µs)
trr
100
150 200
300
ns
Reverse Recovery Current
(IF = 1.0 Amp to VR = 30 Vdc) IRM(REC) 2.0 Amp
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 456 Publication Order Number:
MRA4003T3/D
 
  
  
SMA Power Surface Mount Package
Features construction with glass passivation. Ideally suited for
surface mounted Automotive application.
Compact Package with J–Bend Leads Ideal for Automated Handling
Stable, High Temperature, Glass Passivated Junction
Mechanical Characteristics
Case: Molded Epoxy
Epoxy meets UL94, VO at 1/8
Weight: 70 mg (Approximately)
Finish: All External Surfaces are Corrosion Resistant and Terminal
Leads are Readily Solderable
Lead and Mounting Surface Temperature for Soldering Purposes:
260°C Max. for 10 seconds in Solder Bath
Polarity: Notch and/or Band in Plastic Body Indicates Cathode Lead
Available in 12 mm Tape, 5000 Units per 13 inch Reel,
Add “T3” Suffix to Part Number
Marking: MRA4003T3 — R13
Marking: MRA4004T3 — R14
Marking: MRA4005T3 — R15
Marking: MRA4006T3 — R16
Marking: MRA4007T3 — R17
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
MRA4004T3 SMA 5000/Tape & Reel
MRA4003T3 SMA 5000/Tape & Reel
MRA4005T3 SMA 5000/Tape & Reel
MRA4006T3 SMA 5000/Tape & Reel
MRA4007T3 SMA 5000/Tape & Reel
STANDARD RECOVERY
RECTIFIERS
1.0 AMPERES
300–1000 VOLTS
CASE 403B
SMA
PLASTIC
MARKING DIAGRAM
R1x
LL ##
R1x = Device Code
x = 3, 4, 5, 6 or 7
LL = Location Code
## = Date Code
MRA4003T3 Series
http://onsemi.com
457
MAXIMUM RATINGS
Value
Rating Symbol MRA4003T3 MRA4004T3 MRA4005T3 MRA4006T3 MRA4007T3 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
300 400 600 800 1000 Volts
Avg. Rectified Forward Current
(At Rated VR, TL = 150°C) IO1 Amp
Peak Repetitive Forward Current
(At Rated VR, Square Wave,
20 kHz, TL = 150°C)
IFRM 2 Amps
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 30 Amps
Storage/Operating Case Temperature Tstg, TC–55 to 150 °C
Operating Junction Temperature TJ–55 to 175 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Lead (Note 1.)
Thermal Resistance, Junction to Ambient (Note 2.) RθJL
RθJA 16.2
88.3 °C/W
ELECTRICAL CHARACTERISTICS
Value
Characteristic Symbol TJ = 25°C TJ = 100°CUnit
Maximum Instantaneous Forward Voltage (Note 3.)
(IF = 1 A)
(IF = 2 A)
VF1.1
1.18 1.04
1.12
Volts
Maximum Instantaneous Reverse Current (at rated DC voltage) IR10 50 A
1. Minimum Pad Size
2. 1 inch Pad Size
3. Pulse Test: Pulse Width 250 µs, Duty Cycle 2%.
Figure 1. Typical Forward Voltage
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
10
1.0
0.1
1.21.00.80.60.4
IF, INSTANTANEOUS FORWARD CURRENT (AMPS)
Figure 2. Typical Reverse Current
VR, REVERSE VOLTAGE (VOLTS) 400350300250200150100500
IR, REVERSE CURRENT (AMPS)
1.0E–9
0.01
10E–9
100E–9
1.0E–6
10E–6
100E–6
TJ = 150°C
100°C 25°C
–40°C
TJ = 150°C
100°C
25°C
MRA4003T3 Series
http://onsemi.com
458
20
5
Ipk/IO =
Figure 3. Current Derating per Leg
TL, LEAD TEMPERATURE (°C)
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
1601401201006040200
IO, A VERAGE FORW ARD CURRENT (AMPS)
Figure 4. Forward Power Dissipation per Leg
IO, AVERAGE FORWARD CURRENT (AMPS) 2.01.51.00.50
1.4
1.2
1.0
0.8
0.6
0.4
0.2

0
0
1.6
1.8
80
Square Wave
dc
10
20
5
Ipk/IO =
Square Wave
dc
10
Freq = 20 kHz
Figure 5. Capacitance
VR, REVERSE VOLTAGE (VOLTS)
100
10
160140120100806040200
C, CAPACITANCE (pF)
1200180
TJ = 25°C
Figure 6. Thermal Response
t, TIME (s)
10E–3100E–610E–6
0.001
r(t), TRANSIENT THERMAL RESISTANCE
0.01
0.1
1.0
1E–3
(NORMALIZED)
1E+0100E–3 10E+0 100E+0 1E+3 10E+3
RJA (1 inch Pad Board)
RJL (Min Pad Board)
RJL(t) = RJL * r(t)
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 2 459 Publication Order Number:
MRS1504T3/D

  
  
SMB Power Surface Mount Package
Features mesa epitaxial construction with glass passivation. Ideally
suited for high frequency switching power supplies; free wheeling
diodes and polarity protection diodes.
Compact Package with J–Bend Leads Ideal for Automated Handling
Stable, High Temperature, Glass Passivated Junction
Mechanical Characteristics:
Case: Molded Epoxy
Epoxy Meets UL94, VO at 1/8
Weight: 95 mg (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Maximum Temperature of 260°C / 10 Seconds for Soldering
Available in 12 mm Tape, 2500 Units per 13 inch Reel, Add “T3”
Suffix to Part Number
Polarity: Notch and/or band in Plastic Body Indicates Cathode Lead
Marking: RGG
MAXIMUM RATINGS
Rating Symbol Value Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
400 V
Average Rectified Forward Current
(At Rated VR, TI = 118°C) IO1.5 A
Peak Repetitive Forward Current
(At Rated VR, Square Wave, 20 kHz,
TI = 118°C)
IFRM 3.0 A
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions,
halfwave, single phase, 60 Hz)
IFSM 50 A
Storage/Operating Case
Temperature Range Tstg, TC–55 to
150 °C
Operating Junction Temperature Range TJ–55 to
150 °C
Device Package Shipping
ORDERING INFORMATION
http://onsemi.com
MRS1504T3 SMB 2500/Tape & Reel
STANDARD RECOVERY
RECTIFIER
1.5 AMPERES
400 VOLTS
SMB
CASE 403A
PLASTIC
MARKING DIAGRAM
YWW
RGG
LL
Y = Year
WW = Work Week
RGG = Device Code
LL = Location Code
MRS1504T3
http://onsemi.com
460
THERMAL CHARACTERISTICS
Rating Symbol Value Unit
Thermal Resistance – Junction–to–Lead (Note 2.)
Thermal Resistance – Junction–to–Ambient (on 1 sq. Cu. PCB pattern) Rtjl
Rtja 18
79 °C/W
ELECTRICAL CHARACTERISTICS
Maximum Instantaneous Forward Voltage (Note 1.), see Figure 2 VFTJ = 25°C TJ = 100°CV
(IF = 1.5 A)
(IF = 2.25 A) 1.04
1.10 0.96
1.02
Maximum Instantaneous Reverse Current, see Figure 4 IRTJ = 25°C TJ = 100°CA
(VR = 400 V)
(VR = 200 V) 1.0
0.5 340
180
1. Pulse Test: Pulse Width 250 µs, Duty Cycle 2.0%.
2. Minimum pad size
Figure 1. Typical Forward Voltage Figure 2. Maximum Forward Voltage
Figure 3. Typical Reverse Current Figure 4. Maximum Reverse Current

   



    




  






  


      


  









  

°
°
°
°°
°
°
°
°
°

 

°
°
°
MRS1504T3
http://onsemi.com
461
 
Figure 5. Current Derating Figure 6. Forward Power Dissipation
 
  °





   







    












 


  
Figure 7. Capacitance

  




     
°
MRS1504T3
http://onsemi.com
462
Figure 8. Thermal Response Junction to Lead
Figure 9. Thermal Response Junction to Ambient

 



    



 






 






     
 






Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 463 Publication Order Number:
MR2500/D
  
MR2504 and MR2510 are Preferred Devices

 
. . . compact, highly efficient silicon rectifiers for medium–current
applications requiring:
High Current Surge — 400 Amperes @ TJ = 175°C
Peak Performance @ Elevated Temperature — 25 Amperes @
TC = 150°C
Low Cost
Compact, Molded Package — For Optimum Efficiency in a Small
Case Configuration
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 1.8 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminals are
Readily Solderable
Lead Temperature for Soldering Purposes: requires a custom
temperature soldering profile
Polarity: Cathode Polarity Band
Shipped 5000 units per box
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
MICRODE BUTTON
CASE 193
http://onsemi.com
MR2502 Microde Button 5000 Units/Box
MR2504 Microde Button 5000 Units/Box
MR2510 Microde Button 5000 Units/Box
MEDIUM–CURRENT
SILICON RECTIFIERS
25 AMPERES
200–1000 VOLTS
DIFFUSED JUNCTION
Preferred devices are recommended choices for future use
and best overall value.
MARKING DIAGRAM
MR25xx = Device Code
xx = 02, 04 or 10
L = Location Code
YY = Year
WW = Work Week
MR25xx LYYWW
MR2502, MR2504, MR2510
http://onsemi.com
464
MAXIMUM RATINGS
Characteristic Symbol MR2502 MR2504 MR2510 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
200 400 1000 Volts
Non–Repetitive Peak Reverse Voltage
(Halfwave, single phase, 60 Hz peak) VRSM 240 480 1200 Volts
Average Rectified Forward Current
(Single phase, resistive load, 60 Hz, TC = 150°C) IO25 Amps
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions, halfwave,
single phase, 60 Hz)
IFSM 400 (for 1 cycle) Amps
Operating and Storage Junction Temperature Range TJ, Tstg 65 to +175 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case
(Single Side Cooled) RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS
Characteristics and Conditions Symbol Max Unit
Maximum Instantaneous Forward Voltage
(iF = 78.5 Amps, TC = 25°C) vF1.18 Volts
Maximum Reverse Current (rated dc voltage)
TC = 25°C
TC = 100°C
IR100
500
µA
MR2502, MR2504, MR2510
http://onsemi.com
465
Figure 1. Forward Voltage
Figure 2. Non–Repetitive Surge Current
Figure 3. Forward Voltage Temperature
Coefficient
Figure 4. Current Derating Figure 5. Forward Power Dissipation
 
   





  





   







 
  °




    







°



     
    



   

 

  
















  
  


°
 
 
°
°
 



 

 


 
 
 
 





    
    
    
MR2502, MR2504, MR2510
http://onsemi.com
466
To determine maximum junction temperature of the diode in a
given situation, the following procedure is recommended:
  
      
   
The temperature of the case should be measured using a
thermocouple placed on the case at the temperature reference
point (see the outline drawing on page 1). The thermal mass
connected to the case is normally large enough so that it will not
significantly respond to heat surges generated in the diode as a
result of pulsed operation once steady–state conditions are
achieved. Using the measured value of TC, the junction
temperature may be determined by:
TJ = TC + TJC
where TJC is the increase in junction temperature above the case
temperature, it may be determined by:
TJC = PpkRθJC [D + (1 D)r(t1 + tp) + r(tp) r(t1)] where
r(t) = normalized value of transient thermal resistance at time, t,
from Figure 6, i.e.:
r (t1 + tp) = normalized value of transient thermal resistance at
time t1 + tp.
 

Figure 6. Thermal Response
Figure 7. Capacitance
Figure 8. Forward Recovery Time Figure 9. Reverse Recovery Time
  





  









  





      








    



  



  


  
 





           


    
 

 

°
 
   

 
°°








MR2502, MR2504, MR2510
http://onsemi.com
467
Figure 10. Rectification Waveform Efficiency
  





  



    
°
  
Figure 11. Single–Phase Half–Wave Rectifier Circuit
RECTIFICATION EFFICIENCY NOTE
The rectification efficiency factor σ shown in Figure 10
was calculated using the formula:
σP(dc)
P(rms)
V2o(dc)
RL
V2o(rms)
RL
.100% V2o(dc)
V2o(ac) V2o(dc).100%
(1)
For a sine wave input Vm sin (ωt) to the diode, assume
lossless, the maximum theoretical efficiency factor
becomes:
σ(sine)
V2m
2RL
V2m
4RL
.100% 4
π2.100% 40.6% (2)
For a square wave input of amplitude Vm, the efficiency
factor becomes:
σ(square)
V2m
2RL
V2m
RL
.100% 50% (3)
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the
reverse recovery time of the diode (Figure 9) becomes
significant, resulting in an increasing ac voltage component
across RL which is opposite in polarity to the forward
current, thereby reducing the value of the efficiency factor
σ, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode
losses. Data was obtained by measuring the ac component of
VO with a true rms ac voltmeter and the dc component with
a dc voltmeter. The data was used in Equation 1 to obtain
points for Figure 10.
MR2502, MR2504, MR2510
http://onsemi.com
468
ASSEMBLY AND SOLDERING INFORMATION
There are two basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
each should be carefully examined before attempting a
finished assembly or mounting operation.
MOUNTING AND HANDLING
The button rectifier lends itself to a multitude of assembly
arrangements but one key consideration must always be
included:
One Side of the Connections to
the Button Must Be Flexible!
This stress relief to the button should
also be chosen for maximum contact
area to afford the best heat transfer —
but not at the expense of flexibility.
For an annealed copper terminal a
thickness of 0.015 is suggested.
The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials Advantages and Disadvantages
Steel Low Cost; relatively low heat conductivity
Copper High Cost; high heat conductivity
Aluminum Medium Cost; medium heat conductivity
Relatively expensive to plate and not all
platers can process aluminum.
Handling o f the button during assembly must be relatively
gentle to minimize sharp impact shocks and avoid nicking
of the plastic. Improperly designed automatic handling
equipment is the worst source of unnecessary shocks.
Techniques for vacuum handling and spring loading should
be investigated.
The mechanical stress limits for the button diode are as
follows:
Compression 32 lbs. 142.3 Newton
Tension 32 lbs. 142.3 Newton
Torsion 6–inch lbs. 0.68 Newton–meters
Shear 55 lbs. 244.7 Newton




MECHANICAL STRESS
Exceeding these recommended maximums can result in
electrical degradation of the device.
SOLDERING
The button rectifier is basically a semiconductor chip
bonded between t wo n ickel–plated c opper h eat s inks w ith
an encapsulating material of thermal–setting silicone.
The exposed metal areas are also tin plated to enhance
solderability.
In the soldering process it is important that the
temperature not exceed 250°C if device damage is to be
avoided. Various solder alloys can be used for this operation
but two types are recommended for best results:
1. 95% Sn, 5% Sb; melting point 237°C
2. 96.5% tin, 3.5% silver; melting point 221°C
3. 63% tin, 37% lead; melting point 183°C
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a flux
to assure good wetting of the solder. The type of flux used
depends upon the degree of cleaning to be accomplished and
is a function of the metals involved. These fluxes range from
a mild rosin to a strong acid; e.g., Nickel plating oxides are
best removed by an acid base flux while an activated rosin
flux may be sufficient for tin plated parts.
Since the button is relatively light–weight, there is a
tendency for it to float when the solder becomes liquid. To
prevent bad joints and misalignment it is suggested that a
weighting or spring loaded fixture be employed. It is also
important that severe thermal shock (either heating or
cooling) be avoided as it may lead to damage of the die or
encapsulant of the part.
Button holding fixtures f or u se d uring s oldering m ay b e o f
various materials. Stainless steel has a longer use life while
black a nodized a luminum i s l ess e xpensive a nd w ill l imit h eat
reflection a nd e nhance a bsorption. T he assembly v olume w ill
influence the choice of materials. Fixture dimension
tolerances for locating the button must allow for expansion
during soldering as well as allowing for button clearance.
HEATING TECHNIQUES
The following four heating methods have their
advantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt Furnaces readily handle large or small volumes
and are adaptable to establishment of “on–line’
assembly since a variable belt speed sets the run rate.
Individual furnace zone controls make excellent
temperature control possible.
2. Flame Soldering involves the directing of natural gas
flame jets at the base of a heatsink as the heatsink is
indexed to various loading–heating–cooling–unloading
positions. This is the most economical labor method of
soldering large volumes. Flame soldering offers good
temperature control but requires sophisticated
temperature monitoring systems such as infrared.
  
  




  
MR2502, MR2504, MR2510
http://onsemi.com
469
ASSEMBLY AND SOLDERING INFORMATION (continued)
3. Ovens are good for batch soldering and are production
limited. There are handling problems because of slow
cooling. Response time is load dependent, being a
function of the watt rating of the oven and the mass of
parts. Large ovens may not give an acceptable
temperature gradient. Capital cost is low compared to
belt furnaces and flame soldering.
4. Hot Plates are good for soldering small quantities of
prototype devices. Temperature control is fair with
overshoot common because of the exposed heating
surface. Solder flow and positioning can be corrected
during soldering since the assembly is exposed.
Investment cost is very low.
Regardless o f the heating method used, a soldering profile
giving the time–temperature relationship of the particular
method must be determined to assure proper soldering.
Profiling must be performed on a scheduled basis to
minimize poor soldering. The time–temperature
relationship will change depending on the heating method
used.
SOLDER PROCESS EVALUATION
Characteristics to look for when setting up the soldering
process:
I Overtemperature is indicated by any one or all three of
the following observations.
1. Remelting of the solder inside the button rectifier
shows the temperature has exceeded 285°C and is
noted by “islands’’ of shiny solder and solder
dewetting when a unit is broken apart.
2. Cracked die inside the button may be observed by a
moving reverse oscilloscope trace when pressure is
applied to the unit.
3. Cracked plastic may be caused by thermal shock as
well as overtemperature so cooling rate should also be
checked.
II Cold soldering gives a grainy appearance and solder
build–up without a smooth continuous solder fillet. The
temperature must be adjusted until the proper solder
fillet is obtained within the maximum temperature
limits.
III Incomplete solder fillets result from insufficient solder
or parts not making proper contact.
IV Tilted buttons can cause a void in the solder between
the heatsink and button rectifier which will result in
poor heat transfer during operation. An eight degree tilt
is a suggested maximum value.
V Plating problems require a knowledge of plating
operations for complete understanding of observed
deficiencies.
1. Peeling or plating separation is generally seen when a
button is broken away for solder inspection. If heatsink
or terminal base metal is present the plating is poor and
must be corrected.
2. Thin plating allows the solder to penetrate through to
the base metal and can give a poor connection. A
suggested minimum plating thickness is 300
microinches.
3. Contaminated soldering surfaces may out–gas and
cause non–wetting resulting in voids in the solder
connection. The exact cause is not always readily
apparent and can be because of:
(a) improper plating
(b) mishandling of parts
(c) improper and/or excessive storage time
SOLDER PROCESS MONITORING
Continuous monitoring of the soldering process must be
established to minimize potential problems. All parts used
in the soldering operation should be sampled on a lot by lot
basis by assembly of a controlled sample. Evaluate the
control sample by break–apart tests to view the solder
connections, by physical strength tests and by dimensional
characteristics for part mating.
A shear test is a suggested way of testing the solder bond
strength.
POST SOLDERING OPERATION CONSIDERATIONS
After soldering, the completed assembly must be
unloaded, washed and inspected.
Unloading must be done carefully to avoid unnecessary
stress. Assembly fixtures should be cooled to room
temperature so solder profiles are not affected.
Washing is mandatory if an acid flux is used because of
its ionic and corrosive nature. Wash the assemblies in
agitated hot water and detergent for three to five minutes.
After washing; rinse, blow off excessive water and bake
30 minutes at 150°C to remove trapped moisture.
Inspection should be both electrical and physical. Any
rejects can be reworked as required.
SUMMARY
The Button Rectifier is an excellent building block for
specialized applications. The prime example of its use is the
output bridge of the automative alternator where millions
are used each year. Although the material presented here is
not all inclusive, primary considerations for use are
presented. For further information, contact the nearest
ON Semiconductor Sales Office or franchised distributor.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 470 Publication Order Number:
TRA2525/D
 
 

250 Volts, 25 Amperes
Compact, highly efficient silicon rectifiers for medium–current
applications requiring:
High Current Surge — 400 Amperes @ TJ = 175°C
Peak Performance @ Elevated Temperature — 25 Amperes
Low Cost
Compact, Molded Package for Optimum Efficiency in a Small Case
Configuration
Mechanical Characteristics
Finish: All External Surfaces are Corrosion Resistant, and Contact
Areas are Readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.8 Grams (Approximately)
Maximum Temperature for Soldering Purposes: 260°C
Marking: 2525 or MR3025
MAXIMUM RATINGS
Rating Symbol Value Unit
DC Blocking Voltage VR250 Volts
Non–Repetitive Peak Reverse Voltage
(Halfwave, Single Phase, 60 Hz) VRSM 310 Volts
Average Forward Current
(Single Phase, Resistive Load,
TC = 150°C)
IO25 Amps
Non–Repetitive Peak Surge Current
(Halfwave, Single Phase, 60 Hz) IFSM 400 Amps
Operating Junction Temperature Range TJ–65 to
+175 °C
Storage Temperature Range Tstg –65 to
+175 °C
Device Package Shipping
ORDERING INFORMATION
TRA2525
http://onsemi.com
MR3025
Microde Button 5000 Units/Box
Microde Button 5000 Units/Box
MICRODE BUTTON
CASE 193
MARKING DIAGRAM
2525 = Device Code
L = Location Code
YY = Year
WW = Work Week
2525 LYYWW
MARKING DIAGRAM
MR3025= Device Code
L = Location Code
YY = Year
WW = Work Week
MR3025 YYWWL
TRA2525 MR3025
http://onsemi.com
471
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.)
(IF = 100 Amps, TC = 25°C) VF 1.18 Volts
Reverse Current(1)
(VR = 250 V, TC = 25°C)
(VR = 250 V, TC = 100°C)
IR
10
250
µA
Forward Voltage Temperature Coefficient @ IF = 10 mA VFTC 2* 2* mV/°C
1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2%.
*Typical
TRA2525 MR3025
http://onsemi.com
472
Figure 1. Forward Voltage
Figure 2. Non–Repetitive Surge Current
NUMBER OF CYCLES
V
I
100101
100
1000
Figure 3. VF Temperature Coefficient
IF, INSTANTANEOUS FORWARD CURRENT (A) IF, INSTANTANEOUS FORWARD CURRENT (A)
200101
°
2001001010.1
–2.0
–1.5
–1.0
–0.5
0
Figure 4. Current Derating Figure 5. Forward Power Dissipation
TC, CASE TEMPERATURE (°C) IF, AVERAGE FORWARD CURRENT (A)
180130 140120
0
10
5020100
0
10
20
50
F, INSTANTANEOUS FORWARD VOLTAGE (mV)
COEFFICIENT (mV/ C)
TJ = 175°C
1300
1400
1100
1200
1000
, A VERAGE FORW ARD CURRENT (A)
P, PEAK HALF WAVE CURRENT (A)
FSM
IFM/IFAV =
100
900
700
800
600
PW = 300 s
TJ = 25°C
Maximum
Typical
TJ = 25°C
VRRM may be applied between
each cycle of surge. The TJ
noted is TJ prior to surge
F = 60 Hz
Typical Range
4030
30
40 DC
20
30
40
50
60
150 160 170
IFM/IFAV =
DC
1 Cycle
IF(AV)
1350
1150
1250
1050
950
750
850
650
, AVERAGE POWER DISSIPATION (W)
F(AV)
TRA2525 MR3025
http://onsemi.com
473
Figure 6. Thermal Response
t, TIME (ms)
300101
Figure 7. Typical Capacitance
VR, REVERSE VOLTAGE (V)
1001010.1
10
100
1000
Figure 8. Forward Recovery Time Figure 9. Reverse Recovery Time
IF, FORWARD CURRENT (A) IR/IF, RATIO OF REVERSE TO FORWARD CURRENT
101
0.1
1
1010.1
1
10
100
C, CAPACITANCE (pF)
T
T
r(t), TRANSIENT THERMAL RESISTANCE
1000.1
10–1
10–2
100
TJ = 25°C
, FORWARD RECOVERY TIME ( s)
FR
VFR = 2.0 V
VFR = 1.0 V
, REVERSE RECOVERY TIME ( s)
RR
IF = 1 A
IF = 10 A
RJC(t) = RJC r(t)
Note 1
To determine maximum junction temperature of the diode in a given
situation, the following procedure is recommended.
The temperature of the case should be measured using a thermocou-
ple placed on the case at the temperature reference point (see the
outline drawing on page 1). The thermal mass connected to the case
is normally large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulse operation once
steady state conditions are achieved.
Using the measured value of TC, the junction temperature may be
determined by:
Where TJC is the increase in junction temperature above the case
temperature, it may be determined by:
DUTY CYCLE, D = tp/t1
PEAK POWER, Ppk is peak of an
equivalent square power pulse
Ppk Ppk
tp
t1
where:
NOTE 1
TJ = TC + TJC
TJC = Ppk RJC [D + (1 – D) r(t1 + tp) + r(tp) – r(t1)]
r(t) = normalized value of transient thermal resistance at
time, t, from Figure 6, i.e.:
VFTJ = 25°C
TFR VFR
TJ = 25°C
TRR
IR0.25 IR
IF
r(t1 + tp) = normalized value of transient thermal resistance
at time t1 + tp.
0
TRA2525 MR3025
http://onsemi.com
474
Figure 10. Rectification Waveform Efficiency
f, FREQUENCY (kHz)
1001
5
10
50
, EFFICIENCY FACTOR (%)
10
square wave input
sine wave input
TJ = 25°C
Figure 11. Single Phase Half–Wave Rectifier Circuit
RS
RL VO
RECTIFICATION EFFICIENCY NOTE
The rectification efficiency factor shown in Figure 10
was calculated using the formula:
 P(dc)
P(rms)
V2o(dc)
RL
V2o(rms)
RL
.100% V2o(dc)
V2o(ac) V2o(dc).100%
(1)
For a sine wave input Vm sin(wt) to the diode, assume
lossless, the maximum theoretical efficiency factor
becomes:
(sine)
V2m
2RL
V2m
4RL
.100% 4
π2.100% 40.6% (2)
For a square wave input of amplitude Vm, the efficiency
factor becomes:
(square)
V2m
2RL
V2m
RL
.100% 50% (3)
(a full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the
reverse recovery time of the diode (Figure 9) becomes
significant, resulting in an increase ac voltage component
across RL which is opposite in polarity to the forward
current, thereby reducing the value of the efficiency factor
, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode
losses. Data was obtained by measuring the ac component of
VO with a true rms ac voltmeter and the dc component with
a dc voltmeter. The data was used in Equation 1 to obtain
points for Figure 10.
TRA2525 MR3025
http://onsemi.com
475
Assembly and Soldering Information
There are two basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
Each should be carefully examined before attempting a
finished assembly or mounting operation.
Mounting and Handling
The button rectifier lends itself to a multitude of assembly
arrangements, but one key consideration must always be
included: One Side of the Connections to the Button Must
be Flexible!
This stress relief to the button should also be chosen for
maximum contact area to af ford the best heat transfer — but
not at the expense of flexibility. For an annealed copper
terminal a thickness of 0.015 is suggested.
Strain Relief Terminal
for Button Rectifier
Copper
Terminal
Button
Base
(Heat Sink Material)
The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials Advantages and Disadvantages
Steel
Copper
Aluminum
Low Cost: relatively low heat conductivity
High Cost: high heat conductivity
Medium Cost: medium heat conductivity.
Relatively expensive to plate and not all
platers can process aluminum.
Handling o f the button during assembly must be relatively
gentle to minimize sharp impact shocks and avoid nicking
of the plastic. Improperly designed automatic handling
equipment is the worst source of unnecessary shocks.
Techniques for vacuum handling and spring loading should
be investigated.
The mechanical stress limits for the button diode are as
follows:
Compression
Tension
Torsion
Shear
32 lbs.
32 lbs.
6–inch lbs.
55 lbs.
142.3 Newton
142.3 Newton
0.68 Newtons–meters
244.7 Newton
MECHANICAL STRESS
TENSION
COMPRESSION
TORSION
SHEAR
Exceeding these recommended maximums can result in
electrical degradation of the device.
Soldering
The button rectifier is basically a semiconductor chip
bonded between two nickel–plated copper heat sinks with a n
encapsulating material of epoxy compound. The exposed
metal areas are also tin plated to enhance solderability.
In the soldering process it is important that the
temperature not exceed 260°C if device damage is to be
avoided. Various solder alloys can be used for this operation
but two types are recommended for best results:
1. 95% Sn, 5% Sb; melting point 237°C
2. 96.5% tin, 3.5% silver; melting point 221°C
3. 63% tin, 37% lead; melting point 183°C
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a flux
to assure good wetting of the solder. The type of flux used
depends upon the degree of cleaning to be accomplished and
is a function of the metal involved. These fluxes range from
a mild rosin to a strong acid; e.g., Nickel plating oxides are
best removed by an acid base flux while an activated rosin
flux may be sufficient for tin plated parts.
Since the button is relatively lightweight, there is a
tendency for it to float when the solder becomes liquid. To
prevent bad joints and misalignment, it is suggested that a
weighting or spring loaded fixture be employed. It is also
important that severe thermal shock (either heating or
cooling) be avoided as it may lead to damage of the die or
encapsulant of the part.
TRA2525 MR3025
http://onsemi.com
476
Button holding fixtures for use during soldering may be
of various materials. Stainless steel has a longer use life
while black anodized aluminum is less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will influence the choice of materials. Fixture
dimension tolerances for locating the button must allow for
expansion during soldering as well as allowing for button
clearance.
Heating Techniques
The following four heating methods have their
advantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt furnaces readily handle large or small
volumes and are adaptable to establishment of
“on–line’’ assembly since a variable belt speed sets
the run rate. Individual furnace zone controls make
excellent temperature control possible.
2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the
heatsink is indexed to various loading–heating–
cooling–unloading positions. This is the most
economical labor method of soldering large
volumes. Flame soldering offers good temperature
control but requires sophisticated temperature
monitoring systems such as infrared.
3. Ovens are good for batch soldering and are
production limited. There are handling problems
because of slow cooling. Response time is load
dependent, being a function of the watt rating of the
oven and the mass of parts. Large ovens may not
give an acceptable temperature gradient. Capital
cost is low compared to belt furnaces and flame
soldering.
4. Hot Plates are good for soldering small quantities
of prototype devices. Temperature control is fair
with overshoot common because of the exposed
heating surface. Solder flow and positioning can be
corrected during soldering since the assembly is
exposed. Investment cost is very low.
Regardless o f the heating method used, a soldering profile
giving the time–temperature relationship of the particular
method must be determined to assure proper soldering.
Profiling must be performed on a scheduled basis to
minimize poor soldering. The time–temperature
relationship will change depending on the heating method
used.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 477 Publication Order Number:
TRA3225/D


 
250 Volts, 32 Amperes
Compact, highly efficient silicon rectifiers for medium–current
applications requiring:
High Current Surge – 500 Amperes @ TJ = 175°C
Peak Performance @ Elevated Temperature – 32 Amperes
Low Cost
Compact, Molded Package for Optimum Efficiency in a Small Case
Configuration
Mechanical Characteristics
Finish: All External Surfaces are Corrosion Resistant, and Contact
Areas are Readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.8 Grams (Approximately)
Maximum Temperature for Soldering Purposes: 260°C
Marking: 3225
MAXIMUM RATINGS
Rating Symbol Value Unit
DC Blocking Voltage VR250 Volts
Non–Repetitive Peak Reverse Voltage
(Halfwave, Single Phase, 60 Hz) VRSM 310 Volts
Average Forward Current
(Single Phase, Resistive Load,
TC = 150°C)
IO32 Amps
Non–Repetitive Peak Surge Current
(Halfwave, Single Phase, 60 Hz) IFSM 500 Amps
Operating Junction Temperature Range TJ–65 to
+175 °C
Storage Temperature Range Tstg –65 to
+175 °C
Device Package Shipping
ORDERING INFORMATION
TRA3225
http://onsemi.com
Microde Button 5000 Units/Box
MICRODE BUTTON
CASE 193
MARKING DIAGRAM
3225 = Device Code
L = Location Code
YY = Year
WW = Work Week
3225 LYYWW
TRA3225
http://onsemi.com
478
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 0.8 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.)
(IF = 100 Amps, TC = 25°C) VF 1.15 Volts
Reverse Current (Note 1.)
(VR = 250 V, TC = 25°C)
(VR = 250 V, TC = 100°C)
IR
20
250
µA
Forward Voltage Temperature Coefficient (IF = 10 mA) VFTC 2* 2* mV/°C
1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2%.
*Typical
TRA3225
http://onsemi.com
479
Figure 1. Forward Voltage
Figure 2. Non–Repetitive Surge Current
NUMBER OF CYCLES
V
I
100101
100
1000
Figure 3. VF Temperature Coefficient
IF, INSTANTANEOUS FORWARD CURRENT (A) IF, INSTANTANEOUS FORWARD CURRENT (A)
1000101
°
2001001010.1
–2.0
–1.5
–1.0
–0.5
0
Figure 4. Current Derating Figure 5. Forward Power Dissipation
TC, CASE TEMPERATURE (°C) IF, AVERAGE FORWARD CURRENT (A)
180130 140120
0
10
80
5020100
0
10
20
50
F, INSTANTANEOUS FORWARD VOLTAGE (mV)
COEFFICIENT (mV/ C)
TJ = 175°C
1300
1400
1100
1200
1000
, A VERAGE FORW ARD CURRENT (A)
P, PEAK HALF WAVE CURRENT (A)
FSM
IFM/IFAV =
100
900
700
800
600
PW = 300 s
TJ = 25°C
Maximum
Typical
TJ = 25°C
VRRM may be applied between
each cycle of surge. The TJ
noted is TJ prior to surge
F = 60 Hz
Typical Range
4030
30
40
DC
20
30
40
50
60
70
150 160 170
IFM/IFAV =
DC
1 Cycle
IF(AV)
, AVERAGE POWER DISSIPATION (W)
F(AV)
TRA3225
http://onsemi.com
480
Figure 6. Thermal Response
t, TIME (ms)
1000101
Figure 7. Typical Capacitance
VR, REVERSE VOLTAGE (V)
1001010.1
10
100
1000
Figure 8. Forward Recovery Time Figure 9. Reverse Recovery Time
IF, FORWARD CURRENT (A) IR/IF, RATIO OF REVERSE TO FORWARD CURRENT
101
0.1
1
1010.1
1
10
100
C, CAPACITANCE (pF)
T
T
r(t), TRANSIENT THERMAL RESISTANCE
1000.1
10–1
10–2
100
TJ = 25°C
, FORWARD RECOVERY TIME ( s)
FR
VFR = 2.0 V
VFR = 1.0 V
, REVERSE RECOVERY TIME ( s)
RR
IF = 1 A
IF = 10 A
RJC(t) = RJC r(t)
Note 1
VFTJ = 25°C
TFR VFR
TJ = 25°C
TRR
IR0.25 IR
IF
0
To determine maximum junction temperature of the diode in a given
situation, the following procedure is recommended.
The temperature of the case should be measured using a thermocou-
ple placed on the case at the temperature reference point (see the
outline drawing on page 1). The thermal mass connected to the case
is normally large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulse operation once
steady state conditions are achieved.
Using the measured value of TC, the junction temperature may be
determined by:
Where TJC is the increase in junction temperature above the case
temperature, it may be determined by:
DUTY CYCLE, D = tp/t1
PEAK POWER, Ppk is peak of an
equivalent square power pulse
Ppk Ppk
tp
t1
where:
NOTE 1
TJ = TC + TJC
TJC = Ppk RJC [D + (1 – D) r(t1 + tp) + r(tp) – r(t1)]
r(t) = normalized value of transient thermal resistance at
time, t, from Figure 6, i.e.:
r(t1 + tp) = normalized value of transient thermal resistance
at time t1 + tp.
TRA3225
http://onsemi.com
481
Figure 10. Rectification Waveform Efficiency
f, FREQUENCY (kHz)
1001
5
10
50
, EFFICIENCY FACTOR (%)
10
square wave input
sine wave input
TJ = 25°C
Figure 11. Single Phase Half–Wave Rectifier Circuit
RS
RL VO
RECTIFICATION EFFICIENCY NOTE
The rectification efficiency factor shown in Figure 10
was calculated using the formula:
 P(dc)
P(rms)
V2o(dc)
RL
V2o(rms)
RL
.100% V2o(dc)
V2o(ac) V2o(dc).100%
(1)
For a sine wave input Vm sin(wt) to the diode, assume
lossless, the maximum theoretical efficiency factor
becomes:
(sine)
V2m
2RL
V2m
4RL
.100% 4
π2.100% 40.6% (2)
For a square wave input of amplitude Vm, the efficiency
factor becomes:
(square)
V2m
2RL
V2m
RL
.100% 50% (3)
(a full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the
reverse recovery time of the diode (Figure 9) becomes
significant, resulting in an increase ac voltage component
across RL which is opposite in polarity to the forward
current, thereby reducing the value of the efficiency factor
, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode
losses. Data was obtained by measuring the ac component of
VO with a true rms ac voltmeter and the dc component with
a dc voltmeter. The data was used in Equation 1 to obtain
points for Figure 10.
TRA3225
http://onsemi.com
482
Assembly and Soldering Information
There are two basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
Each should be carefully examined before attempting a
finished assembly or mounting operation.
Mounting and Handling
The button rectifier lends itself to a multitude of assembly
arrangements, but one key consideration must always be
included: One Side of the Connections to the Button Must
be Flexible!
This stress relief to the button should also be chosen for
maximum contact area to afford the best heat transfer – but
not at the expense of flexibility. For an annealed copper
terminal a thickness of 0.015 is suggested.
Strain Relief Terminal
for Button Rectifier
Copper
Terminal
Button
Base
(Heat Sink Material)
The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials Advantages and Disadvantages
Steel
Copper
Aluminum
Low Cost: relatively low heat conductivity
High Cost: high heat conductivity
Medium Cost: medium heat conductivity.
Relatively expensive to plate and not all
platers can process aluminum.
Handling o f the button during assembly must be relatively
gentle to minimize sharp impact shocks and avoid nicking
of the plastic. Improperly designed automatic handling
equipment is the worst source of unnecessary shocks.
Techniques for vacuum handling and spring loading should
be investigated.
The mechanical stress limits for the button diode are as
follows:
Compression
Tension
Torsion
Shear
32 lbs.
32 lbs.
6–inch lbs.
55 lbs.
142.3 Newton
142.3 Newton
0.68 Newtons–meters
244.7 Newton
MECHANICAL STRESS
TENSION
COMPRESSION
TORSION
SHEAR
Exceeding these recommended maximums can result in
electrical degradation of the device.
Soldering
The button rectifier is basically a semiconductor chip
bonded between two nickel–plated copper heat sinks with a n
encapsulating material of epoxy compound. The exposed
metal areas are also tin plated to enhance solderability.
In the soldering process it is important that the
temperature not exceed 260°C if device damage is to be
avoided. Various solder alloys can be used for this operation
but two types are recommended for best results:
1. 95% Sn, 5% Sb; melting point 237°C
2. 96.5% tin, 3.5% silver; melting point 221°C
3. 63% tin, 37% lead; melting point 183°C
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a flux
to assure good wetting of the solder. The type of flux used
depends upon the degree of cleaning to be accomplished and
is a function of the metal involved. These fluxes range from
a mild rosin to a strong acid; e.g., Nickel plating oxides are
best removed by an acid base flux while an activated rosin
flux may be sufficient for tin plated parts.
Since the button is relatively lightweight, there is a
tendency for it to float when the solder becomes liquid. To
prevent bad joints and misalignment, it is suggested that a
weighting or spring loaded fixture be employed. It is also
important that severe thermal shock (either heating or
cooling) be avoided as it may lead to damage of the die or
encapsulant of the part.
TRA3225
http://onsemi.com
483
Button holding fixtures for use during soldering may be
of various materials. Stainless steel has a longer use life
while black anodized aluminum is less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will influence the choice of materials. Fixture
dimension tolerances for locating the button must allow for
expansion during soldering as well as allowing for button
clearance.
Heating Techniques
The following four heating methods have their
advantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt furnaces readily handle large or small
volumes and are adaptable to establishment of
“on–line’’ assembly since a variable belt speed sets
the run rate. Individual furnace zone controls make
excellent temperature control possible.
2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the
heatsink is indexed to various loading–heating–
cooling–unloading positions. This is the most
economical labor method of soldering large
volumes. Flame soldering offers good temperature
control but requires sophisticated temperature
monitoring systems such as infrared.
3. Ovens are good for batch soldering and are
production limited. There are handling problems
because of slow cooling. Response time is load
dependent, being a function of the watt rating of the
oven and the mass of parts. Large ovens may not
give an acceptable temperature gradient. Capital
cost is low compared to belt furnaces and flame
soldering.
4. Hot Plates are good for soldering small quantities
of prototype devices. Temperature control is fair
with overshoot common because of the exposed
heating surface. Solder flow and positioning can be
corrected during soldering since the assembly is
exposed. Investment cost is very low.
Regardless o f the heating method used, a soldering profile
giving the time–temperature relationship of the particular
method must be determined to assure proper soldering.
Profiling must be performed on a scheduled basis to
minimize poor soldering. The time–temperature
relationship will change depending on the heating method
used.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 484 Publication Order Number:
MR750/D
 
MR754 and MR760 are Preferred Devices
  
 
Current Capacity Comparable to Chassis Mounted Rectifiers
Very High Surge Capacity
Insulated Case
Mechanical Characteristics:
Case: Epoxy, Molded
Weight: 2.5 grams (approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal Lead
is Readily Solderable
Lead Temperature for Soldering Purposes:
260°C Max. for 10 Seconds
Polarity: Cathode Polarity Band
Shipped 1000 units per plastic bag. Available Tape and Reeled,
800 units per reel by adding a “RL’ suffix to the part number
MAXIMUM RATINGS
Please See the Table on the Following Page
Device Package Shipping
ORDERING INFORMATION
AXIAL LEAD
BUTTON
CASE 194
STYLE 1
http://onsemi.com
MR750RL Axial Lead 800/Tape & Reel
MR750 Axial Lead 1000 Units/Bag
MR751 Axial Lead 1000 Units/Bag
MR751RL Axial Lead 800/Tape & Reel
MR752 Axial Lead 1000 Units/Bag
HIGH CURRENT
LEAD MOUNTED
SILICON RECTIFIERS
50 – 1000 VOLTS
DIFFUSED JUNCTION
MR752RL Axial Lead 800/Tape & Reel
Preferred devices are recommended choices for future use
and best overall value.
MR754 Axial Lead 1000 Units/Bag
MR756 Axial Lead 1000 Units/Bag
MR754RL Axial Lead 800/Tape & Reel
MR756RL Axial Lead 800/Tape & Reel
MR760 Axial Lead 1000 Units/Bag
MR760RL Axial Lead 800/Tape & Reel
MARKING DIAGRAM
MR7xx LYYWW
MR7xx = Device Code
xx = 50, 51, 52, 54,
= 56 or 60
L = Location Code
YY = Year
WW = Work Week
MR750 SERIES
http://onsemi.com
485
MAXIMUM RATINGS
Characteristic Symbol MR750 MR751 MR752 MR754 MR756 MR760 Unit
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50 100 200 400 600 1000 Volts
Non–Repetitive Peak Reverse Voltage
(Halfwave, single phase, 60 Hz peak) VRSM 60 120 240 480 720 1200 Volts
RMS Reverse Voltage VR(RMS) 35 70 140 280 420 700 Volts
Average Rectified Forward Current
(Single phase, resistive load, 60 Hz)
See Figures 5 and 6
IO22 (TL = 60°C, 1/8 Lead Lengths)
6.0 (TA = 60°C, P.C. Board mounting) Amps
Non–Repetitive Peak Surge Current
(Surge applied at rated load conditions) IFSM 400 (for 1 cycle) Amps
Operating and Storage Junction
Temperature Range TJ, Tstg 65 to +175 °C
ELECTRICAL CHARACTERISTICS
Characteristic and Conditions Symbol Max Unit
Maximum Instantaneous Forward Voltage Drop
(iF = 100 Amps, TJ = 25°C) vF1.25 Volts
Maximum Forward Voltage Drop
(IF = 6.0 Amps, TA = 25°C, 3/8 leads) VF0.90 Volts
Maximum Reverse Current TJ = 25°C
(Rated dc Voltage) TJ = 100°CIR25
1.0 µA
mA
MR750 SERIES
http://onsemi.com
486
Figure 1. Forward Voltage
Figure 2. Maximum Surge Capability
Figure 3. Forward Voltage Temperature Coefficient
Figure 4. Typical Transient Thermal Resistance
 
   









      










 

°
    





    





°
°
    
    
    
   







°
     
 
  




    






       
           
          
      ±     
           
            
          
           
          
   µ   

°
°





θ°
 
MR750 SERIES
http://onsemi.com
487
Figure 5. Maximum Current Ratings
  °





    
Figure 6. Maximum Current Ratings


  
    

Figure 7. Power Dissipation



 



 

  °





    
Figure 8. Steady State Thermal Resistance
 

  
 

 
 
   
θ θ θ θ θ θ
           
          
              
      
   
   
     
     
    
 
        
     
°   ° 
°   ° 
          
        
          
         
   °θ
     
           
  θ   °    
    °       
        
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
ÉÉ
Board Ground Plane
Recommended mounting for half wave circuit





  
   
 
    
  
  










    
   
   
θ

°
   
  
 



    





  
  
 


  
   
  
 
 
θ°
 
θ°
NOTES
THERMAL CIRCUIT MODEL
(For Heat Conduction Through The Leads)
MR750 SERIES
http://onsemi.com
488
Figure 9. Rectification Efficiency Figure 10. Reverse Recovery Time
  




   


    
°
  
      






  



    
°

Figure 11. Junction Capacitance Figure 12. Forward Recovery Time
  
 








   
°

   









 
 
°


°





 
 
Figure 13. Single–Phase Half–Wave
Rectifier Circuit
The rectification efficiency factor σ shown in Figure 9
was calculated using the formula:
σP(dc)
P(rms)
V2o(dc)
RL
V2o(rms)
RL
.100%V2o(dc)
V2o(ac) V2o(dc).100%
(1)
For a sine wave input Vm sin (wt) to the diode, assumed
lossless, the m aximum theoretical efficiency factor becomes:
σ(sine)
V2m
2RL
V2m
4RL
.100% 4
π2.100% 40.6% (2)
For a square wave input of amplitude Vm, the efficiency
factor becomes:
σ(square)
V2m
2RL
V2m
RL
.100% 50% (3)
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the
reverse recovery time of the diode (Figure 10) becomes
significant, resulting in an increasing ac voltage component
across RL which is opposite in polarity to the forward
current, thereby reducing the value of the efficiency factor
σ, as shown on Figure 9.
It should be emphasized that Figure 9 shows waveform
efficiency only; it does not provide a measure of diode
losses. Data was obtained by measuring the ac component of
Vo with a true rms ac voltmeter and the dc component with
a dc voltmeter. The data was used in Equation 1 to obtain
points for Figure 9.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 489 Publication Order Number:
TRA2532/D


 
24 V–32 V
Designed for applications requiring a diode with reverse avalanche
characteristics for use as reverse power transient suppressor.
Developed to suppress transients in automotive system, this device
operates in the forward mode as standard rectifier or reverse mode as
power zener diode and will protect expensive modules such as
ignition, injection, antiblocking s ystem . . . f rom overvoltage conditions.
High Power Capability
Economical
Mechanical Characteristics
Finish: All External Surfaces are Corrosion Resistant, and Contact
Areas are Readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.8 Grams (Approximately)
Maximum Temperature for Soldering Purposes: 260°C
Marking: 2532
MAXIMUM RATINGS
Rating Symbol Value Unit
DC Blocking Voltage VR23 Volts
Average Forward Current
(Single Phase, Resistive Load,
TC = 150°C)
IO32 Amps
Peak Repetitive Reverse Surge Current
(Time Constant = 10 ms, TC = 25°C) IRSM 80 Amps
Non–Repetitive Peak Surge Current
(Halfwave, Single Phase, 60 Hz) IFSM 500 Amps
Operating Junction Temperature Range TJ–65 to
+175 °C
Storage Temperature Range Tstg –65 to
+150 °C
Device Package Shipping
ORDERING INFORMATION
TRA2532
http://onsemi.com
Microde Button 5000 Units/Box
MICRODE BUTTON
CASE 193
MARKING DIAGRAM
2532 = Device Code
L = Location Code
YY = Year
WW = Work Week
2532 LYYWW
TRA2532
http://onsemi.com
490
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 0.8 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.)
(iF = 100 Amps, TC = 25°C) vF 1.18 Volts
Reverse Current(1)
(VR = 23 Vdc, TC = 25°C) IR 10 µA
Breakdown Voltage(1)
(IZ = 100 mA, TC = 25°C) V(BR) 24 32 Volts
Breakdown Voltage
(IZ = 80 Amps, TC = 25°C, PW = 80 µs) V(BR) 40 Volts
Breakdown Voltage Temperature Coefficient V(BR)TC 0.096* 0.096* %/°C
Forward Voltage Temperature Coefficient @ IF = 10 mA VFTC 2* 2* mV/°C
1. Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.
*Typical
TRA2532
http://onsemi.com
491
Figure 1. Normalized Reverse Current Figure 2. Typical Reverse Capacitance
TJ, JUNCTION TEMPERATURE (°C) VR, REVERSE VOLTAGE (V)
I
125100755025
C
1001010.1
1
10
Figure 3. Forward Voltage Figure 4. Maximum Current Rating
IF, AVERAGE FORWARD CURRENT (A) TC, CASE TEMPERATURE (°C)
V
100101
750
800
850
900
1000
1050
1200
I
2001501251007550250
0
20
40
60
80
Figure 5. Maximum Peak Reverse Current Figure 6. Maximum Reverse Energy
t, TIME CONSTANT (mS) t, TIME CONSTANT (mS)
I
100010 1001
10
100
1000
1000100101
1
10
100
1000
R, REVERSE CURRENT (NORMALIZED)
, A VERAGE FORW ARD CURRENT (A)
F
175
W
VR = 20 V TJ = 25°C
PW = 300 s
TC = 25°C
175150
103
104
101
102
100
950
1100
1150
, INSTANTANEOUS FORWARD VOLTAGE (mV)
F
Maximum
Typical
, PEAK REVERSE CURRENT (A)
RSM
TC = 25°C
RSM, PEAK REVERSE ENERGY (J) , CAPACITANCE (nF)
t
TC = 25°C
TRA2532
http://onsemi.com
492
Figure 7. Maximum Peak Reverse Power Figure 8. Reverse Power Derating
TC, CASE TEMPERATURE (°C)
P
1251005025
200
1000
2800
Figure 9. Thermal Response Figure 10. Typical Clamping Factor
t, TIME (mS) IRSM, PEAK REVERSE CURRENT (A)
300100100.1 12070402010
1.00
1.02
1.04
1.06
1.08
1.20
, PEAK REVERSE POWER (W)
RSM
V
50
r(t), TRANSIENT THERMAL RESISTANCE
1.10
Time Constant = 10 ms
RJC(t) = RJC r(t)
PW = 80 s, TC = 25°C
t, TIME CONSTANT (mS)
P
1000100101
100
1000
10000
, PEAK REVERSE POWER (W)
RSM
TC = 25°C
75 150
400
600
800
1200
2000
1400
1600
1800
2200
2400
2600
Time Constant = 100 ms
1
10–1
10–2
100
30 60 11080 90 100
1.12
1.14
1.16
1.18
(I )/V
RSM Z (100 mA)
Z
TRA2532
http://onsemi.com
493
Figure 11. Load Dump Test Circuit
Figure 12. Load Dump Pulse Current
t, TIME (s)
0.50.30.20.10
0
20
40
60
80
100
(%)
0.4
dl/dt < 1 A/s
2 Ohms dl/dt Limitation
100 H
TRA2532
50 mF0 – 150 V
t (50%) t (10%)
t (37%)
t (37%) = Time Constant
t (50%) = 0.7 t (37%)
t (10%) = 2.3 t (37%)
TRA2532
http://onsemi.com
494
Assembly and Soldering Information
There are two basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
Each should be carefully examined before attempting a
finished assembly or mounting operation.
Mounting and Handling
The button rectifier lends itself to a multitude of assembly
arrangements, but one key consideration must always be
included: One Side of the Connections to the Button Must
be Flexible!
This stress relief to the button should also be chosen for
maximum contact area to afford the best heat transfer – but
not at the expense of flexibility. For an annealed copper
terminal a thickness of 0.015 is suggested.
Strain Relief Terminal
for Button Rectifier
Copper
Terminal
Button
Base
(Heat Sink Material)
The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials Advantages and Disadvantages
Steel
Copper
Aluminum
Low Cost: relatively low heat conductivity
High Cost: high heat conductivity
Medium Cost: medium heat conductivity.
Relatively expensive to plate and not all
platers can process aluminum.
Handling o f the button during assembly must be relatively
gentle to minimize sharp impact shocks and avoid nicking
of the plastic. Improperly designed automatic handling
equipment is the worst source of unnecessary shocks.
Techniques for vacuum handling and spring loading should
be investigated.
The mechanical stress limits for the button diode are as
follows:
Compression
Tension
Torsion
Shear
32 lbs.
32 lbs.
6–inch lbs.
55 lbs.
142.3 Newton
142.3 Newton
0.68 Newtons–meters
244.7 Newton
MECHANICAL STRESS
TENSION
COMPRESSION
TORSION
SHEAR
Exceeding these recommended maximums can result in
electrical degradation of the device.
Soldering
The button rectifier is basically a semiconductor chip
bonded between two nickel–plated copper heat sinks with a n
encapsulating material of epoxy compound. The exposed
metal areas are also tin plated to enhance solderability.
In the soldering process it is important that the
temperature not exceed 260°C if device damage is to be
avoided. Various solder alloys can be used for this operation
but two types are recommended for best results:
1. 95% Sn, 5% Sb; melting point 237°C
2. 96.5% tin, 3.5% silver; melting point 221°C
3. 63% tin, 37% lead; melting point 183°C
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a flux
to assure good wetting of the solder. The type of flux used
depends upon the degree of cleaning to be accomplished and
is a function of the metal involved. These fluxes range from
a mild rosin to a strong acid; e.g., Nickel plating oxides are
best removed by an acid base flux while an activated rosin
flux may be sufficient for tin plated parts.
Since the button is relatively lightweight, there is a
tendency for it to float when the solder becomes liquid. To
prevent bad joints and misalignment, it is suggested that a
weighting or spring loaded fixture be employed. It is also
important that severe thermal shock (either heating or
cooling) be avoided as it may lead to damage of the die or
encapsulant of the part.
TRA2532
http://onsemi.com
495
Button holding fixtures for use during soldering may be
of various materials. Stainless steel has a longer use life
while black anodized aluminum is less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will influence the choice of materials. Fixture
dimension tolerances for locating the button must allow for
expansion during soldering as well as allowing for button
clearance.
Heating Techniques
The following four heating methods have their
advantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt furnaces readily handle large or small
volumes and are adaptable to establishment of
“on–line’’ assembly since a variable belt speed sets
the run rate. Individual furnace zone controls make
excellent temperature control possible.
2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the
heatsink is indexed to various loading–heating–
cooling–unloading positions. This is the most
economical labor method of soldering large
volumes. Flame soldering offers good temperature
control but requires sophisticated temperature
monitoring systems such as infrared.
3. Ovens are good for batch soldering and are
production limited. There are handling problems
because of slow cooling. Response time is load
dependent, being a function of the watt rating of the
oven and the mass of parts. Large ovens may not
give an acceptable temperature gradient. Capital
cost is low compared to belt furnaces and flame
soldering.
4. Hot Plates are good for soldering small quantities
of prototype devices. Temperature control is fair
with overshoot common because of the exposed
heating surface. Solder flow and positioning can be
corrected during soldering since the assembly is
exposed. Investment cost is very low.
Regardless o f the heating method used, a soldering profile
giving the time–temperature relationship of the particular
method must be determined to assure proper soldering.
Profiling must be performed on a scheduled basis to
minimize poor soldering. The time–temperature
relationship will change depending on the heating method
used.
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 0 496 Publication Order Number:
MR2520L/D


 
Designed for applications requiring a low voltage rectifier with
reverse avalanche characteristics for use as reverse power transient
suppressors. Developed to suppress transients in the automotive
system, these devices operate in the forward mode as standard
rectifiers or reverse mode as power avalanche rectifier and will protect
electronic equipment from overvoltage conditions.
High Power Capability
Economical
Increased Capacity by Parallel Operation
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 2.5 Grams (Approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Maximum Lead Temperature for Soldering Purposes:
350°C 3/8 from Case for 10 Seconds at 5 lbs. Tension
Polarity: Indicated by Diode Symbol or Cathode Band
Marking: MR2520L
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating Symbol Value Unit
DC Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
23 Volts
Repetitive Peak Reverse Surge Current
(Time Constant = 10 ms,
Duty Cycle 1%, TC = 25°C)
IRSM 58 Amps
Peak Reverse Power
(Time Constant = 10 ms,
Duty Cycle 1%, TC = 25°C)
PRSM 2500 Watts
Average Rectified Forward Current
(Single Phase, Resistive Load, 60 Hz,
TC = 125°C) (See Figure 4)
IO6.0 Amps
Non–Repetitive Peak Surge Current
Surge Supplied at Rated Load
Conditions Halfwave, Single Phase
IFSM 400 Amps
Operating and Storage Junction
Temperature Range TJ, Tstg –65 to
+175 °C
Device Package Shipping
ORDERING INFORMATION
AXIAL LEAD BUTTON
CASE 194
STYLE 1
http://onsemi.com
MR2520L Axial Lead
Button 1000/Box
MR2520LRL Axial Lead
Button 800/Reel
OVERVOLTAGE
TRANSIENT SUPPRESSOR
24 – 32 VOLTS
MR2520L LYYWW
MR2520L= Device Code
L = Location Code
YY = Year
WW = Work Week
MR2520L
http://onsemi.com
497
THERMAL CHARACTERISTICS
Characteristic Lead
Length Symbol Max Unit
Thermal Resistance, Junction to Lead, Both Leads to Heat Sink
with Equal Length 6.25 mm
10 mm
15 mm
RθJL 7.5
10
15
°C/W
Thermal Resistance Junction to Case RθJC 1.0 °C/W
*Typical
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.) (IF = 100 Amps, TC = 25°C) VF 1.25 Volts
Instantaneous Forward Voltage (Note 1.) (IF = 100 Amps, TC = 25°C) VF 0.90 Volts
Reverse Current (VR = 20 Vdc, TC = 25°C) IR 10 nAdc
Reverse Current (VR = 20 Vdc, TC = 25°C) IR 300 nAdc
Breakdown Voltage (Note 1.) (IR = 100 mAdc, TC = 25°C) V(BR) 24 32 Volts
Breakdown Voltage (Note 1.) (IR = 90 Amp, TC = 150°C, PW = 80 µs) V(BR) 40 Volts
Dynamic Resistance (IR = 100 mA, TJ = 25°C, f = 1.0 kHz) RZ 5.0
Dynamic Resistance (IR = 40 mA, TJ = 25°C) RZ 0.15
Breakdown Voltage Temperature Coefficient V(BR)TC 0.09* %/°C
Forward Voltage Temperature Coefficient @ IF = 10 mA VFTC –2* mV/°C
1. Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.
*Typical
MR2520L
http://onsemi.com
498
100°C
Figure 1. Forward Voltage Figure 2. Normalized Reverse Current
VF, INSTANTANEOUS FORWARD VOLTAGE (mV) TJ, JUNCTION TEMPERATURE (°C)
I
1100900800700500
1.0
10
100
1000
I
175125100755025
Figure 3. Typical Capacitance Figure 4. Maximum Current Ratings
VR, REVERSE VOLTAGE (V) TL, LEAD TEMPERATURE (°C)
C, CAPACITANCE (pF)
2520151050
1000
1500
2000
2500
3000
3500
4000
I
18014012010080604020
0
5
10
15
20
25
Figure 5. Thermal Response Figure 6. Steady State Thermal Resistance
t, TIME (S) LEAD LENGTH (mm)
r(t), TRANSIENT THERMAL
R
2520151050
0
5
10
15
20
25
30
F, INSTANTANEOUS FORWARD CURRENT (A)
, REVERSE CURRENT (NORMALIZED)
R
, A VERAGE FORW ARD CURRENT (A)
F(avg)
160
RESISTANCE (NORMALIZED)
35
40
, THERMAL RESISTANCE
JUNCTION TO LEAD ( C/W)°
JL
TJ = 150°C
25°C
VR = 20 V
L = 6.25 mm
10 mm
15 mm
Both leads to heatsink with equal length
IF(peak)/IF(avg) =
L = 6.25 mm, both leads to heatsink (equal length)
Maximum
Maximum
Typical
Typical
Both leads to heatsink (equal length)
Single to heatsink
1000600 100
101
102
103
104
150
10–3 10–2 10–1 100101102
10–2
10–1
100
MR2520L
http://onsemi.com
499
Figure 7. Maximum Peak Reverse Current Figure 8. Maximum Peak Reverse Power
t, TIME CONSTANT (mS) t, TIME CONSTANT (mS)
I
1000100101
10
100
P
1000100101
100
1000
10000
Figure 9. Maximum Reverse Energy Figure 10. Reverse Power Derating
t, TIME CONSTANT (mS) TL, LEAD TEMPERATURE (°C)
W
1000100101
1
10
100
1000
150100755025
200
400
800
1200
1600
2400
Figure 11. Typical Clamping Factor
IRSM, REPETITIVE PEAK REVERSE SURGE CURRENT (A)
V
12070603010
1.00
1.10
1.20
RSM, PEAK REVERSE CURRENT (A)
, PEAK REVERSE POWER (W)
RSM
PEAK REVERSE POWER (W)
125
50
, PEAK REVERSE ENERGY (J)
RSM
2000
20 40 90 110
80 100
1.02
1.04
1.06
1.08
1.18
1.12
1.14
1.16
TJ = 25°CTJ = 25°C
TJ = 25°C
Time Constant = 100 mS
Time Constant = 10 mS
/V
Z(Irsm) Z(100 mA)
PW = 80 S, TL = 25°C
600
1000
1400
1800
2600
2200
2800
Figure 12. Maximum Load Dump Frequency
TIME CONSTANT (ms)
f, FREQUENCY (HERTZ)
10001 10 100
1–5 mm (Both leads to heat sink)
10–3
10–2
10–1
100
1–20 mm (Both leads to heat sink)
MR2520L
http://onsemi.com
500
Figure 13. Load Dump Test Circuit
Figure 14. Load Dump Pulse Current
t, TIME (S)
0.50.30.20.10
0
20
40
60
80
100
(%)
0.4
dl/dt < 1 A/s
2 Ohms dl/dt Limitation
100 H
MR2532L
50 mF0 – 150 V
t (50%) t (10%)
t (37%)
t (37%) = Time Constant
t (50%) = 0.7 t (37%)
t (10%) = 2.3 t (37%)
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 4 501 Publication Order Number:
MR2535L/D


 
Medium Current
Designed for applications requiring a low voltage rectifier with
reverse avalanche characteristics for use as reverse power transient
suppressors. Developed to suppress transients in the automotive
system, these devices operate in the forward mode as standard
rectifiers or reverse mode as power avalanche rectifier and will protect
electronic equipment from overvoltage conditions.
Avalanche Voltage 24 to 32 Volts
High Power Capability
Economical
Increased Capacity by Parallel Operation
Mechanical Characteristics
Case: Epoxy, Molded
Weight: 2.5 Grams (Approximately)
Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
Maximum Lead Temperature for Soldering Purposes:
350°C 3/8 from Case for 10 Seconds at 5 lbs. Tension
Polarity: Indicated by Diode Symbol or Cathode Band
Marking: MR2535L
MAXIMUM RATINGS (TJ = 25°C unless otherwise noted)
Rating Symbol Value Unit
DC Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
20 Volts
Repetitive Peak Reverse Surge Current
(Time Constant = 10 ms, Duty Cycle
1%, TC = 25°C) (See Note 1)
IRSM 62 Amps
Average Rectified Forward Current
(Single Phase, Resistive Load, 60 Hz,
TC = 125°C) (See Figure 4)
IO6.0 Amps
Non–Repetitive Peak Surge Current
Surge Supplied at Rated
Load Conditions
Halfwave, Single Phase
IFSM 600 Amps
Operating and Storage Junction
Temperature Range TJ, Tstg –65 to
+175 °C
Device Package Shipping
ORDERING INFORMATION
AXIAL LEAD BUTTON
CASE 194
STYLE 1
http://onsemi.com
MR2535L Axial Lead
Button 1000/Box
MR2535LRL Axial Lead
Button 800/Reel
MARKING DIAGRAM
MR2535L LYYWW
MR2535L= Device Code
L = Location Code
YY = Year
WW = Work Week
MR2535L
http://onsemi.com
502
THERMAL CHARACTERISTICS
Characteristic Lead
Length Symbol Max Unit
Thermal Resistance, Junction to Lead @ Both Leads to Heat Sink,
Equal Length 1/4
3/8
1/2
RθJL 7.5
10
13
°C/W
Thermal Resistance Junction to Case RθJC 0.8* °C/W
ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.) (iF = 100 Amps, TC = 25°C) vF 1.1 Volts
Reverse Current (VR = 20 Vdc, TC = 25°C) IR 200 nAdc
Breakdown Voltage (Note 1.) (IR = 100 mAdc, TC = 25°C) V(BR) 24 32 Volts
Breakdown Voltage (Note 1.) (IR = 90 Amp, TC = 150°C, PW = 80 µs) V(BR) 40 Volts
Breakdown Voltage Temperature Coefficient V(BR)TC 0.096* %/°C
Forward Voltage Temperature Coefficient @ IF = 10 mA VFTC 2* mV/°C
1. Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.
MR2535L
http://onsemi.com
503
75°C
Figure 1. Typical Forward Voltage Figure 2. Typical Reverse Current versus
Junction Temperature
VF, INSTANTANEOUS FORWARD VOLTAGE (mV) TJ, JUNCTION TEMPERATURE (°C)
I
1000900800700600
1
10
100
1000
I
150125100755025
0.01
0.1
1
10
100
1000
Figure 3. Typical Capacitance Figure 4. Maximum Current Ratings
VR, DC BLOCKING VOLTAGE (V) TL, LEAD TEMPERATURE (°C)
C, CAPACITANCE (pF)
2520151050
1000
1500
2000
2500
3000
3500
4000
I
18014012010080604020
0
5
10
15
20
25
Figure 5. Thermal Response Figure 6. Steady State Thermal Resistance
t, TIME (S) LEAD LENGTH (mm)
r(t), TRANSIENT THERMAL
1001010.010.001
0.01
0.1
1
R
2520151050
0
5
10
15
20
25
30
45
F, INSTANTANEOUS FORWARD CURRENT (A)
, REVERSE CURRENT (nA)
R
, A VERAGE FORW ARD CURRENT (A)
F(avg)
160
0.1
RESISTANCE (NORMALIZED)
35
40
, THERMAL RESISTANCE
JUNCTION TO LEAD ( C/W)°
JL
TJ = 125°C25°C
VR = 20 V
TJ = 25°C
L = 6.25 mm
10 mm
15 mm
Both leads to heatsink with equal length
IF(peak)/IF(avg) =
L = 6.25 mm, both leads to heatsink (equal length)
Maximum
Maximum
Typical
Typical
Both leads to heatsink (equal length)
Single to heatsink
MR2535L
http://onsemi.com
504
Figure 7. Maximum Peak Reverse Current Figure 8. Maximum Peak Reverse Power
t, TIME CONSTANT (mS) t, TIME CONSTANT (mS)
I
1000100101
10
100
P
1000100101
100
1000
10000
Figure 9. Maximum Reverse Energy Figure 10. Reverse Power Derating
t, TIME CONSTANT (mS) TL, LEAD TEMPERATURE (°C)
W
1000100101
1
10
100
1000
150100755025
0
400
800
1200
1600
2400
Figure 11. Typical Clamping Factor
IRSM, REPETITIVE PEAK REVERSE SURGE CURRENT (A)
V
12070603010
1.00
1.10
1.20
RSM, PEAK REVERSE CURRENT (A)
, PEAK REVERSE POWER (W)
RSM
PEAK REVERSE POWER (W)
125
50
, PEAK REVERSE ENERGY (J)
RSM
2000
20 40 90 110
80 100
1.02
1.04
1.06
1.08
1.18
1.12
1.14
1.16
TJ = 25°CTJ = 25°C
TJ = 25°C
Time Constant = 100 mS
Time Constant = 10 mS
/V
Z(Irsm) Z(100 mA)
PW = 80 S, TL = 25°C
MR2535L
http://onsemi.com
505
Figure 12. Load Dump Test Circuit
Figure 13. Load Dump Pulse Current
t, TIME (S)
0.50.30.20.10
0
20
40
60
80
100
(%)
0.4
dl/dt < 1 A/s
2 Ohms dl/dt Limitation
100 H
MR2535L
50 mF0 – 150 V
t (50%) t (10%)
t (37%)
t (37%) = Time Constant
t (50%) = 0.7 t (37%)
t (10%) = 2.3 t (37%)
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 3 506 Publication Order Number:
MR2835S/D

 

...designed for applications requiring a diode with reverse avalanche
characteristics for use as reverse power transient suppressor.
Developed to suppress transients in the automotive system, this
device operates in reverse mode as power zener diode and will protect
expensive modules such as ignition, injection and autoblocking
systems from overvoltage conditions.
High Power Capability
Economical
Mechanical Characteristics
Finish: All External Surfaces are Corrosion Resistant
Polarity: Cathode to Terminal
Weight: 1.78 Grams (Approximately)
Maximum Temperature for Soldering Purposes:
260°C for 10 s using a Belt Furnace
Marking: MR2835S
MAXIMUM RATINGS
Rating Symbol Value Unit
DC Blocking Voltage VR23 Volts
Peak Repetitive Reverse Surge Current
(Time Constant = 10 ms, TC = 25°C) IRSM 62 Amps
Non–Repetitive Peak Surge Current
(Halfwave, Single Phase, 50 Hz) IFSM 400 Amps
Storage Temperature Range Tstg –40 to
+150 °C
Operating Junction Temperature Range TJ–40 to
+150 °C
Device Package Shipping
ORDERING INFORMATION
MR2835S
TOP CAN
CASE 460
http://onsemi.com
Top Can 500/Tape & Reel
## = Lot Number
MR2835S= Specific Device Code
YY = Year
WW = Work Week
MARKING DIAGRAM
##
MR2835S
YYWW
Cathode
MR2835S
http://onsemi.com
507
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance, Junction to Case RθJC 1.0 °C/W
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (IF = 100 A) (Note 1.) VF 1.1 Volts
Reverse Current (VR = 20 V) (Note 1.) IR 5.0 µA
Breakdown Voltage (IZ = 100 mA) (Note 1.) V(BR) 24 32 Volts
Breakdown Voltage (IZ = 80 A, TC = 85°C, PW = 80 s) V(BR) 40 Volts
Breakdown Voltage Temperature Coefficient V(BR)TC 0.09 %/°C
Forward Voltage Temperature Coefficient (IF = 10 mA) VFTC –2.0* mV/°C
1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2%.
*Typical
Figure 1. Load Dump Test Circuit
 


 
 

MECHANICAL STRESS
TENSION
COMPRESSION TORSION
SHEAR
MOUNTING AND HANDLING
Compression:
Tension:
Torsion:
Shear:
The mechanical stress limits for the Top Can diode are as follows:
33.7 lbs
33.7 lbs
6.3 inch lbs
56.2 lbs
150 newtons
150 newtons
0.7 newton meters
250 newtons
MR2835S
http://onsemi.com
508
Figure 2. Load Dump Pulse Current Figure 3. Maximum Peak Reverse Current
Figure 4. Maximum Reverse Energie Figure 5. Typical Reverse Current
Figure 6. Typical Forward Voltage Figure 7. Maximum Peak Reverse Power

 




  
 

 
  




  






 
   




  






    


   

   
  
  
  




°




°
°
°
°
°
°
°
°
 <  
  
MR2835S
http://onsemi.com
509
Figure 8. Reverse Power Derating Figure 9. Typical Reverse Capacitance

 



  °
 





  












°
   
   
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
 

 
 
 
 
 
CARDBOARD CARRIER
BAR CODE
TAPE
COVER
TAPE

T
LABEL
BAR CODE
LABEL
(stuck on the opposite side of the carrier holes)
A
W1
LOKREEL
N
W3
W2
 
Figure 10. Reel Packing of MR2835S – Top Can
Reel of 500 Units
##
MR2835S
YYWW
##
MR2835S
YYWW
##
MR2835S
YYWW
Semiconductor Components Industries, LLC, 2000
September, 2000 – Rev. 0 510 Publication Order Number:
MR3227/D

 
 
20 V – 27 V
Designed for Automotive Applications (Alternator) requiring
Reverse Avalanche Capability for use as Transient Voltage
Suppressor. Developed to suppress transients in automotive systems,
this device operates in the forward mode as Standard Rectifier or in
Reverse as Transient Voltage Suppressor for Centralized Protection.
For further information referring to Mounting or Operating
Conditions, contact your nearest ON Semiconductor Sales
Representative.
Mechanical Characteristics
Finish: 100% Tin Plated
All External Surfaces are Corrosion Resistant
Weight: 2.5 Grams (Approximately)
Packaging/Labeling
Two Sealed Bags into a Cardboard Box
Device Number Labeled on the Bag
Marking
The Devices are Laser Marked on the Epoxy Surface
MAXIMUM RATING
Rating Symbol Value Unit
DC Blocking Voltage VR18 Volts
Average Forward Current
(Single Phase, Resistive Load,
TC = 185°C)
IO32 Amps
Peak Repetitive Reverse Surge Current
(Time Constant = 10 ms, TC = 25°C)
(Time Constant = 80 ms, TC = 25°C) IRSM
IRSM 90
40
Amps
Non–Repetitive Peak Surge Current
(Halfwave, Single Phase, 50 Hz) IFSM 400 Amps
Storage Temperature Range Tstg –40 to
+200 °C
Maximum Operating Junction
Temperature TJ200 °C
Device Package Shipping
ORDERING INFORMATION
N SUFFIX
(Anode to Cup)
P SUFFIX
(Cathode to Cup)
CASE 193A
http://onsemi.com
MR3227N Button Can 5000 Units/Box
MR3227P Button Can 5000 Units/Box
MARKING DIAGRAM
NL = Location Code
3N or 3P = Device Code and Polarity
YY = Year
WW = Work Week
### = Assembly Lot Number
MR3227
http://onsemi.com
511
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case RθJC 0.5 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.) (IF = 100 Amps, TC = 25°C) vF 1.18 Volts
Reverse Current (Note 1.) (VR = 16 Vdc, TC = 25°C) IR 1.0 A
Breakdown Voltage (Note 1.) (IR = 100 mA, TC = 25°C) V(BR) 20 27 Volts
Breakdown Voltage
(IR = 80 Amps, TC = 25°C, PW = 80 s)
(IR = 80 Amps, TC = 85°C, PW = 80 s)
V(BR)
35
37
Volts
Breakdown Voltage Temperature Coefficient V(BR)TC 0.095* %/°C
Forward Voltage Temperature Coefficient (IF = 10 mA) VFTC –2* mV/°C
1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2%.
*Typical
Figure 1. Typical Reverse Current Figure 2. Typical Forward Voltage
Figure 3. Maximum Peak Reverse Current Figure 4. Maximum Peak Reverse Power
VR, REVERSE VOLTAGE (V)
I
20151050
0.001
0.1
1
10
100
1000
, REVERSE CURRENT ( A)
R
TJ = 200°C
0.01
150°C
100°C
25°C
100°C
VF, INSTANTANEOUS FORWARD VOLTAGE (mV)
I
1000900800700500
1
10
100
1000
F, INSTANTANEOUS FORWARD CURRENT (A)
TJ = 200°C
25°C
600
150°C
t, TIME CONSTANT (mS) t, TIME CONSTANT (mS)
I
1000100101
10
1000
P
1000100101
100
1000
10000
RSM, PEAK REVERSE CURRENT (A)
, PEAK REVERSE POWER (W)
RSM
TC = 25°CTC = 25°C
100
MR3227
http://onsemi.com
512
t, TIME (S)
0.50.30.20.10
0
20
40
60
80
100
(%)
0.4
di/dt < 1 A/s
2 Ohms di/dt Limitation
100 H
MR3227
x mF0 – 150 V
t (50%) t (10%)
t (37%)
t (37%) = Time Constant
t (50%) = 0.7 t (37%)
t (10%) = 2.3 t (37%)
VR, REVERSE VOLTAGE (V)
C, CAPACITANCE (pF)
20151050
0
1000
2000
3000
6000
7000
8000
TC, CASE TEMPERATURE (°C)
I
220180160140120100
0
10
20
30
40
60
, A VERAGE FORW ARD CURRENT (A)
F(avg)
200
50
Figure 5. Maximum Reverse Energy
t, TIME CONSTANT (mS)
W
1000100101
1
1000
RSM, PEAK REVERSE ENERGY (J)
TC = 25°C
100
10
Figure 6. Maximum Current Rating
Figure 7. Typical Capacitance
Figure 8. Load Dump Test Circuit
Figure 9. Load Dump Pulse Current
4000
5000
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 513 Publication Order Number:
MR4027/D

 
 
20 V – 27 V
Designed for Automotive Applications (Alternator) requiring
Reverse Avalanche Capability for use as Transient Voltage
Suppressor. Developed to suppress transients in automotive systems,
this device operates in the forward mode as Standard Rectifier or in
Reverse as Transient Voltage Suppressor for Centralized Protection.
For further information referring to Mounting or Operating
Conditions, contact your nearest ON Semiconductor Sales
Representative.
Mechanical Characteristics
Finish: 100% Tin Plated
All External Surfaces are Corrosion Resistant
Weight: 2.6 Grams (Approximately)
Packaging/Labeling
Two Sealed Bags into a Cardboard Box
Device Number Labeled on the Bag
Marking
The Devices are Laser Marked on the Epoxy Surface
MAXIMUM RATING
Rating Symbol Value Unit
DC Blocking Voltage VR18 Volts
Average Forward Current
(Single Phase, Resistive Load,
TC = 185°C)
IO40 Amps
Peak Repetitive Reverse Surge Current
(Time Constant = 10 ms, TC = 25°C)
(Time Constant = 80 ms, TC = 25°C) IRSM
IRSM 110
50
Amps
Non–Repetitive Peak Surge Current
(Halfwave, Single Phase, 50 Hz) IFSM 500 Amps
Storage Temperature Range Tstg –40 to
+200 °C
Maximum Operating Junction
Temperature TJ200 °C
Device Package Shipping
ORDERING INFORMATION
N SUFFIX
(Anode to Cup)
P SUFFIX
(Cathode to Cup)
CASE 193A
http://onsemi.com
MR4027N Button Can 5000 Units/Box
MR4027P Button Can 5000 Units/Box
MARKING DIAGRAM
NL = Location Code
1N or 1P = Device Code and Polarity
YY = Year
WW = Work Week
### = Assembly Lot Number
MR4027
http://onsemi.com
514
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case RθJC 0.4 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.) (IF = 100 Amps, TC = 25°C) vF 1.1 Volts
Reverse Current (Note 1.) (VR = 16 Vdc, TC = 25°C) IR 1.0 A
Breakdown Voltage (Note 1.) (IR = 100 mA, TC = 25°C) V(BR) 20 27 Volts
Breakdown Voltage
(IR = 80 Amps, TC = 25°C, PW = 80 s)
(IR = 80 Amps, TC = 85°C, PW = 80 s)
V(BR)
35
37
Volts
Breakdown Voltage Temperature Coefficient V(BR)TC 0.095* %/°C
Forward Voltage Temperature Coefficient (IF = 10 mA) VFTC –2* mV/°C
1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2%.
*Typical
Figure 1. Typical Reverse Current Figure 2. Typical Forward Voltage
Figure 3. Maximum Peak Reverse Current Figure 4. Maximum Peak Reverse Power
VR, REVERSE VOLTAGE (V)
I
20151050
0.001
0.1
1
10
100
1000
, REVERSE CURRENT ( A)
R
TJ = 200°C
0.01
150°C
100°C
25°C
100°C
VF, INSTANTANEOUS FORWARD VOLTAGE (mV)
I
1000900800700500
1
10
100
1000
F, INSTANTANEOUS FORWARD CURRENT (A)
TJ = 200°C
25°C
600
150°C
t, TIME CONSTANT (mS) t, TIME CONSTANT (mS)
I
1000100101
10
1000
P
1000100101
100
1000
10000
RSM, PEAK REVERSE CURRENT (A)
, PEAK REVERSE POWER (W)
RSM
TC = 25°CTC = 25°C
100
MR4027
http://onsemi.com
515
t, TIME (S)
0.50.30.20.10
0
20
40
60
80
100
(%)
0.4
di/dt < 1 A/s
2 Ohms di/dt Limitation
100 H
MR4027N
MR4027P
x mF0 – 150 V
t (50%) t (10%)
t (37%)
t (37%) = Time Constant
t (50%) = 0.7 t (37%)
t (10%) = 2.3 t (37%)
VR, REVERSE VOLTAGE (V)
C, CAPACITANCE (pF)
20151050
4000
5000
6000
7000
8000
9000
10000
TC, CASE TEMPERATURE (°C)
I
220180160140120100
0
10
20
30
40
60
, A VERAGE FORW ARD CURRENT (A)
F(avg)
200
50
Figure 5. Maximum Reverse Energy
t, TIME CONSTANT (mS)
W
1000100101
1
1000
RSM, PEAK REVERSE ENERGY (J)
TC = 25°C
100
10
Figure 6. Maximum Current Rating
Figure 7. Typical Capacitance
Figure 8. Load Dump Test Circuit
Figure 9. Load Dump Pulse Current
Semiconductor Components Industries, LLC, 2000
October, 2000 – Rev. 1 516 Publication Order Number:
MR4045/D

 
 
34 V – 45 V
Designed for Automotive Applications (Alternator) requiring
Reverse Avalanche Capability for use as Transient Voltage
Suppressor. Developed to suppress transients in automotive systems,
this device operates in the forward mode as Standard Rectifier or in
Reverse as Transient Voltage Suppressor for Centralized Protection.
For further information referring to Mounting or Operating
Conditions, contact your nearest ON Semiconductor Sales
Representative.
Mechanical Characteristics
Finish: 100% Tin Plated
All External Surfaces are Corrosion Resistant
Weight: 2.6 Grams (Approximately)
Packaging/Labeling
Two Sealed Bags into a Cardboard Box
Device Number Labeled on the Bag
Marking
The Devices are Laser Marked on the Epoxy Surface
MAXIMUM RATING
Rating Symbol Value Unit
DC Blocking Voltage VR30 Volts
Average Forward Current
(Single Phase, Resistive Load,
TC = 185°C)
IO40 Amps
Peak Repetitive Reverse Surge Current
(Time Constant = 10 ms, TC = 25°C)
(Time Constant = 80 ms, TC = 25°C) IRSM
IRSM 55
25
Amps
Non–Repetitive Peak Surge Current
(Halfwave, Single Phase, 50 Hz) IFSM 500 Amps
Storage Temperature Range Tstg –40 to
+200 °C
Maximum Operating Junction
Temperature TJ200 °C
Device Package Shipping
ORDERING INFORMATION
N SUFFIX
(Anode to Cup)
P SUFFIX
(Cathode to Cup)
CASE 193A
http://onsemi.com
MR4045N Button Can 5000 Units/Box
MR4045P Button Can 5000 Units/Box
MARKING DIAGRAM
NL = Location Code
2N or 2P = Device Code and Polarity
YY = Year
WW = Work Week
### = Assembly Lot Number
MR4045
http://onsemi.com
517
THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit
Thermal Resistance Junction to Case RθJC 0.4 °C/W
ELECTRICAL CHARACTERISTICS
Characteristic Symbol Min Max Unit
Instantaneous Forward Voltage (Note 1.) (IF = 100 Amps, TC = 25°C) vF 1.1 Volts
Reverse Current (Note 1.) (VR = 28 Vdc, TC = 25°C) IR 1.0 A
Breakdown Voltage (Note 1.) (IR = 100 mA, TC = 25°C) V(BR) 34 45 Volts
Breakdown Voltage
(IR = 80 Amps, TC = 25°C, PW = 80 s)
(IR = 80 Amps, TC = 85°C, PW = 80 s)
V(BR)
53
55
Volts
Breakdown Voltage Temperature Coefficient V(BR)TC 0.095* %/°C
Forward Voltage Temperature Coefficient (IF = 10 mA) VFTC –2* mV/°C
1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2%.
*Typical
Figure 1. Typical Reverse Current Figure 2. Typical Forward Voltage
Figure 3. Maximum Peak Reverse Current Figure 4. Maximum Peak Reverse Power
t, TIME CONSTANT (mS) t, TIME CONSTANT (mS)
I
1000100101
10
100
P
1000100101
100
1000
10000
RSM, PEAK REVERSE CURRENT (A)
, PEAK REVERSE POWER (W)
RSM
TC = 25°CTC = 25°C
VR, REVERSE VOLTAGE (V)
I
3020100
0.001
0.1
1
10
100
1000
, REVERSE CURRENT ( A)
R
TJ = 200°C
0.01
150°C
100°C
25°C
100°C
VF, INSTANTANEOUS FORWARD VOLTAGE (mV)
I
1100900800700500
1
10
100
1000
F, INSTANTANEOUS FORWARD CURRENT (A)
TJ = 200°C
25°C
600
150°C
1000
MR4045
http://onsemi.com
518
t, TIME (S)
0.50.30.20.10
0
20
40
60
80
100
(%)
0.4
di/dt < 1 A/s
2 Ohms di/dt Limitation
100 H
MR4045N
MR4045P
x mF0 – 150 V
t (50%) t (10%)
t (37%)
t (37%) = Time Constant
t (50%) = 0.7 t (37%)
t (10%) = 2.3 t (37%)
VR, REVERSE VOLTAGE (V)
C, CAPACITANCE (pF)
20151050
4000
5000
6000
7000
8000
9000
10000
TC, CASE TEMPERATURE (°C)
I
220180160140120100
0
10
20
30
40
60
, A VERAGE FORW ARD CURRENT (A)
F(avg)
200
50
Figure 5. Maximum Reverse Energy
t, TIME CONSTANT (mS)
W
1000100101
1
1000
RSM, PEAK REVERSE ENERGY (J)
TC = 25°C
100
10
Figure 6. Maximum Current Rating
Figure 7. Typical Capacitance
Figure 8. Load Dump Test Circuit
Figure 9. Load Dump Pulse Current
http://onsemi.com
519
CHAPTER 6
Tape & Reel/Packaging Specifications
http://onsemi.com
520
Tape and Reel Specifications
and Packaging Specifications
Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the
shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure
cavity for the product when sealed with the “peel–back” cover tape.
Two Reel Sizes Available (7 and 13)
Used for Automatic Pick and Place Feed Systems
Minimizes Product Handling
EIA 481, –1, –2
SOD–123 in 8 mm Tape
SMB in 12 mm Tape
DPAK, SMC in 16 mm Tape
D2PAK in 24 mm Tape
Use the standard device title and add the required suffix as listed in the option table on the following page. Note that the
individual reels have a finite number of devices depending on the type of product contained in the tape. Also note the minimum
lot size is one full reel for each line item, and orders are required to be in increments of the single reel quantity.
OF FEED
12 mm
D2PAK
SMB
DIRECTION
24 mm
8 mm
SOD–123
16 mm
DPAK
16 mm
SMC
EMBOSSED TAPE AND REEL ORDERING INFORMATION
Package Tape Width
(mm) Pitch
mm (inch) Reel Size
mm (inch)
Devices Per Reel
and Minimum
Order Quantity Device
Suffix
DPAK 16 8.0 ± 0.1 (.315 ± .004) 330 (13) 2,500 T4
D2PAK 24 16.0 ± 0.1 (.630 ± .004) 330 (13) 800 T4
SMB 12 8.0 ± 0.1 (.315 ± .004) 330 (13) 2,500 T3
SMC 16 8.0 ± 0.1 (.315 ± .004) 330 (13) 2,500 T3
SOD–123 8 4.0 ± 0.1 (.157 ± .004) 178 (7) 3,000 T1
8 330 (13) 10,000 T3
http://onsemi.com
521
EMBOSSED TAPE AND REEL DATA FOR DISCRETES
CARRIER TAPE SPECIFICATIONS
 


   
 
 
     
±  
± 
 
     
  
 
 
 

 

 
  
 
  
 
 
 

 


 
 
°
  
    
 

   
   
 
  
        


  
DIMENSIONS

    
 






±
±
±
±


±
±
±
±






 



 


±

±
±



±


±




±
±
 


±
±





 

±
±




Metric dimensions govern — English are in parentheses for reference only.
NOTE 1: A0, B0, and K0 are determined by component size. The clearance between the components and the cavity must be within .05 mm min. to .50 mm
max.,
NOTE 1: the component cannot rotate more than 10° within the determined cavity.
NOTE 2: If B1 exceeds 4.2 mm (.165) for 8 mm embossed tape, the tape may not feed through all tape feeders.
NOTE 3: Pitch information is contained in the Embossed Tape and Reel Ordering Information on pg. 6–3.
http://onsemi.com
522
EMBOSSED TAPE AND REEL DATA FOR DISCRETES
 

  

  
  ±  
 ± 
  

 
  
 
  
Size A Max GT Max
8 mm 330 mm
(12.992)8.4 mm + 1.5 mm, –0.0
(.33 + .059, –0.00) 14.4 mm
(.56)
12 mm 330 mm
(12.992)12.4 mm + 2.0 mm, –0.0
(.49 + .079, –0.00) 18.4 mm
(.72)
16 mm 360 mm
(14.173)16.4 mm + 2.0 mm, –0.0
(.646 + .078, –0.00) 22.4 mm
(.882)
24 mm 360 mm
(14.173)24.4 mm + 2.0 mm, –0.0
(.961 + .070, –0.00) 30.4 mm
(1.197)
Reel Dimensions
Metric Dimensions Govern — English are in parentheses for reference only
Kraft Paper
 
 

Reel
Roll Pad
Container
 
 

 
 

 
 

 

 
D1 D2
A


Figure 1. Reel Packing Figure 2. Component Spacing
Optional Design
1.188
Item 3.4
3.5 Dia.
Figure 3. Reel Dimensions
B
http://onsemi.com
523
LEAD TAPE PACKAGING STANDARDS FOR AXIAL–LEAD COMPONENTS
Case Type Product
Category
Device
Title
Suffix
MPQ
Quantity
Per Reel
(Item 3.3.7)
Component
Spacing
A Dimension
Tape
Spacing
B Dimension
Reel
Dimension
C
Reel
Dimension
D (Max)
Max Off
Alignment
E
Case 17–02 Surmetic 40 & RL 4000 0.2 +/– 0.015 2.062 +/– 0.059 3 14 0.047
600 Watt TVS
Case 41A–02 1500 Watt TVS RL4 1500 0.4 +/– 0.02 2.062 +/– 0.059 3 14 0.047
Case 51–02 DO–7 Glass RL 3000 0.2 +/– 0.02 2.062 +/– 0.059 3 14 0.047
(For Reference only)
Case 59–03 DO–41 Glass & RL 6000 0.2 +/– 0.015 2.062 +/– 0.059 3 14 0.047
DO–41 Surmetic 30
Rectifier
Case 59–04 500 Watt TVS RL 5000 0.2 +/– 0.02 2.062 +/– 0.059 3 14 0.047
Rectifier
Case 194–04 110 Amp TVS RL 800 0.4 +/– 0.02 1.875 +/– 0.059 3 14 0.047
(Automotive)
Rectifier
Case 267–02 Rectifier RL 1500 0.4 +/– 0.02 2.062 +/– 0.059 3 14 0.047
Case 299–02 DO–35 Glass RL 5000 0.2 +/– 0.02 2.062 +/– 0.059 3 14 0.047
Table 1. Packaging Details (all dimensions in inches)
http://onsemi.com
524
http://onsemi.com
525
CHAPTER 7
Surface Mount Information
http://onsemi.com
526
INFORMATION FOR USING SURFACE MOUNT PACKAGES
RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to ensure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
POWER DISSIPATION FOR A SURFACE MOUNT DEVICE
The power dissipation for a surface mount device is a
function of the drain/collector pad size. These can vary from
the minimum pad size for soldering to a pad size given for
maximum power dissipation. Power dissipation for a
surface mount device is determined by TJ(max), the
maximum rated junction temperature of the die, RθJA, the
thermal resistance from the device junction to ambient, and
the operating temperature, TA. Using the values provided on
the data sheet, PD can be calculated as follows:
PD = TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature TA of 25°C, one can
calculate the power dissipation of the device. For example,
for a SOT–223 device, PD is calculated as follows.
PD = 150°C – 25°C
156°C/W = 800 milliwatts
The 156°C/W for the SOT–223 package assumes the use
of the recommended footprint on a glass epoxy printed
circuit board to achieve a power dissipation of 800
milliwatts. There are other alternatives to achieving higher
power dissipation from the surface mount packages. One is
to increase the area of the drain/collector pad. By increasing
the area of the drain/collector pad, the power dissipation can
be increased. Although the power dissipation can almost be
doubled with this method, area is taken up on the printed
circuit board which can defeat the purpose of using surface
mount technology. For example, a graph of RθJA versus
drain pad area is shown in Figures 1, 2 and 3.
Another alternative would be to use a ceramic substrate or
an aluminum core board such as Thermal Clad. Using a
board material such as Thermal Clad, an aluminum core
board, the power dissipation can be doubled using the same
footprint.
 °

θ
 
   
   
     





Figure 1. Thermal Resistance versus Drain Pad
Area for the SOT–223 Package (Typical)
  
  
°
    
Figure 2. Thermal Resistance versus Drain Pad
Area for the DPAK Package (Typical)
 
  
  




 
 
 
°
   
 °

θ
Figure 3. Thermal Resistance versus Drain Pad
Area for the D2PAK Package (Typical)
 
   
  
   °





 
 

 °

θ
http://onsemi.com
527
SOLDER STENCIL GUIDELINES
Prior to placing surface mount components onto a printed
circuit board, solder paste must be applied to the pads.
Solder stencils are used to screen the optimum amount.
These stencils are typically 0.008 inches thick and may be
made of brass or stainless steel. For packages such as the
SC–59, SC–70/SOT–323, SOD–123, SOT–23, SOT–143,
SOT–223, SO–8, SO–14, SO–16, and SMB/SMC diode
packages, the stencil opening should be the same as the pad
size o r a 1:1 registration. This is not the case with the DPAK
and D2PAK packages. If a 1:1 opening is used to screen
solder onto the drain pad, misalignment and/or
“tombstoning” may occur due to an excess of solder. For
these two packages, the opening in the stencil for the paste
should be approximately 50% of the tab area. The opening
for the leads is still a 1:1 registration. Figure 4 shows a
typical stencil for the DPAK and D2PAK packages. The
pattern of the opening in the stencil for the drain pad is not
critical as long as it allows approximately 50% of the pad to
be covered with paste.
ÇÇ
ÇÇ
ÇÇ
ÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇ
ÇÇ
Figure 4. Typical Stencil for DPAK and
D2PAK Packages
 


SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within
a short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and
soldering should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering
method, the difference should be a maximum of 10°C.
The soldering temperature and time should not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the
maximum temperature gradient shall be 5°C or less.
After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used since the use of forced
cooling will increase the temperature gradient and will
result in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause
excessive thermal shock and stress which can result in
damage to the device.
* Due to shadowing and the inability to set the wave height
to incorporate other surface mount components, the D2PAK
is not recommended for wave soldering.
http://onsemi.com
528
TYPICAL SOLDER HEATING PROFILE
For any given circuit board, there will be a group of
control settings that will give the desired heat pattern. The
operator must set temperatures for several heating zones and
a figure for belt speed. Taken together, these control settings
make up a heating “profile” for that particular circuit board.
On machines controlled by a computer, the computer
remembers these profiles from one operating session to the
next. Figure 5 shows a typical heating profile for use when
soldering a surface mount device to a printed circuit board.
This profile will vary among soldering systems, but it is a
good starting point. Factors that can affect the profile
include the type of soldering system in use, density and types
of components on the board, type of solder used, and the type
of board or substrate material being used. This profile shows
temperature versus time. The line on the graph shows the
actual temperature that might be experienced on the surface
of a test board at or near a central solder joint. The two
profiles are based on a high density and a low density board.
The Vitronics SMD310 convection/infrared reflow
soldering system was used to generate this profile. The type
of solder used was 62/36/2 Tin Lead Silver with a melting
point between 177–189°C. When this type of furnace is used
for solder reflow work, the circuit boards and solder joints
tend to heat first. The components on the board are then
heated by conduction. The circuit board, because it has a
large surface area, absorbs the thermal energy more
efficiently, then distributes this energy to the components.
Because of this effect, the main body of a component may
be up to 30 degrees cooler than the adjacent solder
joints.























°
°
°
°
     
   
   
 
  
°  °
 
 
   
 
°
°
°
°
°
Figure 5. Typical Solder Heating Profile
   
 
http://onsemi.com
529
Footprints for Soldering
SMB
mm
inches






SMC






mm
inches
D2PAK
mm
inches














SOT–223


















mm
inches
DPAK


mm
inches










SOD–123
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ










http://onsemi.com
530
Footprints for Soldering
SMA
mm
inches






POWERMITE







 



http://onsemi.com
531
CHAPTER 8
TO–220 Leadform Information
http://onsemi.com
532
Leadform Options — TO-220 (Case 221A)
Leadform options require assignment of a special part number before ordering.
Contact your local ON Semiconductor representative for special part number and pricing.
10,000 piece minimum quantity orders are required.
Leadform orders are non-cancellable after processing.
Leadforms apply to both ON Semiconductor Case 221A-04 and 221A-06 except as noted.
 
  
 
 
 ± 
 ± 
 
 
 


 
 ± 

± 

± 

± 
 ± 
 ± 



 
  

± 

± 
 ± 




 



 
 
 
 

± 
http://onsemi.com
533
TO-220 Leadform Options (continued)
 
 



 
 
 
 
 


 


± 
±

 


±




 
 
 
 
 

 
±







 
 





 

 
±
 











±
http://onsemi.com
534
TO-220 Leadform Options (continued)
 
 
 
 


 




±  

 

±

±

±


 
 
 ± 
 



 
 


 
 
 ±

±
http://onsemi.com
535
TO-220 Leadform Options (continued)
 

 


 ± 
 ± 
 ± 
 ±  
±
 ± 
 ± 

±
   ± 

   
 


 


http://onsemi.com
536
TO-220 Leadform Options (continued)
 
   ±
 



 ± 
  
 
 
 
 
 







http://onsemi.com
537
CHAPTER 9
Package Outline Dimensions
http://onsemi.com
538
http://onsemi.com
539
Package Outline Dimensions
GLASS/PLASTIC
DO–41
CASE 59–03
ISSUE M
B
D
K
K
F
F
A
    

   
   
   
   
   

      
    
     
     

MINI MOSORB
CASE 59–04
ISSUE M
K
A
D
K
B
    

   
   
   
   

      
    
     
     

http://onsemi.com
540
PACKAGE OUTLINE DIMENSIONS (continued)
MICRODE BUTTON
CASE 193–04
ISSUE J
A
D
BF
M
    

   
   
   
   
 

CAN BUTTON
CASE 193A–02
ISSUE A

     
 
   

   

   

   
   
   
   
   
A
FD
EC
B
http://onsemi.com
541
PACKAGE OUTLINE DIMENSIONS (continued)
AXIAL LEAD BUTTON
CASE 194–04
ISSUE F

    
 
  
 
A
K
B
K
D
    

   
   
   
   
TO–220 THREE–LEAD
TO–220
CASE 221A–09
ISSUE AA

     
 
   
     
    

 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
 
   
  
 
  
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
 
  
 
  
 
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
    

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
B
Q
H
Z
L
V
G
N
A
K
F

D


–T–
C
S
T
U
R
J
http://onsemi.com
542
PACKAGE OUTLINE DIMENSIONS (continued)
  
 





























































 
  
 
 
 
S
C
A
K
R
JG
DL
H
F
B
Q
4
13

     
 
   
 
  
 
 
 
T
U
TO–220 TWO–LEAD
CASE 221B–04
ISSUE D
TO–220 FULLPACK TRANSISTOR
CASE 221D–02
ISSUE D

     
 
   
 
  
 
 
 
  
 
 
 
  
 
 
 
  
 
 

   

   

   
   
   
   
 
   
   
   
   
 
   
   
   
   
 
  
 
 
  
 
–B–
–Y–
G
N
DL
KH
A
F
Q
3 PL




–T–
U
CS
JR

http://onsemi.com
543
PACKAGE OUTLINE DIMENSIONS (continued)
AXIAL LEAD
CASE 267–03
ISSUE G
KA
K
D
B

     
 
   
 
    
 
    

   
   
   
   
 
 
AXIAL LEAD
CASE 267–05
ISSUE G

     
 
   
 
    
 
KA
K
D
B
    

   
   
   
   
 
 
http://onsemi.com
544
PACKAGE OUTLINE DIMENSIONS (continued)
TO–218 THREE LEAD
TO–218
CASE 340D–02
ISSUE B
 
  
 
 
 

     
 
   
 
  
 
 
 
A
D
VG
K
SL
U
BQEC
J
H
    

   
   
   
   
   
   
   
   
 
   
   
   
 
 

TO–218 TWO LEAD
TO–218
CASE 340E–02
ISSUE A
JH
EC
     
 
   
 
  
 
 
K
SL
UA
BQ
D
G
V

    

   
   
   
   
   
   
   
   
 
   
   
   
 
 
http://onsemi.com
545
PACKAGE OUTLINE DIMENSIONS (continued)
TO–247
CASE 340L–02
ISSUE D
N
P
A
K
W
F
DG
U
E
 
JH
C

–T–
–B–
–Y–

     
 
   
2 PL
3 PL
 
–Q–
L    

   
   
   
   
   
   
 
   
   
   
   
   
   
   
 
   
 
  
 
 
 
 
  
 
 
 
 
  
  
 
  
 
  
 
 
 
POWERTAP II
CASE 357C–03
ISSUE E
 

   

   

   
   
   
   
   
   
 
   
 
   
   
   

     
 
   
     
R
G
W
N
Q
 
2 PL
E


F
V
U
C
H
–A–
–B–
–T–
http://onsemi.com
546
PACKAGE OUTLINE DIMENSIONS (continued)
POWERTAP III
CASE 357D–01
ISSUE A
    

   
   
   
   
   
   
   
   
 
   
   

     
 
   
     
R
DB
N
AQ
L2 PL
C
FH
E
RADIUS
DPAK
CASE 369A–13
ISSUE AA
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 
D
A
K
B
R
V
S
FL
G
2 PL

E
C
U
J
H
–T– 

Z
    

   
   
   
   
   
   
 
   
   
   
 
   
   
   
   
   

     
 
   

 
  
 
 
 
http://onsemi.com
547
PACKAGE OUTLINE DIMENSIONS (continued)
SMC
CASE 403–03
ISSUE B
S
A
DB
J
PK H
C
    

   
   
   
   
   
   
   
 
   

     
 
   
     

SMB
D0–214AA
CASE 403A–03
ISSUE D
A
S
DB
J
P
K
C
H

     
 
   
     

    

   
   
   
   
   
   
   
 
   
http://onsemi.com
548
PACKAGE OUTLINE DIMENSIONS (continued)
SMB
CASE 403B–01
ISSUE O

     
 
   
S
A
DB
KJ
C
H
    

   
   
   
   
   
   
   
   
D2PAK
CASE 418B–03
ISSUE D

     
 
   
 
  
 
 
 
 
  
 
 
 
 
  
 
 
 


S
G
D
–T–


3 PL
K
J
H
V
E
C
A    

   
   
   
   
   
 
   
   
   
   
   
–B–
http://onsemi.com
549
CHAPTER 10
AR598: Avalanche Capability of
Today’s Power Semiconductors
http://onsemi.com
550
Semiconductor Components Industries, LLC, 2000
November, 2000 – Rev.1 551 Publication Order Number:
AR598/D

  
 

R Borras, P Aloisi, D Shumate*
ON Semiconductor, France, USA*
Paper published at the EPE Conference ’93, Brighton 9/93.
Abstract. Power semiconductors are used to switch high currents in fractions of a second and therefore
belong inherently to a world of voltage spikes. To avoid unnecessary breakdown voltage guardbands, new
generations of semiconductors are now avalanche rugged and characterized in avalanche energy.
This characterization is often far from application conditions and thus quite useless to the designer . It is easy
to verify that an energy rating is not the best approach to a ruggedness quantification because of avalanche
energy fluctuations with test conditions.
A physical and thermal analysis of the failure mechanisms leads to a new characterization method generating
easy–to–use data for safe designs. The short–term avalanche capability will be discussed with an insight of
the different technologies developed to meet these new ruggedness requirements.
Keywords. Avalanche, breakdown, unclamped inductive switching energy, safe operating areas.
INTRODUCTION
One obvious trend for new power electronic designs is to
work at very high switching frequencies in order to reduce
the volume and weight of all the capacitive and inductive
elements. The consequence is that most applications today
require switching very high currents in fractions of a
microsecond and therefore generate L x dI/dt voltage spikes
due to parasitic inductance. Unfortunately these undesirable
voltage levels sometimes reach the breakdown voltage of
power semiconductors that are not intended to be used in
avalanche.
The necessity for avalanche rugged power
semiconductors has clearly been perceived by many
semiconductor manufacturers who have come up with
avalanche–energy rated devices.
This paper will show the limits of an energy–based
characterization model. It will concentrate on three dif ferent
devices: Ultra Fast recovery Rectifiers, Schottky Barrier
Rectifiers and MOSFETs. It will study their main failure
mechanisms and show the technological improvements that
guarantee an enhanced ruggedness.
This will lead to a new characterization that will help the
designer c hoose c orrectly b etween o verall c ost and r eliability.
LIMITS OF AN AVALANCHE ENERGY
CHARACTERIZATION
Practically all the characterizations are based on the
following Unclamped Inductive Switching (UIS) test circuit
(Fig 1).
The energy is first stored in inductor L by turning on
transistor Q for a period of time proportional to the peak
current desired in the inductor. When Q is turned off, the
inductor reverses its voltage and avalanches the Device
Under Test until all its energy is transferred. The DUT can
be a rectifier or a MOSFET (the gate should always be
shorted to the source).
DUT
Q
t
t
L
IR
VCC
IR
IC
BVR
VR
VCC
VR
Figure 1. Standard UIS Characterization Circuit.
The standard characterization method consists in
increasing the peak current in the inductor until the device
fails. The energy that the device can sustain without failing
becomes a figure of merit of the ruggedness to avalanche:
Waval = 1/2 L Ipeak2 BV(DUT) / (BV(DUT) – VCC) [1]
The main limit of this method is that the ener gy level that
causes a failure in the DUT is not a constant but a function
of L and VCC. This results of the fact that the avalanche
duration is function of the current decay slope
(BV(DUT)–VCC)/L:
http://onsemi.com
ARTICLE REPRINT
AR598
http://onsemi.com
552
Table 1. Peak Current and Energy Causing Failures in
a 1 A, 1000 V Ultra Fast Recovery Rectifier.
Inductor Value: 10 mH 50 mH 100 mH
Peak Current: 1.7 A 0.9 A 0.8 A
Energy: 14 mJ 20 mJ 32 mJ
Table 1 indicates that the failure is not caused by an ener gy
(i.e. it is not independent of the avalanche duration) but
rather by a current level that has to be derated versus time:
the devices can sustain a low current for a long period of time
(high energy) but at high avalanche currents they will fail
after a few microseconds (low energy).
Therefore, unless the designer has a parasitic inductance
of value L in his circuit, the standard characterization data
will be useless, or worse, it might lead to an overestimate of
the ruggedness of his application: because parasitic
inductances are often an order of magnitude less than the test
circuit inductance, the expected energy capability leads to
excessive current levels.
The UIS test circuit is very easy to implement: the only
important point is that the transistor has to have a breakdown
voltage higher than the DUT. For low breakdown voltage
devices, a MOSFET might be preferred to the bipolar
transistor.
The advantages of using a MOSFET are multiple: it is a
more rugged device, it is much easier to drive and its
switching characteristics can be controlled by adding a
resistor in series with the gate. It is mandatory to limit this
switching speed to avoid having an avalanche energy
measurement dependent on the gate drive (i.e. gate resistor
and gate to source voltage values).
Anyhow, it is p ossible t o g enerate v e ry us eful i nformation
with this UIS test circuit by varying the inductor value. It is
also very important to present the data independently of the
values of VCC and L. One solution can be to plot the
maximum p eak c urrent v ersus t he a valanche d uration ( Fig 2):
100010010 10,000
100
10
1t (s)
Ipeak (A)
Figure 2. Maximum Peak Current versus Avalanche
Duration for a 15 A, 60 V MOSFET in an UIS Test Circuit.
The advantage of this new graph is that the designer can
easily calculate the safety margin of his application and he
will not be mislead by an energy value that depends on too
many different parameters. If he knows the value of the
parasitic inductance in his circuit he will be able to
determine its maximum peak current.
For instance, let us assume that the designer uses the 15 A,
60 V MOSFET characterized in Figure 2. This device
sustains 500 mJ with an inductor of 75 mH according to
equation [1]. Its typical breakdown voltage is 80 V.
If the supply voltage VDD is 12 V and the parasitic
inductance L is 250 µH, then the avalanche duration and
maximum peak current are related by [2]
Ipeak = t (BVDSS – VDD) / L
This relationship can be added to Figure 2 (see Fig 3):
100010010 10,000
100
10
1t (s)
Ipeak (A)
EQUATION 2
Figure 3. Figure 2 + equation [2].
Thus the maximum peak current that can flow through the
parasitic inductance L is approximately 2 8 A instead of 58 A
that would have resulted of using equation [1].
UNDERSTANDING THE FAILURE MECHANISMS
Physical Approach
The following microscope photographs show the failure
locations for an Ultra Fast Recovery Rectifier (UFR), a
Schottky Barrier Rectifier (SBR) and a MOSFET:
Figure 4. 4 A, 1000 V UFR Avalanche Failure.
AR598
http://onsemi.com
553
Figure 5. 25 A, 35 V SBR Avalanche Failure.
Figure 6. 20 A, 500 V MOSFET Avalanche Failure.
These photographs show that the failure is generally a
punchthrough. The melt–through hole dimensions depend
on the current level and avalanche duration.
A close look at the electrical characteristics of failed
rectifiers on a curve tracer show three levels of degradation:
low stressed diodes h ave a n ormal f orward c haracteristic b ut
show an unusual leakage current before entering breakdown
as if t hey h ad a h igh–value r esistor in p arallel: t his r esistance
can be explained by a small punchthrough. For medium
degradation levels, the value of this pseudo–resistance
decreases a nd b ecomes v isible i n t he f orward c haracteristic o f
the diode. Finally, when the punchthrough reaches
considerable dimensions, the device looks very similar to a
low value resistor.
The f ailure d oes n ot a lways a ppear i n t he s ame r egion of t he
die. For instance, high voltage UFRs have their
punch-through always located in a corner, MOSFETs often
fail in the corners or on the sides whereas SBRs have
randomly located failures.
Thermal Approach
Transient thermal response graphs generated by a
standard VDS method show the junction temperature
evolution for forward and avalanche constant current
conduction in a MOSFET. These graphs (Fig 7) prove that
the silicon ef ficiency during avalanche and forward currents
are similar.
100010010 10,000
300
100
0t (s)
TJ (°C)
200
800 W 400 W 200 W
600 W
FORWARD
Figure 7. 15 A, 60 V MOSFET Transient Thermal
Response for 800 W, 400 W, 200 W Avalanche and
600 W Forward Conduction.
Figure 7 can be used to generate a transient thermal
resistance graph by plotting the temperature divided by the
power: the four graphs should then normally match. Some
slight differences show that the transient thermal resistance
increases with the current level: i.e. the 800 W curve (10 A
constant avalanche current) has a higher transient thermal
resistance than the 200 W (2.5 A). Therefore the thermal
efficiency in a MOSFET is not perfectly homogeneous
versus the avalanche current.
A similar analysis on an UFR or an SBR shows poor
thermal efficiency in avalanche. This can be shown by
comparing the temperature rise after 1 ms for forward and
avalanche conduction pulses of same power (400 W):
MOSFET Tdirect=160°CTavalanche=180°C ratio=0.9
UFR Tdirect=120°CTavalanche=175°C ratio=0.7
SBR Tdirect=100°CTavalanche=150°C ratio=0.7
Electrical Approach
Considering the transient thermal responses of a device,
it is possible to simulate the instantaneous junction
temperature for any sort of power pulse.
AR598
http://onsemi.com
554
Conducting this simulation on the data generated by the
UIS test it is possible to show that all the parts fail when they
reach a “critical temperature” (Fig 8):
100010010 10,000
300
100
0t (s)
TJ (°C)
200
130 H1 mH 13 mH 75 mH
6 mH
L
L
UII I
Figure 8. 15A, 60V MOSFET Failure Points and Critical
Temperature for different Inductor Values.
At these critical temperatures the intrinsic carrier
concentration, ni, reaches levels close to those of the doping
concentrations:
[3]ni is proportional to T3/2 e Eg / 2kT
where T is the absolute temperature, Eg the energy
bandgap and k is Boltzmann’s constant.
At 200°C, ni exceeds 2 1014 cm–3 which corresponds to
a 1000 V material epitaxy concentration level. This means
that when the junction temperature reaches 300°C, the
rectifier looks more like a resistor than a diode. A local
thermal runaway then generates a hot spot and a
punchthrough as can be seen in Figures 4, 5 and 6.
This failure analysis has shown that the failure mechanism
is essentially thermal: the devices are heated by the BVR x
IR power dissipation. Unfortunately, this power does not
remain constant because the UIS circuit generates a linear
current decay and also the breakdown voltage varies with the
current level and with the junction temperature.
In order to have a complete characterization of the device
it is interesting to see how it reacts to a constant avalanche
current and different ambient temperatures.
NEW CHARACTERIZATION METHOD PROPOSAL
During the prototype phase, it is easier for the designer to
measure the avalanche current and duration than the circuit’s
parasitic inductance. Therefore, the characterization should
be based on easy to measure parameters. The failure analysis
proves that the main cause of degradation is the inability to
handle an excessive power (avalanche current IR multiplied
by breakdown voltage BVR). A proper characterization
should present the maximum power capability versus time.
As the avalanche voltage varies only slightly with the
current level, the proposed method is based on avalanching
a device at a constant current and presenting the maximum
current capability versus time:
DUT
t
t
IR
IR
BVR
VR
VR
Figure 9. Constant Current Characterization Circuit.
Different test circuits similar to Figure 9 have been
proposed b y Gauen (1) and Pshaenich (2). Some unexpected
failures in MOSFETs suggest that the DUT should always
be referenced to ground. Unlike UFRs and SBRs, MOSFETs
react differently whether they are tied to ground or floating
around a fluctuating voltage. Many floating transistors fail
at very low stress levels probably due to capacitive coupled
currents that turn–on the internal parasitic transistor.
The test circuit shown in Figure 9 sets a constant
avalanche current through the device until it fails, this
duration can then be plotted for different current levels. This
generates a graph similar to the UIS method, except that the
current is constant instead of decreasing linearly.
This leads to the definition of a “Safe Avalanching Area”
(Fig 10) that will guarantee a short–term reliability if the
device is used within this clearly defined area.
10,0001000100 100,000
0.9
0.3
0.1 t (s)
IR (A)
0.5
0.7
SAFE
AVALANCHING
AREA
RECTANGULAR
CURRENT PULSE
TA = 25°C
Figure 10. 1 A, 30 V SBR Save Avalanching Area.
This graph gives the maximum avalanche duration for any
value of avalanche current.
The Safe Avalanching Area is generated by taking a safety
margin from the failure points. Another approach would be
to dynamically measure the temperature as in Figure 7 and
generate an area defined by a maximum allowable junction
temperature.
AR598
http://onsemi.com
555
As the failure mechanism is related to a peak junction
temperature, it is necessary to give Safe Avalanching Areas
for different ambient temperatures (Fig 11):
10005000
20
10
0t (s)
IR (A)
20001500
5
15 25°C
60°C
100°C
Figure 11. 25 A, 35 V SBR Safe Avalanching Areas for
different ambient temperatures.
When the data in Figures 10 and 11 is plotted on log/log
axes instead of lin/log or lin/lin, an interesting feature
appears (Fig 12):
1000100
100
10
1t (s)
IR (A)
10,000
25°C
60°C
100°C
Figure 12. Figure 12 on log/log axes.
Figure 12 shows a linear relationship between current and
time on a log/log plot. This means that:
[4]
log(IR) = A log(t) + B,
IR = k TA
so
where k is a constant function of the die size, the
breakdown voltage and other parameters. Constant A can
be extracted from Figure 12 and similar figures for UFRs
and MOSFETs:
[5]
IR = k T –0.55
Relation [5] is a consequence of heat propagation laws
which explain that the temperature in a semiconductor rises
proportionally to t 0.5 (for a constant current pulse and as
long as the temperature remains within the silicon die). This
can be seen in any transient thermal resistance graph.
A standard thermal calculation shows that:
[6]
TJ = TA + PD RthJA(t),
PD = (TJ–TA) / RthJA(t)
or
where:
TJ, TA are the junction and ambient temperatures,
PD is the power dissipation,
RthJA(t) is the transient thermal resistance.
Given a constant power pulse and for values of t less than
1 ms, [6] is equivalent to:
[7]so IR BVR = (TJ–TA) / ( k t 0.5 )
IR = k t –0.5
This relation is similar to [5]. For avalanche durations of
less than 500 µs the heat propagates within the silicon only.
For longer durations the heat reaches the solder and the
package so the propagation characteristics are modified.
The devices heat faster or slower and therefore the IR=f(t)
slope changes. Empirical data shows that A in relation [4]
remains within –0.5 to –0.6.
Relation [7] can also be expressed by:
IR2 t = k (k:constant) [7bis]
This rule of thumb works out much better than the,
unfortunately too common, 1/2 L I2 law.
For example, when applied to the example following
Figure 2 (which is UIS and not Constant Current generated)
to determine the maximum peak current in a 250 µH
inductor and by choosing for instance the 9 A, 500 µs point,
relation [7bis] can be written:
9A2 500 µs = Ipeak2 100µs
This gives a conservative value of 20 A instead of a real
value of 28 A whereas the 1/2 L I2 method generates a
catastrophic 58 A value.
TECHNOLOGY TRADEOFFS
Ultra Fast Recovery Rectifiers
The UFR devices are based on a Mesa technology (Fig 13)
with a Phosphorus doped (n–type) substrate. The heavily
doped N+ substrate is followed by a lighter N– epitaxial
layer. The P+ is diffused into the epitaxy to form the P–N
junction. The passivation follows the perimeter of the die.
AR598
http://onsemi.com
556
ELECTRIC
FIELD
DOPING
PROFILE
PASSIVATION
N+
P+
N–
EPITAXY
N+
SUBSTRATE
N–
P+
x
Figure 13. UFR Technology, Profile and Electric Field.
The epitaxy characteristics determine the major electrical
parameters of the device. A designed experiment was
conducted varying the epitaxy thickness and resistivity. Th e
output responses were the forward voltage, the breakdown
voltage, the leakage current and the avalanche capability. A
wide range of epitaxy materials was chosen to determine the
general trends for all the effects.
Although the results were predictable for the static
parameters, the avalanche capability results were not.
A key issue is the electric field extension. If it terminates
before the substrate the avalanche capability increases by
increasing the epitaxy resistivity. If the field extends into the
N+ region (reach–through) the avalanche capability is
considerably reduced.
The avalanche capability is proportional to the die size
and not to the perimeter. This confirms that the avalanche
current is vertical and not only a surface or passivation
related phenomenon.
The failures always occur in the corners where the electric
field is most critical. These failures are essentially function
of the thermal characteristics of the device when conducting
avalanche currents. Therefore the avalanche capability
decreases when the ambient temperature increases and the
failures can normally be predicted by Safe Avalanching
Areas such as Figure 12.
Some unexpected defects though can radically degrade
the avalanche capability. Defects in the epi such as pipes
cause premature failures but can often be screened by a
leakage current test that eliminates soft breakdown devices.
Defects in the passivation can generate parasitic oscillations
during breakdown.
Schottky Rectifiers
Due to P–N junction guard rings, SBR devices are very
similar to UFRs when conducting avalanche currents. These
rectifiers have very low breakdown voltages and therefore
very thin epitaxy layers. This probably explains that the
avalanche–related failures occur anywhere on the die
surface: the thin N– region is relatively more heterogeneous
with respect to avalanche capability and thermal dissipation
than a thick UFR epitaxy.
N+ SUBSTRATE
N– EPITAXY
BARRIER
ÉÉÉÉ
ÉÉÉ
P+ P+
GUARD
RING
SiO2
Figure 14. SBR Technology with P–N Guard Rings
MOSFETs
MOSFETs can also be compared to UFRs as long as the
internal parasitic bipolar transistor (due to the P–tub) does
not turn–on. The latest MOSFET generations reduce the P–
resistance to avoid biasing this NPN.
While analyzing different constant current test circuits, it
appeared that devices used in a floating configuration can
have very poor avalanche capabilities.
Due to their cellular technology, MOSFETs conduct very
efficiently avalanche currents. They can sustain avalanche
power levels close to those of forward conduction ratings.
CONCLUSION
The necessity of characterizing the avalanche capability
of power semiconductors has been explained. An analysis of
the standard UIS test circuit has shown the limits of a
characterization based on energy ratings. Throughout a
discussion of the main failure mechanisms, a new thermal
approach has been proposed to help designers set safety
levels in their designs. This paper sets new standards for
characterizing avalanche ruggedness.
Acknowledgements
The authors would like to thank Jean–Michel REYNES,
design engineer at ON Semiconductor Toulouse, for his help
in understanding the failure mechanisms.
References
1. Gauen, K., 1987, “Specifying Power MOSFET
Avalanche Stress Capability”,
Power Technics Magazine, January
2. Pshaenich, A., 1985, “Characterizing Overvoltage
Transient Suppressors”, Powerconversion
International, June/July
3. Cherniak, S., “A Review of Transients and The Means
of Suppression”, ON Semiconductor Application Note
AN843
4. Wilhardt, J., “Transient Power Capability of Zener
Diodes”, ON Semiconductor Application Note AN784
http://onsemi.com
557
CHAPTER 11
Index and Cross Reference
http://onsemi.com
558
Index and Cross Reference
The following table represents an index and cross reference guide for all rectifier devices which are either manufactured
directly by ON Semiconductor or for which ON Semiconductor manufactures a suitable equivalent. Where the ON
Semiconductor part number differs from the industry part number, the ON Semiconductor device is a form, fit and function
replacement for the industry type number – however, subtle dif ferences in characteristics and/or specifications may exist. The
part numbers listed in this Cross Reference are in computer sort.
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
10BF10 MURS110T3 286
10BF20 MURS120T3 286
10BF40 MURS140T3 286
10BF60 MURS160T3 286
10BF80 MURS160T3 286
10BQ015 MBRS120T3 64
10BQ030 MBRS130T3 70
10BQ040 MBRS140T3 73
10BQ060 MBRS1100T3 80
10BQ100 MBRS1100T3 80
10CTF10 MUR840 370
10CTF20 MUR840 370
10CTF30 MUR840 370
10CTF40 MUR840 370
10DL1 1N4934 452
10DL2 1N4935 452
10MQ040N MBRA140T3 61
10TQ030 MBR1035 207
10TQ035 MBR1035 207
10TQ040 MBR1045 207
10TQ045 MBR1045 207
11DQ03 1N5818 146
11DQ04 1N5819 146
11DQ05 MBR150 152
11DQ06 MBR160 152
11DQ09 MBR1100 156
11DQ10 MBR1100 156
12CTQ030 MBR1535CT 174
12CTQ035 MBR1535CT 174
12CTQ035S MBRB1545CT 116
12CTQ040 MBR1545CT 174
12CTQ040S MBRB1545CT 116
12CTQ045 MBR1545CT 174
12CTQ045S MBRB1545CT 116
12CWQ03FN MBRD1035CTL 108
12TQ035 MBR1635 215
12TQ035S MBRB1545CT 116
12TQ040 MBR1645 215
12TQ040S MBRB1545CT 116
12TQ045 MBR1645 215
12TQ045S MBRB1545CT 116
15CTQ035 MBR1535CT 174
15CTQ035S MBRB1545CT 116
15CTQ040 MBR1545CT 174
15CTQ040S MBRB1545CT 116
15CTQ045 MBR1545CT 174
15CTQ045S MBRB1545CT 116
180NQ035 MBRP20035L 280
181NQ035 MBRP20035L 280
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
182NQ030 MBRP20035L 280
182NQ030R MBRP20035L 280
1N2069,A 1N4003 447
1N2070,A 1N4004 447
1N2071,A 1N4005 447
1N3611 1N4003 447
1N3611GP 1N4003 447
1N3612 1N4004 447
1N3612GP 1N4004 447
1N3613 1N4005 447
1N3613GP 1N4005 447
1N3614 1N4006 447
1N3614GP 1N4006 447
1N3957 1N4007 447
1N3957GP 1N4007 447
1N4001 1N4001 447
1N4001GP 1N4001 447
1N4002 1N4002 447
1N4002GP 1N4002 447
1N4003 1N4003 447
1N4003GP 1N4003 447
1N4004 1N4004 447
1N4004GP 1N4004 447
1N4005 1N4005 447
1N4005GP 1N4005 447
1N4006 1N4006 447
1N4006GP 1N4006 447
1N4007 1N4007 447
1N4007GP 1N4007 447
1N4245 1N4003 447
1N4245GP 1N4003 447
1N4246 1N4004 447
1N4246GP 1N4004 447
1N4247 1N4005 447
1N4247GP 1N4005 447
1N4248 1N4006 447
1N4248GP 1N4006 447
1N4249 1N4007 447
1N4249GP 1N4007 447
1N4383GP 1N4003RL 447
1N4384GP 1N4004RL 447
1N4385GP 1N4005RL 447
1N4585GP 1N4006RL 447
1N4586GP 1N4007RL 447
1N4934 1N4934 452
1N4934GP 1N4934 452
1N4935 1N4935 452
1N4935GP 1N4935 452
1N4936 1N4936 452
http://onsemi.com
559
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
1N4936GP 1N4936 452
1N4937 1N4937 452
1N4937GP 1N4937 452
1N4942 1N4935 452
1N4942GP 1N4935 452
1N4943 1N4936 452
1N4944 1N4936 452
1N4944GP 1N4936 452
1N4945 1N4937 452
1N4946 1N4937 452
1N4946GP 1N4937 452
1N5185 MR852 454
1N5185GP MR852 454
1N5186 MR852 454
1N5186GP MR852 454
1N5187 MR852 454
1N5187GP MR852 454
1N5188 MR856 454
1N5188GP MR856 454
1N5189 MR856 454
1N5189GP MR856 454
1N5190 MR856 454
1N5190GP MR856 454
1N5391 1N4001RL 447
1N5391GP 1N4001RL 447
1N5391S 1N4001RL 447
1N5392 1N4002RL 447
1N5392GP 1N4002RL 447
1N5392S 1N4002RL 447
1N5393 1N4003RL 447
1N5393GP 1N4003RL 447
1N5393S 1N4003RL 447
1N5394 1N4004RL 447
1N5394GP 1N4004RL 447
1N5395 1N4004RL 447
1N5395GP 1N4004RL 447
1N5395S 1N4004RL 447
1N5396 1N4005RL 447
1N5396GP 1N4005RL 447
1N5397 1N4005RL 447
1N5397GP 1N4005RL 447
1N5397S 1N4005RL 447
1N5398 1N4006RL 447
1N5398GP 1N4006RL 447
1N5398S 1N4006RL 447
1N5399 1N4007RL 447
1N5399GP 1N4007RL 447
1N5399S 1N4007RL 447
1N5401 1N5401 449
1N5402 1N5402 449
1N5403 1N5404 449
1N5404 1N5404 449
1N5405 1N5406 449
1N5406 1N5406 449
1N5415 MR852 454
1N5416 MR852 454
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
1N5417 MR852 454
1N5418 MR856 454
1N5419 MR856 454
1N5420 MR856 454
1N5614 1N4003 447
1N5615 1N4935 452
1N5615GP 1N4935 452
1N5616 1N4004 447
1N5617 1N4936 452
1N5617GP 1N4936 452
1N5618 1N4005 447
1N5619 1N4937 452
1N5619GP 1N4937 452
1N5620 1N4006 447
1N5802 MUR420 350
1N5803 MUR420 350
1N5804 MUR420 350
1N5805 MUR420 350
1N5806 MUR420 350
1N5807 MUR420 350
1N5808 MUR420 350
1N5809 MUR420 350
1N5810 MUR420 350
1N5811 MUR420 350
1N5817 1N5817 146
1N5818 1N5818 146
1N5819 1N5819 146
1N5820 1N5820 159
1N5821 1N5821 159
1N5822 1N5822 159
200CNQ020 MBRP20030CTL 252
200CNQ030 MBRP20030CTL 252
200CNQ035 MBRP20030CTL 252
200CNQ040 MBRP20045CT 262
200CNQ045 MBRP20045CT 262
201CNQ020 MBRP20030CTL 252
201CNQ030 MBRP20030CTL 252
201CNQ035 MBRP20030CTL 252
201CNQ040 MBRP20045CT 262
201CNQ045 MBRP20045CT 262
208CMQ060 MBRP20060CT 270
208CNQ060 MBRP20060CT 270
20CTQ030 MBR2030CTL 180
20CTQ035 MBR2030CTL 180
20CTQ040 MBR2045CT 184
20CTQ045 MBR2045CT 184
21DQ03 1N5821 159
21DQ04 1N5822 159
220CNQ030 MBRP20030CTL 252
25CTQ035 MBR2535CTL 195
25CTQ035S MBRB2535CTL 127
25CTQ040 MBR2545CT 198
25CTQ040S MBRB2545CT 130
25CTQ045 MBR2545CT 198
25CTQ045S MBRB2545CT 130
28CPQ030 MBR3045PT 232
http://onsemi.com
560
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
28CPQ040 MBR3045PT 232
301CNQ040 MBRP30045CT 265
301CNQ045 MBRP30045CT 265
301CNQ050 MBRP30060CT 275
30BF20 MURS320T3 299
30BF40 MURS340T3 299
30BF60 MURS360T3 299
30BQ015 MBRS320T3 94
30BQ040 MBRS340T3 94
30BQ060 MBRS360T3 94
30CPQ035 MBR3045WT 241
30CPQ040 MBR3045WT 241
30CPQ045 MBR3045WT 241
30CPQ050 MBR3045WT 241
30CTQ030 MBR2545CT 198
30CTQ035 MBR2535CTL 195
30CTQ035S MBRB2535CTL 127
30CTQ040 MBR2545CT 198
30CTQ040S MBRB2545CT 130
30CTQ045 MBR2545CT 198
30CTQ045S MBRB2545CT 130
30CTQ050 MBR2545CT 198
30CTQ050S MBRB2545CT 130
30DL1 MR852 454
30DL2 MR852 454
30WQ03FN MBRD330T4 97
30WQ04FN MBRD350T4 97
30WQ06FN MBRD360T4 97
31DQ03 1N5821 159
31DQ04 1N5822 159
31DQ05 MBR350 168
31DQ06 MBR360 168
31DQ09 MBR3100 171
31DQ10 MBR3100 171
32CTQ030 MBR2535CTL 195
32CTQ030S MBRB3030CT 132
400CNQ040 MBRP40045CTL 268
400CNQ045 MBRP40045CTL 268
400DMQ045 MBRP40045CTL 268
401CMQ045 MBRP40045CTL 268
401CNQ040 MBRP40045CTL 268
401CNQ045 MBRP40045CTL 268
403CMQ100 MBRP400100CTL 278
403CNQ100 MBRP400100CTL 278
40CPQ035 MBR4045WT 248
40CPQ040 MBR4045WT 248
40CPQ045 MBR4045WT 248
40D1 MR754 484
40D2 MR754 484
40D4 MR754 484
40D6 MR760 484
40D8 MR760 484
40L15CQ MBR4015LWT 244
40L40CW MBR4045WT 248
40L45CW MBR4045WT 248
42CTQ030S MBRB4030 142
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
50WQ03FN MBRD630CTT4 101
50WQ04FN MBRD650CTT4 101
50WQ06FN MBRD660CTT4 101
6A05 MR754 484
6A1 MR754 484
6A10 MR760 484
6A2 MR754 484
6A4 MR754 484
6A6 MR760 484
6A8 MR760 484
6CWQ03FN MBRD630CTT4 101
6CWQ04FN MBRD650CTT4 101
6CWQ06FN MBRD660CTT4 101
6TQ035 MBR735 204
6TQ040 MBR745 204
6TQ045 MBR745 204
72CPQ030 MBR7030WT NA
8TQ080 MBR1090 212
8TQ100 MBR10100 212
A114A 1N4934 452
A114B 1N4935 452
A114C 1N4936 452
A114D 1N4936 452
A114E 1N4937 452
A114F 1N4933 452
A114M 1N4937 452
A115A MR852 454
A115B MR852 454
A115C MR856 454
A115D MR856 454
A115E MR856 454
A115F MR852 454
A115M MR856 454
A14A 1N4002 447
A14C 1N4004 447
A14D 1N4004 447
A14E 1N4005 447
A14F 1N4001 447
A14M 1N4005 447
A14N 1N4006 447
A14P 1N4007 447
AR25A MR2504 463
AR25B MR2504 463
AR25D MR2504 463
AR25G MR2504 463
AR25J MR2510 463
AR25K MR2510 463
AR25M MR2510 463
ARS25A MR2504 463
ARS25B MR2504 463
ARS25D MR2504 463
ARS25G MR2504 463
ARS25J MR2510 463
ARS25K MR2510 463
ARS25M MR2510 463
B0520LW MBR0520LT1,T3 28
http://onsemi.com
561
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
B0520W MBR0520LT1,T3 28
B0530W MBR0530T1,T3 31
B0540W MBR0540T1,T3 34
B1100B MBRS1100T3 80
B1100LB MBRS1100T3 80
B120 MBRA130LT3 58
B120B MBRS120T3 64
B130 MBRA130LT3 58
B130B MBRS130LT3 67
B140 MBRA140T3 61
B140B MBRS140LT3 76
B150 MBRA140T3 61
B150B MBRS140T3 73
B160 MBRA140T3 61
B160B MBRS1100T3 80
B170B MBRS1100T3 80
B180B MBRS1100T3 80
B190B MBRS1100T3 80
B220A MBRA130LT3 58
B230A MBRA130LT3 58
B240 MBRS240LT3 87
B240A MBRA130LT3 58
B250 MBRS240LT3 87
B250A MBRA140T3 61
B260 MBRS1100T3 80
B260A MBRA140T3 61
B320 MBRS320T3 94
B320A MBRA130LT3 58
B330 MBRS330T3 94
B330A MBRA130LT3 58
B340 MBRS340T3 94
B340A MBRA140T3 61
B340B MBRS240LT3 87
B350 MBRS360T3 94
B350A MBRA140T3 61
B350B MBRS240LT3 87
B360 MBRS360T3 94
B360A MBRA140T3 61
B360B MBRS1100T3 80
B520C MBRS320T3 94
B530C MBRS330T3 94
B540C MBRS340T3 94
B550C MBRS360T3 94
B560C MBRS360T3 94
BA157 1N4936RL 452
BA158 1N4937RL 452
BY229–200 MUR820 370
BY229–400 MUR840 370
BY229–600 MUR860 370
BYP21–100 MUR820 370
BYP21–150 MUR820 370
BYP21–200 MUR820 370
BYP21–50 MUR820 370
BYP22–100 MUR3020PT 425
BYP22–150 MUR3020PT 425
BYP22–200 MUR3020PT 425
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
BYP22–50 MUR3020PT 425
BY251GP 1N5402RL 449
BY252GP 1N5404RL 449
BY253GP 1N5406RL 449
BY254GP 1N5407RL 449
BYQ28–100 MUR1620CT 402
BYQ28–150 MUR1620CT 402
BYQ28–200 MUR1620CT 402
BYQ28–50 MUR1620CT 402
BYR29–600 MUR860 370
BYS92–40 MBRP20045CT 262
BYS92–45 MBRP20045CT 262
BYS92–50 MBRP20060CT 270
BYS93–40 MBRP30045CT 265
BYS93–45 MBRP30045CT 265
BYS93–50 MBRP30060CT 275
BYS95–40 MBRP20045CT 262
BYS95–45 MBRP20045CT 262
BYS95–50 MBRP20060CT 270
BYS97–40 MBRP20045CT 262
BYS97–45 MBRP20045CT 262
BYS97–50 MBRP20060CT 270
BYS98–40 MBRP20045CT 262
BYS98–45 MBRP20045CT 262
BYS98–50 MBR1545CT 174
BYT08P–1000 MUR8100E 376
BYT08P–400 MUR840 370
BYT12P–1000 MUR10120E 387
BYT28–300 MUR1660CT 402
BYT28–400 MUR1660CT 402
BYT28–500 MUR1660CT 402
BYT6P–400 MUR1640CT 402
BYT79–300 MUR1560 393
BYT79–400 MUR1560 393
BYT79–500 MUR1560 393
BYV18–35 MBR1545CT 174
BYV18–45 MBR1545CT 174
BYV19–35 MBR1045 207
BYV19–45 MBR1045 207
BYV26A MUR120 324
BYV26B MUR140 324
BYV26C MUR160 324
BYV27–100 MUR120 324
BYV27–150 MUR120 324
BYV27–50 MUR120 324
BYV28–100 MUR420 350
BYV28–150 MUR420 350
BYV28–50 MBR2045CT 184
BYV29–300 MUR1560 393
BYV29–400 MUR1560 393
BYV29–500 MUR1560 393
BYV32–100 MUR1620CT 402
BYV32–150 MUR1620CT 402
BYV32–200 MUR1620CT 402
BYV32–50 MUR1620CT 402
BYV33–35 MBR2045CT 184
http://onsemi.com
562
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
BYV33–40 MBR2045CT 184
BYV33–45 MBR2045CT 184
BYV39–35 MBR1645 215
BYV39–40 MBR1645 215
BYV39–45 MBR1645 215
BYV43–35 MBR2545CT 198
BYV43–40 MBR2545CT 198
BYV43–45 MBR2545CT 198
BYVB32–100 MURB1620CT 313
BYVB32–150 MURB1620CT 313
BYVB32–200 MURB1620CT 313
BYVB32–50 MURB1620CT 313
BYW29–100 MUR820 370
BYW29–150 MUR820 370
BYW29–200 MUR820 370
BYW29–50 MUR820 370
BYW4200B MURD620CT 306
BYW51–200 MUR1620CT 402
BYW51F–200 MURF1620CT 411
BYW80–100 MUR820 370
BYW80–150 MUR820 370
BYW80–200 MUR820 370
BYW80–50 MUR820 370
BYW81P–200 MUR1520 393
BYW98–200 MUR420 350
BYW99W–200 MUR3020WT 431
CPT12035 MBRP20045CT 262
CPT12045 MBRP20045CT 262
CPT12050 MBRP20060CT 270
CPT20035 MBRP20045CT 262
CPT20045 MBRP20045CT 262
CPT20050 MBRP20060CT 270
CPT20120 MBRP20030CTL 252
CPT20125 MBRP20030CTL 252
CPT30035 MBRP30045CT 265
CPT30045 MBRP30045CT 265
CPT30050 MBRP30060CT 275
EGP10A MUR120 324
EGP10B MUR120 324
EGP10C MUR120 324
EGP10D MUR120 324
EGP10F MUR160 324
EGP10G MUR160 324
EGP10J MUR160 324
EGP10K MUR180E 329
EGP20A MUR420 350
EGP20B MUR420 350
EGP20C MUR420 350
EGP20D MUR420 350
EGP20F MUR460 350
EGP20G MUR460 350
EGP20J MUR460 350
EGP20K MUR480E 355
EGP30A MUR420 350
EGP30B MUR420 350
EGP30C MUR420 350
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
EGP30D MUR420 350
EGP30F MUR460 350
EGP30G MUR460 350
EGP30J MUR460 350
EGP30K MUR480E 355
EGP50A MUR420 350
EGP50B MUR420 350
EGP50C MUR420 350
EGP50D MUR420 350
ERA81 1N5819 146
ERB35 MUR120 324
ERB44 1N4935 452
ERB91 MUR120 324
ERC24 1N4936 452
ERC38 MUR140 324
ERC62 MBR1045 207
ERC80 MBR745 204
ERC90 MUR820 370
ERC91 MUR420 350
ES1A MRA4003T3 456
ES1B MRA4003T3 456
ES1C MRA4003T3 456
ES1D MRA4003T3 456
ES1G MRA4004T3 456
ES2A MURS105T3 286
ES2AA MRA4003T3 456
ES2B MURS110T3 286
ES2BA MRA4003T3 456
ES2C MURS115T3 286
ES2CA MRA4003T3 456
ES2D MURS120T3 286
ES2DA MRA4003T3 456
ES2F MURS140T3 286
ES2G MURS140T3 286
ES3A MURS320T3 299
ES3AB MURS105T3 286
ES3B MURS320T3 299
ES3BB MURS110T3 286
ES3C MURS320T3 299
ES3CB MURS115T3 286
ES3D MURS320T3 299
ES3DB MURS120T3 286
ES3F MURS340T3 299
ES3G MURS340T3 299
ESAB33 MUR820 370
ESAB82 MBR745 204
ESAB92 MUR820 370
ESAC33 MUR820 370
ESAC82 MBR1045 207
ESAC92 MUR1520 393
ESAC93 MUR3020PT 425
ESAD33 MUR3040PT 425
FE16A MUR1620CT 402
FE16B MUR1620CT 402
FE16C MUR1620CT 402
FE16D MUR1620CT 402
http://onsemi.com
563
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
FE16F MUR1660CT 402
FE16G MUR1660CT 402
FE1A MUR120 324
FE1B MUR120 324
FE1C MUR120 324
FE1D MUR120 324
FE2A MUR420 350
FE2B MUR420 350
FE2C MUR420 350
FE2D MUR420 350
FE3A MUR420 350
FE3B MUR420 350
FE3C MUR420 350
FE3D MUR420 350
FE5A MUR420 350
FE5B MUR420 350
FE5C MUR420 350
FE5D MUR420 350
FE6A MUR420 350
FE6B MUR420 350
FE6C MUR420 350
FE6D MUR420 350
FE8A MUR420 350
FE8B MUR820 370
FE8C MUR820 370
FE8D MUR820 370
FE8F MUR840 370
FE8G MUR840 370
FEP16AT MUR1620CT 402
FEP16BT MUR1620CT 402
FEP16CT MUR1620CT 402
FEP16DT MUR1620CT 402
FEP16FT MUR1640CT 402
FEP16GT MUR1640CT 402
FEP16HT MUR1660CT 402
FEP16JT MUR1660CT 402
FEP30AP MUR3020WT 431
FEP30BP MUR3020WT 431
FEP30CP MUR3020WT 431
FEP30DP MUR3020WT 431
FEP30FP MUR3060WT 431
FEP30GP MUR3060WT 431
FEP30HP MUR3060WT 431
FEP30JP MUR3060WT 431
FEP6AT MUR620CT 363
FEP6BT MUR620CT 363
FEP6CT MUR620CT 363
FEP6DT MUR620CT 363
FEPB16AT MURB1620CT 313
FEPB16BT MURB1620CT 313
FEPB16CT MURB1620CT 313
FEPB16DT MURB1620CT 313
FES16AT MUR1520 393
FES16BT MUR1520 393
FES16CT MUR1520 393
FES16DT MUR1520 393
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
FES16FT MUR1540 393
FES16GT MUR1540 393
FES16HT MUR1560 393
FES16JT MUR1560 393
FES8AT MUR820 370
FES8BT MUR820 370
FES8CT MUR820 370
FES8DT MUR820 370
FES8FT MUR840 370
FES8GT MUR840 370
FES8HT MUR860 370
FES8JT MUR860 370
FESB16AT MURB1620CT 313
FESB16BT MURB1620CT 313
FESB16CT MURB1620CT 313
FESB16DT MURB1620CT 313
FM120 MBRA130LT3 58
FM130 MBRA130LT3 58
FM140 MBRA140T3 61
FM5817 MBRA130LT3 58
FM5818 MBRA130LT3 58
FM5819 MBRA140T3 61
FR061 1N4933 452
FR061L 1N4933 452
FR062 1N4934 452
FR062L 1N4934 452
FR063 1N4935 452
FR063L 1N4935 452
FR064 1N4936 452
FR065 1N4937 452
FR065L 1N4936 452
FR065L 1N4937 452
FR101 1N4933 452
FR102 1N4934 452
FR103 1N4935 452
FR104 1N4936 452
FR105 1N4937 452
FR251 MR852 454
FR252 MR852 454
FR253 MR852 454
FR254 MR856 454
FR255 MR856 454
FR301 MR852 454
FR302 MR852 454
FR303 MR852 454
FR304 MR856 454
FR305 MR856 454
FRM3205CC MUR3020PT 425
FRM3210CC MUR3020PT 425
FRM3215CC MUR3020PT 425
FRM3220CC MUR3020PT 425
FRP1605CC MUR1620CT 402
FRP1610CC MUR1620CT 402
FRP1615CC MUR1620CT 402
FRP1620CC MUR1620CT 402
FRP805 MUR820 370
http://onsemi.com
564
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
FRP810 MUR820 370
FRP815 MUR820 370
FRP820 MUR820 370
FST1240 MBR1545CT 174
FST1245 MBR1545CT 174
FST1540 MBR1545CT 174
FST1545 MBR1545CT 174
FST20035 MBRP20045CT 262
FST20040 MBRP20045CT 262
FST20045 MBRP20045CT 262
FST20050 MBRP20060CT 270
FST2040 MBR2045CT 184
FST2045 MBR2045CT 184
FST2050 MBR2060CT 189
FST30035 MBRP30045CT 265
FST30040 MBRP30045CT 265
FST30045 MBRP30045CT 265
FST30050 MBRP30060CT 275
FST3040 MBR2545CT 198
FST3045 MBR2545CT 198
FST6035 MBRP20045CT 262
FST6040 MBRP20045CT 262
FST6045 MBRP20045CT 262
FST6050 MBRP20060CT 270
GER4001 1N4001 447
GER4002 1N4002 447
GER4003 1N4003 447
GER4004 1N4004 447
GER4005 1N4005 447
GER4006 1N4006 447
GER4007 1N4007 447
GI1001 MUR120 324
GI1002 MUR120 324
GI1003 MUR120 324
GI1004 MUR120 324
GI1101 MUR420 350
GI1102 MUR420 350
GI1103 MUR420 350
GI1104 MUR420 350
GI1301 MUR420 350
GI1302 MUR420 350
GI1303 MUR420 350
GI1304 MUR420 350
GI1401 MUR820 370
GI1402 MUR820 370
GI1403 MUR820 370
GI1404 MUR820 370
GI2401 MUR1620CT 402
GI2402 MUR1620CT 402
GI2403 MUR1620CT 402
GI2404 MUR1620CT 402
GI2500 MR2504 463
GI2501 MR2504 463
GI2502 MR2504 463
GI2504 MR2504 463
GI2506 MR2510 463
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
GI2508 MR2510 463
GI2510 MR2510 463
GI500 1N5400RL 449
GI501 1N5401RL 449
GI502 1N5402RL 449
GI504 1N5404RL 449
GI506 1N5406RL 449
GI508 1N5407RL 449
GI510 1N5408RL 449
GI750 MR754 484
GI751 MR754 484
GI752 MR754 484
GI754 MR754 484
GI756 MR760 484
GI758 MR760 484
GI810 1N4933RL 452
GI811 1N4934RL 452
GI812 1N4935RL 452
GI814 1N4936RL 452
GI816 1N4937RL 452
GI850 MR852 454
GI851 MR852 454
GI852 MR852 454
GI854 MR856 454
GI856 MR856 454
GIB2401 MURB1620CT 313
GIB2402 MURB1620CT 313
GIB2403 MURB1620CT 313
GIB2404 MURB1620CT 313
GP08A 1N4001RL 447
GP08B 1N4002RL 447
GP08D 1N4003RL 447
GP08G 1N4004RL 447
GP08J 1N4005RL 447
GP10A 1N4001 447
GP10B 1N4002 447
GP10D 1N4003 447
GP10G 1N4004 447
GP10J 1N4005 447
GP10K 1N4006 447
GP10M 1N4007 447
GP15A 1N4001RL 447
GP15B 1N4002RL 447
GP15D 1N4003RL 447
GP15G 1N4004RL 447
GP15J 1N4005RL 447
GP15K 1N4006RL 447
GP15M 1N4007RL 447
GP30A 1N5400RL 449
GP30B 1N5401RL 449
GP30D 1N5402RL 449
GP30G 1N5404RL 449
GP30J 1N5406RL 449
GP30K 1N5407RL 449
GP30M 1N5408RL 449
GP80A MUR820 370
http://onsemi.com
565
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
GP80B MUR820 370
GP80D MUR820 370
GP80G MUR840 370
GP80J MUR860 370
HER101 MUR120 324
HER102 MUR120 324
HER103 MUR120 324
HER104 MUR140 324
HER105 MUR140 324
HER151 MUR120 324
HER152 MUR120 324
HER153 MUR120 324
HER154 MUR140 324
HER155 MUR140 324
HER301 MUR420 350
HER302 MUR420 350
HER303 MUR420 350
HER801 MUR820 370
HER802 MUR820 370
HER803 MUR820 370
HER804 MUR840 370
HER805 MUR840 370
HFA15TB60 MUR1560 393
HFA16TA60C MUR1660CT 402
HFA200MD40C MURP20040CT 436
HFA200MD40D MURP20040CT 436
HFA30PA60C MUR3060WT 431
LT2A01 1N5400RL 449
LT2A02 1N5401RL 449
LT2A03 1N5402RL 449
LT2A04 1N5404RL 449
LT2A05 1N5406RL 449
LT2A06 1N5407RL 449
LT2A07 1N5408RL 449
M100A 1N4001RL 447
M100B 1N4002RL 447
M100D 1N4003RL 447
M100G 1N4004RL 447
M100J 1N4005RL 447
M100K 1N4006RL 447
M100M 1N4007RL 447
MBR0520L MBR0520LT1,T3 28
MBR0540 MBR0540T1,T3 34
MBR10100 MBR10100 212
MBR1030 MBR1035 207
MBR1030CT MBR1535CT 174
MBR1035 MBR1035 207
MBR1035CT MBR1535CT 174
MBR1040 MBR1045 207
MBR1040CT MBR1545CT 174
MBR1045 MBR1045 207
MBR1045CT MBR1545CT 174
MBR1050 MBR1060 212
MBR1050 MBR1060 212
MBR1050 MBR1060 212
MBR1060 MBR1060 212
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
MBR1070 MBR1100 156
MBR1080 MBR1100 156
MBR1090 MBR1100 156
MBR1100 MBR1100 156
MBR12035CT MBRP20045CT 262
MBR12045CT MBRP20045CT 262
MBR12050CT MBRP20060CT 270
MBR12060CT MBRP20060CT 270
MBR150 MBR160 152
MBR1535CT MBR1535CT 174
MBR1540CT MBR1545CT 174
MBR1545CT MBR1545CT 174
MBR1550CT MBR1545CT 174
MBR1560CT MBR2060CT 189
MBR160 MBR160 152
MBR1630 MBR1635 215
MBR1635 MBR1635 215
MBR1640 MBR1645 215
MBR1645 MBR1645 215
MBR1650 MBR1645 215
MBR170 MBR1100 156
MBR180 MBR1100 156
MBR190 MBR1100 156
MBR20015CTL MBRP20030CTL 252
MBR20020CTL MBRP20030CTL 252
MBR20025CTL MBRP20030CTL 252
MBR20030CTL MBRP20030CTL 252
MBR20035CT MBRP20045CT 262
MBR20045CT MBRP20045CT 262
MBR20050CT MBRP20060CT 270
MBR20060CT MBRP20060CT 270
MBR20100CT MBR20100CT 189
MBR2015CTL MBR2030CTL 180
MBR20200CT MBR20200CT 192
MBR2030CTL MBR2030CTL 180
MBR2035CT MBR2045CT 184
MBR2040CT MBR2045CT 184
MBR2045CT MBR2045CT 184
MBR2050CT MBR2060CT 189
MBR2060CT MBR2060CT 189
MBR2070CT MBR2080CT 189
MBR2080CT MBR2080CT 189
MBR2090CT MBR2090CT 189
MBR2535CT MBR2545CT 198
MBR2535CTL MBR2535CTL 195
MBR2545CT MBR2545CT 198
MBR2550CT MBR2545CT 198
MBR30035CT MBRP30045CT 265
MBR30045CT MBRP30045CT 265
MBR30050CT MBRP30060CT 275
MBR30060CT MBRP30060CT 275
MBR3035CT MBR2535CTL 195
MBR3035PT MBR3045PT 232
MBR3035WT MBR3045WT 241
MBR3040PT MBR3045PT 232
MBR3045CT MBR2545CT 198
http://onsemi.com
566
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
MBR3045PT MBR3045PT 232
MBR3045WT MBR3045WT 241
MBR3050PT MBR3045PT 232
MBR3100 MBR3100 171
MBR320 MBR340 165
MBR330 MBR340 165
MBR340 MBR340 165
MBR350 MBR360 168
MBR360 MBR360 168
MBR370 MBR3100 171
MBR380 MBR3100 171
MBR390 MBR3100 171
MBR4030PT MBR4045PT 235
MBR4035PT MBR4045PT 235
MBR4045PT MBR4045PT 235
MBR4045WT MBR4045WT 248
MBR4050PT MBR4045PT 235
MBR5025L MBR5025L 239
MBR60035CTL MBRP60035CTL 259
MBR6030PT MBR6045PT 237
MBR6035PT MBR6045PT 237
MBR6040PT MBR6045PT 237
MBR6045PT MBR6045PT 237
MBR6045WT MBR6045WT 250
MBR730 MBR735 204
MBR735 MBR735 204
MBR740 MBR745 204
MBR745 MBR745 204
MBR750 MBR745 204
MBRA130LT3 MBRA130LT3 58
MBRA140T3 MBRA140T3 61
MBRB1035 MBRB1545CT 116
MBRB1045 MBRB1545CT 116
MBRB1050 MBRB1545CT 116
MBRB1530CT MBRB1545CT 116
MBRB1535CT MBRB1545CT 116
MBRB1540CT MBRB1545CT 116
MBRB1545CT MBRB1545CT 116
MBRB1550CT MBRB1545CT 116
MBRB1635 MBRB1545CT 116
MBRB1645 MBRB1545CT 116
MBRB1650 MBRB1545CT 116
MBRB20100CT MBRB20100CT 120
MBRB2035CT MBRB2535CTL 127
MBRB2045CT MBRB2545CT 130
MBRB2050CT MBRB2545CT 130
MBRB2060CT MBRB2060CT 118
MBRB2080CT MBRB20100CT 120
MBRB2090CT MBRB20100CT 120
MBRB2515L MBRB2515L 125
MBRB2535CTL MBRB2535CTL 127
MBRB2545CT MBRB2545CT 130
MBRB3035CT MBRB3030CT 132
MBRB3045CT MBRB2545CT 130
MBRD320 MBRD340 97
MBRD330 MBRD340 97
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
MBRD340 MBRD340 97
MBRD350 MBRD360 97
MBRD360 MBRD360 97
MBRD620CT MBRD640CT 101
MBRD630CT MBRD640CT 101
MBRD640CT MBRD640CT 101
MBRD650CT MBRD660CT 101
MBRD660CT MBRD660CT 101
MBRF20100CT MBRF20100CT 223
MBRF2035CT MBRF2545CT 229
MBRF2045CT MBRF2545CT 229
MBRF2050CT MBRF2545CT 229
MBRF2060CT MBRF20100CT 223
MBRF2090CT MBRF20100CT 223
MBRF2535CT MBRF2545CT 229
MBRF2545CT MBRF2545CT 229
MBRF2550CT MBRF2545CT 229
MBRM120LT3 MBRM120LT3 43
MBRM130LT3 MBRM130LT3 48
MBRM140T3 MBRM140T3 53
MBRS1100T3 MBRS1100T3 80
MBRS130LT3 MBRS130LT3 67
MBRS140T3 MBRS140T3 73
MBRS320 MBRS320T3 94
MBRS340 MBRS340T3 94
MBRS340T3 MBRS340T3 94
MR2500 MR2504 463
MR2501 MR2504 463
MR2502 MR2504 463
MR2504 MR2504 463
MR2506 MR2510 463
MR2508 MR2510 463
MR2510 MR2510 463
MR2535L MR2535L 501
MR750 MR754 484
MR751 MR754 484
MR752 MR754 484
MR754 MR754 484
MR756 MR760 484
MR758 MR760 484
MR760 MR760 484
MR850 MR852 454
MR851 MR852 454
MR852 MR852 454
MR854 MR856 454
MR856 MR856 454
MUR10005CT MURP20020CT 436
MUR10010CT MURP20020CT 436
MUR10015CT MURP20020CT 436
MUR10020CT MURP20020CT 436
MUR10120E MUR10120E 387
MUR10150E MUR10150E 390
MUR105 MUR120 324
MUR110 MUR120 324
MUR1100E MUR1100E 329
MUR115 MUR120 324
http://onsemi.com
567
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
MUR120 MUR120 324
MUR130 MUR140 324
MUR140 MUR160 324
MUR150 MUR160 324
MUR1505 MUR1520 393
MUR1510 MUR1520 393
MUR1515 MUR1520 393
MUR1520 MUR1520 393
MUR1530 MUR1540 393
MUR1540 MUR1540 393
MUR1550 MUR1560 393
MUR1560 MUR1560 393
MUR160 MUR160 324
MUR1605CT MUR1620CT 402
MUR1605CTR MUR1620CTR 408
MUR1610CT MUR1620CT 402
MUR1610CTR MUR1620CTR 408
MUR1615CT MUR1620CT 402
MUR1615CTR MUR1620CTR 408
MUR1620CT MUR1620CT 402
MUR1620CTR MUR1620CTR 408
MUR1630CT MUR1640CT 402
MUR1640CT MUR1640CT 402
MUR1650CT MUR1660CT 402
MUR1660CT MUR1660CT 402
MUR170E MUR1100E 329
MUR180E MUR1100E 329
MUR190E MUR1100E 329
MUR20005CT MURP20020CT 436
MUR20010CT MURP20020CT 436
MUR20015CT MURP20020CT 436
MUR20020CT MURP20020CT 436
MUR20030CT MURP20040CT 436
MUR20040CT MURP20040CT 436
MUR3005PT MUR3020PT 425
MUR3010PT MUR3020PT 425
MUR3015PT MUR3020PT 425
MUR3020PT MUR3020PT 425
MUR3020WT MUR3020WT 431
MUR3030PT MUR3040PT 425
MUR3040 MUR3040 419
MUR3040PT MUR3040PT 425
MUR3050PT MUR3060PT 425
MUR3060PT MUR3060PT 425
MUR3060WT MUR3060WT 431
MUR405 MUR420 350
MUR410 MUR420 350
MUR4100E MUR4100E 355
MUR415 MUR420 350
MUR420 MUR420 350
MUR440 MUR460 350
MUR450 MUR460 350
MUR460 MUR460 350
MUR470E MUR4100E 355
MUR480E MUR4100E 355
MUR490E MUR4100E 355
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
MUR5150E MUR5150E 360
MUR6020 MUR6040 423
MUR6030 MUR6040 423
MUR6040 MUR6040 423
MUR605CT MUR620CT 363
MUR610CT MUR620CT 363
MUR615CT MUR620CT 363
MUR620CT MUR620CT 363
MUR805 MUR820 370
MUR810 MUR820 370
MUR8100E MUR8100E 376
MUR815 MUR820 370
MUR820 MUR820 370
MUR830 MUR840 370
MUR840 MUR840 370
MUR850 MUR860 370
MUR860 MUR860 370
MUR870E MUR8100E 376
MUR880E MUR8100E 376
MUR890E MUR8100E 376
MURB1610CT MURB1620CT 313
MURB1620CT MURB1620CT 313
MURD305 MURD320 303
MURD310 MURD320 303
MURD315 MURD320 303
MURD320 MURD320 303
MURD605CT MURD620CT 306
MURD610CT MURD620CT 306
MURD615CT MURD620CT 306
MURD620CT MURD620CT 306
MURH840CT MURH840CT 381
MURH860CT MURH860CT 384
MURHB840CT MURHB840CT 319
MURS120T3 MURS120T3 286
MURS140 MURS140T3 286
MURS160 MURS160T3 286
MURS160T3 MURS160T3 286
MURS320T3 MURS320T3 299
MURS360T3 MURS360T3 299
P300A 1N5400RL 449
P300B 1N5401RL 449
P300D 1N5402RL 449
P300G 1N5404RL 449
P300J 1N5406RL 449
P300K 1N5407RL 449
P300M 1N5408RL 449
P600A MR754 484
P600B MR754 484
P600D MR754 484
P600G MR754 484
P600J MR760 484
P600K MR760 484
PR1001 1N4933RL 452
PR1002 1N4934RL 452
PR1003 1N4935RL 452
PR1004 1N4936RL 452
http://onsemi.com
568
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
PR1005 1N4937RL 452
PR1501 1N4933RL 452
PR1501S 1N4933RL 452
PR1502 1N4934RL 452
PR1502S 1N4934RL 452
PR1503 1N4935RL 452
PR1503S 1N4935RL 452
PR1504 1N4936RL 452
PR1504S 1N4936RL 452
PR1505 1N4937RL 452
PR1505S 1N4937RL 452
PR2001 MR852 454
PR2002 MR852 454
PR2003 MR852 454
PR2004 MR854 454
PR2005 MR856 454
PR3001 MR852 454
PR3002 MR852 454
PR3003 MR852 454
PR3004 MR854 454
PR3005 MR856 454
R710XPT MUR3020WT 431
R711X MUR3020WT 431
R711XPT MUR3020WT 431
R712X MUR3020WT 431
R714XPT MUR3020WT 431
RA2505 MR2504 463
RA251 MR2504 463
RA2510 MR2510 463
RA252 MR2504 463
RA253 MR2504 463
RA254 MR2504 463
RA255 MR2510 463
RA256 MR2510 463
RA258 MR2510 463
RB2D MR852 454
RB2G MR856 454
RG1A 1N4933 452
RG1B 1N4934 452
RG1D 1N4935 452
RG1G 1N4936 452
RG1J 1N4937 452
RG2A MR852 454
RG2B MR852 454
RG2J MR856 454
RG3A MR852 454
RG3B MR852 454
RG3D MR852 454
RG3G MR856 454
RG3J MR856 454
RG4A MR852 454
RG4B MR852 454
RG4D MR852 454
RG4G MR856 454
RG4J MR856 454
RGM30A MUR3020PT 425
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
RGM30B MUR3020PT 425
RGM30D MUR3020PT 425
RGM30G MUR3040PT 425
RGP10A 1N4933 452
RGP10B 1N4934 452
RGP10D 1N4935 452
RGP10G 1N4936 452
RGP10J 1N4937 452
RGP15A MR852 454
RGP15B MR852 454
RGP15D MR852 454
RGP15G MR856 454
RGP15J MR856 454
RGP20A MR852 454
RGP20B MR852 454
RGP20D MR852 454
RGP20G MR856 454
RGP20J MR856 454
RGP25A MR852 454
RGP25B MR852 454
RGP25D MR852 454
RGP25G MR856 454
RGP25J MR856 454
RGP30A MR852 454
RGP30B MR852 454
RGP30D MR852 454
RGP30G MR856 454
RGP30J MR856 454
RGP80A MUR820 370
RGP80B MUR820 370
RGP80D MUR820 370
RGP80G MUR840 370
RGP80J MUR860 370
RL061 1N4001 447
RL062 1N4002 447
RL063 1N4003 447
RL064 1N4004 447
RL065 1N4005 447
RL066 1N4006 447
RL067 1N4007 447
RL251 1N5400 449
RL252 1N5401 449
RL253 1N5402 449
RL254 1N5404 449
RL255 1N5406 449
RL256 1N5406 449
RL257 1N5406 449
RP300A MR852 454
RP300B MR852 454
RP300D MR852 454
RP300G MR856 454
RP300J MR856 454
RS1A MRA4003T3 456
RS1AB MURS120T3 286
RS1B MRA4003T3 456
RS1BB MURS120T3 286
http://onsemi.com
569
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
RS1D MRA4003T3 456
RS1DB MURS120T3 286
RS1G MRA4004T3 456
RS1GB MURS160T3 286
RS1J MRA4005T3 456
RS1JB MURS160T3 286
RS1K MRA4006T3 456
RS1M MRA4007T3 456
RS2A MURS120T3 286
RS2B MURS120T3 286
RS2BA MRA4003T3 456
RS2D MURS120T3 286
RS2DA MRA4003T3 456
RS2G MURS160T3 286
RS2GA MRA4004T3 456
RS2J MURS160T3 286
RS2JA MRA4005T3 456
RS2KA MRA4006T3 456
RS2MA MRA4007T3 456
RS3A MURS320T3 299
RS3AB MURS120T3 286
RS3B MURS320T3 299
RS3BB MURS120T3 286
RS3D MURS320T3 299
RS3DB MURS120T3 286
RS3G MURS360T3 299
RS3GB MURS160T3 286
RS3J MURS360T3 299
RS3JB MURS160T3 286
RUD810 MUR1620CT 402
RUD815 MUR1620CT 402
RUD820 MUR1620CT 402
RUR810 MUR820 370
RUR815 MUR820 370
RUR820 MUR820 370
RURD1610 MUR3020PT 425
RURD1615 MUR3020PT 425
RURD1620 MUR3020PT 425
S1A MRA4003T3 456
S1AB MRS1504T3 459
S1B MRA4003T3 456
S1BB MRS1504T3 459
S1D MRA4003T3 456
S1DB MRS1504T3 459
S1G MRA4004T3 456
S1GB MRS1504T3 459
S1J MRA4005T3 456
S1JB MURS160T3 286
S1K MRA4006T3 456
S1M MRA4007T3 456
S210 MBRS1100T3 80
S2A MRS1504T3 459
S2AA MRA4003T3 456
S2B MRS1504T3 459
S2BA MRA4003T3 456
S2D MRS1504T3 459
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
S2DA MRA4003T3 456
S2G MRS1504T3 459
S2GA MRA4004T3 456
S2J MURS160T3 286
S2JA MRA4005T3 456
S2KA MRA4006T3 456
S2MA MRA4007T3 456
S3A MURS320T3 299
S3AB MURS120T3 286
S3B MURS320T3 299
S3BB MURS120T3 286
S3D MURS320T3 299
S3DB MURS120T3 286
S3G MURS360T3 299
S3GB MURS160T3 286
S3J MURS360T3 299
S3JB MURS160T3 286
S3K MRA4006T3 456
S3M MRA4007T3 456
S5AC MURS320T3 299
S5BC MURS320T3 299
S5CC MURS320T3 299
S5GC MURS360T3 299
S5JC MURS360T3 299
SB1020 MBR1045 207
SB1035 MBR1045 207
SB1040 MBR1045 207
SB1045 MBR1045 207
SB1100 MBR1100 156
SB120 1N5817 146
SB130 1N5818 146
SB140 1N5819 146
SB150 MBR150 152
SB160 MBR160 152
SB1620 MBR1545CT 174
SB1630 MBR1545CT 174
SB1640 MBR1545CT 174
SB1645 MBR1545CT 174
SB170 MBR1100 156
SB180 MBR1100 156
SB190 MBR1100 156
SB3100 MBR3100 171
SB320 1N5820 159
SB330 1N5821 159
SB340 1N5822 159
SB350 MBR350RL 168
SB360 MBR360 168
SB370 MBR3100 171
SB380 MBR3100 171
SB390 MBR3100 171
SB5100 MBR3100 171
SBG1025L MBRB1545CT 116
SBG1030CT MBRB1545CT 116
SBG1035CT MBRB1545CT 116
SBG1040CT MBRB1545CT 116
SBG1045CT MBRB1545CT 116
http://onsemi.com
570
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
SBG1630CT MBRB1545CT 116
SBG1635CT MBRB1545CT 116
SBG1640CT MBRB1545CT 116
SBG1645CT MBRB1545CT 116
SBG3030CT MBRB3030CT 132
SBG3040CT MBRB2545CT 130
SBG3050CT MBRB2545CT 130
SBL1030 MBR1035 207
SBL1030CT MBR1535CT 174
SBL1035 MBR1035 207
SBL1035CT MBR1535CT 174
SBL1040 MBR1045 207
SBL1040CT MBR1545CT 174
SBL1045 MBR1045 207
SBL1045CT MBR1545CT 174
SBL1050 MBR1060 212
SBL1050CT MBR1545CT 174
SBL1060 MBR1060 212
SBL1630 MBR1635 215
SBL1630CT MBR1535CT 174
SBL1635 MBR1635 215
SBL1635CT MBR1535CT 174
SBL1640 MBR1645 215
SBL1640CT MBR1545CT 174
SBL1645 MBR1645 215
SBL1645CT MBR1545CT 174
SBL1650 MBR1645 215
SBL1650CT MBR1545CT 174
SBL1660CT MBR2060CT 189
SBL2030CT MBR2030CTL 180
SBL2035CT MBR2045CT 184
SBL2040CT MBR2045CT 184
SBL2045CT MBR2045CT 184
SBL2050CT MBR2060CT 189
SBL2060CT MBR2060CT 189
SBL25L20CT MBR2535CTL 195
SBL25L25CT MBR2535CTL 195
SBL25L30CT MBR2535CTL 195
SBL3030CT MBR2535CTL 195
SBL3030PT MBR3045PT 232
SBL3035PT MBR3045PT 232
SBL3040CT MBR2545CT 198
SBL3040PT MBR3045PT 232
SBL3045CT MBR2545CT 198
SBL3045PT MBR3045PT 232
SBL3050CT MBR2545CT 198
SBL3050PT MBR3045PT 232
SBL6030PT MBR6045PT 237
SBL6040PT MBR6045PT 237
SBL6050PT MBR6045PT 237
SBL8100 MBR10100 212
SBL830 MBR1035 207
SBL835 MBR1035 207
SBL840 MBR1045 207
SBL845 MBR1045 207
SBL850 MBR1060 212
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
SBL860 MBR1060 212
SBL870 MBR1090 212
SBL880 MBR1090 212
SBL890 MBR1090 212
SBLB1030CT MBRB1545CT 116
SBLB1040CT MBRB1545CT 116
SBLB1630CT MBRB1545CT 116
SBLB1640CT MBRB1545CT 116
SBLB2030CT MBRB2535CTL 127
SBLB2040CT MBRB2535CTL 127
SBLB25L20CT MBRB2535CTL 127
SBLB25L25CT MBRB2535CTL 127
SBLB25L30CT MBRB2535CTL 127
SBLF2030CT MBRF2545CT 229
SBLF2040CT MBRF2545CT 229
SBLF25L20CT MBRF2545CT 229
SBLF25L25CT MBRF2545CT 229
SBLF25L30CT MBRF2545CT 229
SBP1020T MBR1545CT 174
SBP1030T MBR1545CT 174
SBP1035T MBR1545CT 174
SBP1040T MBR1545CT 174
SBP1045T MBR1545CT 174
SBP1620T MBR1545CT 174
SBP1630T MBR1545CT 174
SBP1635T MBR1545CT 174
SBP1640T MBR1545CT 174
SBP1645T MBR1545CT 174
SBR1040 MBR1045 207
SBR1045 MBR1045 207
SBR1050 MBR1060 212
SBR1640 MBR1645 215
SBR1645 MBR1645 215
SBS1020T MBR1045 207
SBS1030T MBR1045 207
SBS1035T MBR1045 207
SBS1040T MBR1045 207
SBS1045T MBR1045 207
SBS1620T MBR1645 215
SBS1630T MBR1645 215
SBS1635T MBR1645 215
SBS1640T MBR1645 215
SBS1645T MBR1645 215
SBS520T MBR745 204
SBS530T MBR745 204
SBS535T MBR745 204
SBS540T MBR745 204
SBS545T MBR745 204
SBS820T MBR745 204
SBS830T MBR745 204
SBS835T MBR745 204
SBS840T MBR745 204
SBS845T MBR745 204
SBS850T MBR1060 212
SBS860T MBR1060 212
SBYV28–100 MUR420 350
http://onsemi.com
571
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
SBYV28–150 MUR420 350
SBYV28–200 MUR420 350
SBYV28–50 MUR420 350
SD241P MBR3045WT 241
SES5001 MUR120 324
SES5002 MUR120 324
SES5003 MUR120 324
SES5301 MUR420 350
SES5302 MUR420 350
SES5303 MUR420 350
SES5401 MUR820 370
SES5401C MUR1620CT 402
SES5402 MUR820 370
SES5402C MUR1620CT 402
SES5403 MUR820 370
SES5403C MUR1620CT 402
SES5404 MUR820 370
SES5404C MUR1620CT 402
SES5501 MUR1520 393
SES5502 MUR1520 393
SES5503 MUR1520 393
SES5504 MUR1520 393
SF10AG MUR120 324
SF10BG MUR120 324
SF10CG MUR120 324
SF10DG MUR120 324
SF10FG MUR160 324
SF10GG MUR160 324
SF10HG MUR160 324
SF10JG MUR160 324
SF30AG MUR420 350
SF30BG MUR420 350
SF30CG MUR420 350
SF30DG MUR420 350
SF30FG MUR460 350
SF30GG MUR460 350
SF30HG MUR460 350
SF30JG MUR460 350
SL12 MBRA130LT3 58
SL13 MBRA130LT3 58
SL42 MBRS320T3 94
SL43 MBRS330T3 94
SL44 MBRS340T3 94
SMBYT01–400 MURS140T3 286
SMBYT03–400 MURS340T3 299
SMBYW01–200 MURS120T3 286
SMBYW02–200 MURS120T3 286
SMBYW04–200 MURS320T3 299
SR1002 MBR1045 207
SR1003 MBR1045 207
SR1004 MBR1045 207
SR1005 MBR1060 212
SR1006 MBR1060 212
SR102 MBR160 152
SR103 MBR160 152
SR104 MBR160 152
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
SR105 MBR160 152
SR106 MBR160 152
SR1602 MBR1545CT 174
SR1603 MBR1545CT 174
SR1604 MBR1545CT 174
SR302 MBR340 165
SR303 MBR340 165
SR304 MBR340 165
SR305 MBR360 168
SR306 MBR360 168
SR802 MBR745 204
SR803 MBR745 204
SR804 MBR745 204
SRP100A 1N4933 452
SRP100B 1N4934 452
SRP100D 1N4935 452
SRP100G 1N4936 452
SRP100J 1N4937 452
SRP300A MR852 454
SRP300B MR852 454
SRP300D MR852 454
SRP300G MR856 454
SRP300J MR856 454
SS12 MBRA130LT3 58
SS13 MBRA130LT3 58
SS14 MBRA140T3 61
SS210 MBRS1100T3 80
SS24 MBRS240LT3 87
SS25 MBRS1100T3 80
SS26 MBRS1100T3 80
SS28 MBRS1100T3 80
SS29 MBRS1100T3 80
SS32 MBRS320T3 94
SS33 MBRS330T3 94
SS34 MBRS340T3 94
SS35 MBRS360T3 94
SS36 MBRS360T3 94
STPR120A MRA4003T3 456
STPR120CT MUR1620CT 402
STPR1520D MUR1520 393
STPR1620CG MURB1620CT 313
STPR620CT MUR620CT 363
STPR820D MUR820 370
STPS0540Z MBR0540T1,T3 34
STPS1045D MBR1045 207
STPS10L25D MBR1035 207
STPS10L60D MBR1060 212
STPS130A MBRA130LT3 58
STPS130U MBRS130LT3 67
STPS140A MBRA140T3 61
STPS140U MBRS140T3 73
STPS140Z MBR0540T1,T3 34
STPS1545CG MBRB1545CT 116
STPS1545CT MBR1545CT 174
STPS1545D MBR1645 215
STPS15L25D MBR1635 215
http://onsemi.com
572
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
STPS160U MBRS1100T3 80
STPS16L40CT MBR1545CT 174
STPS1H100U MBRS1100T3 80
STPS1L30A MBRA130LT3 58
STPS1L30U MBRS130LT3 67
STPS1L40A MBRA140T3 61
STPS1L40U MBRS140LT3 76
STPS2045CF MBRF2545CT 229
STPS2045CG MBRB2060CT 118
STPS2045CT MBR2045CT 184
STPS2060CT MBR2060CT 189
STPS20H100CF MBRF20100CT 223
STPS20H100CG MBRB20100CT 120
STPS20H100CT MBR20100CT 189
STPS20L25CT MBR2030CTL 180
STPS20L40CF MBRF2545CT 229
STPS20L40CT MBR2045CT 184
STPS20L60CT MBR2060CT 189
STPS2H100U MBRS1100T3 80
STPS2L30A MBRA130LT3 58
STPS3045CG MBRB2545CT 130
STPS3045CP MBR3045PT 232
STPS3045CT MBR2545CT 198
STPS3045CW MBR3045WT 241
STPS3045G MBRB2545CT 130
STPS30L30CG MBRB3030CTL 136
STPS30L30CT MBR2535CTL 195
STPS30L40CG MBRB2545CT 130
STPS30L40CT MBR2545CT 198
STPS30L40CW MBR3045WT 241
STPS340S MBRS340T3 94
STPS340U MBRS240LT3 87
STPS360B MBRD360T4 97
STPS3L25S MBRS330T3 94
STPS3L60S MBRS360T3 94
STPS4045CP MBR4045PT 235
STPS4045CW MBR4045WT 248
STPS40L15CW MBR4015LWT 244
STPS40L40CW MBR4045WT 248
STPS40L45CW MBR4045WT 248
STPS5L25B MBRD630CTT4 101
STPS6045CP MBR6045PT 237
STPS6045CW MBR6045WT 250
STPS60L30CW MBR6045WT 250
STPS60L40CW MBR6045WT 250
STPS60L45CW MBR6045WT 250
STPS640CB MBRD640CTT4 101
STPS660CB MBRD660CTT4 101
STPS745D MBR745 204
STPS8H100D MBR10100 212
STPS8L30B MBRD835L 105
STTA106U MURS160T3 286
STTA206S MURS360T3 299
TG26 MUR460 350
TG284 MUR1640CT 402
TG286 MUR1660CT 402
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
TG288 MUR1660CT 402
TG4 MUR140 324
TG6 MUR160 324
TG84 MUR840 370
TG86 MUR860 370
UES1001 MUR120 324
UES1002 MUR120 324
UES1003 MUR120 324
UES1101 MUR120 324
UES1102 MUR120 324
UES1103 MUR120 324
UES1104 MUR120 324
UES1105 MUR140 324
UES1106 MUR140 324
UES1301 MUR420 350
UES1302 MUR420 350
UES1303 MUR420 350
UES1304 MUR420 350
UES1401 MUR820 370
UES1402 MUR820 370
UES1403 MUR820 370
UES1404 MUR820 370
UES1420 MUR860 370
UES1501 MUR1520 393
UES1502 MUR1520 393
UES1503 MUR1520 393
UES1504 MUR1520 393
UES2401 MUR1620CT 402
UES2402 MUR1620CT 402
UES2403 MUR1620CT 402
UES2404 MUR1620CT 402
UES2601 MUR3020PT 425
UES2602 MUR3020PT 425
UES2603 MUR3020PT 425
UES2604 MUR3020PT 425
UES2605 MUR3040PT 425
UES2606 MUR3040PT 425
UF1001 MUR120 324
UF1002 MUR120 324
UF1003 MUR120 324
UF1004 MUR160 324
UF1005 MUR160 324
UF1006 MUR180E 329
UF1007 MUR1100E 329
UF1501S MUR120 324
UF1502S MUR120 324
UF1503S MUR120 324
UF1504S MUR160 324
UF1505S MUR160 324
UF1506S MUR180E 329
UF1507S MUR1100E 329
UF3001 MUR420 350
UF3002 MUR420 350
UF3003 MUR420 350
UF3004 MUR460 350
UF3005 MUR460 350
http://onsemi.com
573
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
UF3006 MUR480E 355
UF3007 MUR4100E 355
UF4001 MUR120 324
UF4002 MUR120 324
UF4003 MUR120 324
UF4004 MUR160 324
UF4005 MUR160 324
UF4006 MUR180E 329
UF4007 MUR1100E 329
UF5400 MUR420 350
UF5401 MUR420 350
UF5402 MUR420 350
UF5403 MUR460 350
UF5404 MUR460 350
UF5405 MUR460 350
UF5406 MUR460 350
UF5407 MUR480E 355
UF5408 MUR4100E 355
UG1001 MUR120 324
UG1002 MUR120 324
UG1003 MUR120 324
UG1004 MUR160 324
UG1005 MUR160 324
UG18ACT MUR1620CT 402
UG18BCT MUR1620CT 402
UG18CCT MUR1620CT 402
UG18DCT MUR1620CT 402
UG1A MUR120 324
UG1B MUR120 324
UG1C MUR120 324
UG1D MUR120 324
UG3001 MUR420 350
UG3002 MUR420 350
UG3003 MUR420 350
UG3004 MUR460 350
UG3005 MUR460 350
UG30APT MUR3020WT 431
UG30BPT MUR3020WT 431
UG30CPT MUR3020WT 431
UG30DPT MUR3020WT 431
UG4A MUR420 350
UG4B MUR420 350
UG4C MUR420 350
UG4D MUR420 350
UG8AT MUR820 370
UG8BT MUR820 370
UG8CT MUR820 370
UG8DT MUR820 370
UPS120 MBRM120LT3 43
UPS120E MBRM120ET3 38
UPS140 MBRM140T3 53
UPS5817 MBRM120LT3 43
UPS5819 MBRM140T3 53
US1A MRA4003T3 456
US1B MRA4003T3 456
US1D MRA4003T3 456
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
US1G MRA4004T3 456
US1J MRA4005T3 456
US1K MRA4006T3 456
US1M MRA4007T3 456
USD1120 MBR160 152
USD1130 MBR160 152
USD1140 MBR160 152
USD620 MBR745 204
USD620C MBR1545CT 174
USD635 MBR745 204
USD635C MBR1545CT 174
USD640 MBR745 204
USD640C MBR1545CT 174
USD645 MBR745 204
USD645C MBR1545CT 174
USD720 MBR1045 207
USD720C MBR1545CT 174
USD735 MBR1045 207
USD735C MBR1545CT 174
USD740 MBR1045 207
USD740C MBR1545CT 174
USD745 MBR1045 207
USD745C MBR1545CT 174
USD820 MBR1645 215
USD835 MBR1645 215
USD840 MBR1645 215
USD845 MBR1645 215
USD920 MBR1645 215
USD935 MBR1645 215
USD940 MBR1645 215
USD945 MBR1645 215
UT234 1N4003 447
UT235 1N4004 447
UT236 1N4002 447
UT237 1N4005 447
UT238 1N4005 447
UT242 1N4003 447
UT244 1N4004 447
UT245 1N4005 447
UT247 1N4005 447
UT249 1N4002 447
UT251 1N4002 447
UT252 1N4003 447
UT254 1N4004 447
UT255 1N4005 447
UT257 1N4005 447
UT258 1N4006 447
UT347 1N4007 447
UT361 1N4006 447
UT362 1N4006 447
UT363 1N4007 447
UT364 1N4007 447
UTR01 1N4933 452
UTR02 1N4933 452
UTR10 1N4934 452
UTR11 1N4934 452
http://onsemi.com
574
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁÁ
Á
Á
Á
Á
Á
Á
ÁÁÁ
Page
UTR12 1N4934 452
UTR20 1N4935 452
UTR21 1N4935 452
UTR22 1N4935 452
UTR2305 MR852 454
UTR2310 MR852 454
UTR2320 MR852 454
UTR2340 MR856 454
UTR2350 MR856 454
UTR2360 MR856 454
UTR30 1N4936 452
UTR31 1N4936 452
UTR32 1N4936 452
UTR3305 MR852 454
UTR3310 MR852 454
UTR3320 MR852 454
UTR3340 MR856 454
UTR3350 MR856 454
UTR3360 MR856 454
UTR40 1N4936 452
UTR41 1N4936 452
UTR42 1N4936 452
UTR4305 MR852 454
UTR4310 MR852 454
UTR4320 MR852 454
UTR4340 MR852 454
UTR4350 MR856 454
UTR4360 MR856 454
UTR50 1N4937 452
UTR51 1N4937 452
UTR52 1N4937 452
UTR60 1N4937 452
UTR61 1N4937 452
UTR62 1N4937 452
UTX105 1N4933 452
UTX110 1N4934 452
UTX120 1N4935 452
UTX125 1N4935 452
UTX205 1N4933 452
UTX210 1N4934 452
UTX215 1N4935 452
UTX220 1N4935 452
UTX225 1N4935 452
UTX3105 MR852 454
UTX3110 MR852 454
UTX3115 MR852 454
UTX3120 MR852 454
UTX4105 MR852 454
UTX4110 MR852 454
UTX4115 MR852 454
UTX4120 MR852 454
V322 1N5402 449
V324 1N5404 449
V326 1N5406 449
ÁÁÁÁÁ
Á
ÁÁÁ
Á
Á
ÁÁÁ
Á
ÁÁÁÁÁ
Industry
Part Number
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Nearest
Replacement
ÁÁÁÁÁÁ
Á
ÁÁÁÁ
Á
Á
ÁÁÁÁ
Á
ÁÁÁÁÁÁ
ON
Semiconductor
Similar
Replacement
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Page
V330X MR852 454
V331X MR852 454
V332X MR852 454
V334X MR856 454
V336X MR856 454
V342 1N5402 449
V344 1N5404 449
V346 1N5406 449
V350X MR852 454
V351X MR852 454
V352X MR852 454
V354X MR856 454
V356X MR856 454
VHE1401 MUR820 370
VHE1402 MUR820 370
VHE1403 MUR820 370
VHE1404 MUR820 370
VHE205 MUR120 324
VHE210 MUR120 324
VHE215 MUR120 324
VHE220 MUR120 324
VHE2401 MUR1620CT 402
VHE2402 MUR1620CT 402
VHE2403 MUR1620CT 402
VHE2404 MUR1620CT 402
VHE605 MUR420 350
VHE610 MUR420 350
VHE615 MUR420 350
VHE620 MUR420 350
VSK1020 MBR1045 207
VSK1035 MBR1045 207
VSK1045 MBR1045 207
VSK12 MBR1545CT 174
VSK120 1N5817 146
VSK13 MBR1545CT 174
VSK130 1N5818 146
VSK14 MBR1545CT 174
VSK140 1N5819 146
VSK2004 MBRP20060CT 270
VSK2020 MBR2045CT 184
VSK2035 MBR2045CT 184
VSK2045 MBR2045CT 184
VSK2420 MBR2545CT 198
VSK2435 MBR2545CT 198
VSK2445 MBR2545CT 198
VSK320 MBR340 165
VSK330 MBR340 165
VSK340 MBR340 165
VSK62 MBR745 204
VSK63 MBR745 204
VSK64 MBR745 204
VSK920 MBR1545CT 174
VSK935 MBR1545CT 174
VSK945 MBR1545CT 174
http://onsemi.com
575
ON SEMICONDUCTOR MAJOR WORLDWIDE SALES OFFICES
UNITED STATES
ALABAMA
Huntsville 256–774–1000. . . . . . . . . . . . . . . . . .
CALIFORNIA
Irvine 949–623–6800. . . . . . . . . . . . . . . . . . . . . .
San Jose 408–749–0510. . . . . . . . . . . . . . . . . .
COLORADO
Littleton 303–256–5884. . . . . . . . . . . . . . . . . . . .
FLORIDA
Tampa 813–286–6181. . . . . . . . . . . . . . . . . . . . .
GEORGIA
Atlanta 770–338–3810. . . . . . . . . . . . . . . . . . . .
ILLINOIS
Chicago 847–413–2500. . . . . . . . . . . . . . . . . . .
MASSACHUSETTS
Boston 781–229–5880. . . . . . . . . . . . . . . . . . . .
MICHIGAN
Livonia 734–953–6704. . . . . . . . . . . . . . . . . . . .
MINNESOTA
Plymouth 612–249–2360. . . . . . . . . . . . . . . . . .
NORTH CAROLINA
Raleigh 919–870–4355. . . . . . . . . . . . . . . . . . . .
PENNSYLVANIA
Philadelphia/Horsham 215–957–4100. . . . . . .
TEXAS
Dallas 972–516–5100. . . . . . . . . . . . . . . . . . . . .
CANADA
ONTARIO
Ottawa 613–226–3491. . . . . . . . . . . . . . . . . . . .
QUEBEC
St. Laurent 514–333–2125. . . . . . . . . . . . . . . . .
INTERNATIONAL
BRAZIL
Sao Paulo 55–011–3030–5244. . . . . . . . . . . . .
CHINA
Beijing 86–10–6564–2288. . . . . . . . . . . . . . . . .
Guangzhou 86–20–8753–7888. . . . . . . . . . . .
Shanghai 86–21–6374–7668. . . . . . . . . . . . . .
CZECH REPUBLIC
Roznov 420–651–667–141. . . . . . . . . . . . . . . .
FINLAND
Vantaa 358–9–85–666–460. . . . . . . . . . . . . . .
FRANCE
Paris 33–1–39–26–41–00. . . . . . . . . . . . . . . . .
GERMANY
Munich 49–89–92103–0. . . . . . . . . . . . . . . . . . .
HONG KONG
Hong Kong 852–2–610–6888. . . . . . . . . . . . . . .
INDIA
Bangalore 91–80–5598615. . . . . . . . . . . . . . . . .
ISRAEL
Herzelia 972–9–9609–111. . . . . . . . . . . . . . . . .
INTERNATIONAL (continued)
ITALY
Milan 39–02–82201. . . . . . . . . . . . . . . . . . . . . . .
JAPAN
Tokyo 81–3–5487–8345. . . . . . . . . . . . . . . . . . .
KOREA
Seoul 82–2–3440–7200. . . . . . . . . . . . . . . . . . . .
MALAYSIA
Penang 60–4–228–2514. . . . . . . . . . . . . . . . . . .
MEXICO
Guadalajara 523–669–9100. . . . . . . . . . . . . . . .
PHILIPPINES
Manila 63–2–809–2350. . . . . . . . . . . . . . . . . . . .
PUERTO RICO
San Juan 787–641–4100. . . . . . . . . . . . . . . . . .
SINGAPORE
Singapore 65–4818188. . . . . . . . . . . . . . . . . . . .
SPAIN
Madrid 34–91–745–6817. . . . . . . . . . . . . . . . . . .
SWEDEN
Stockholm 46–8–5090–4680. . . . . . . . . . . . . . .
TAIWAN
Taipei 886–2–2718–9961. . . . . . . . . . . . . . . . .
THAILAND
Bangkok 66–2–653–2220. . . . . . . . . . . . . . . . . .
UNITED KINGDOM
Aylesbury 44–1–296–610400. . . . . . . . . . . . . .
http://onsemi.com
576
ON SEMICONDUCTOR STANDARD DOCUMENT TYPE DEFINITIONS
DATA SHEET CLASSIFICATIONS
A Data Sheet is the fundamental publication for each individual product/device, or series of products/devices, containing detailed
parametric information and any other key information needed in using, designing–in or purchasing of the product(s)/device(s) it describes.
Below are the three classifications of Data Sheet: Product Preview; Advance Information; and Fully Released Technical Data
PRODUCT PREVIEW
A Product Preview is a summary document for a product/device under consideration or in the early stages of development. The
Product Preview exists only until an “Advance Information” document is published that replaces it. The Product Preview is often
used as the first section or chapter in a corresponding reference manual. The Product Preview displays the following disclaimer at
the bottom of the first page: “This document contains information on a product under development. ON Semiconductor reserves the
right to change or discontinue this product without notice.”
ADVANCE INFORMATION
The Advance Information document is for a device that is NOT fully qualified, but is in the final stages of the release process,
and for which production is eminent. While the commitment has been made to produce the device, final characterization and
qualification may not be complete. The Advance Information document is replaced with the “Fully Released Technical Data”
document once the device/part becomes fully qualified. The Advance Information document displays the following disclaimer at
the bottom of the first page: “This document contains information on a new product. Specifications and information herein are subject
to change without notice.”
FULLY RELEASED TECHNICAL DATA
The Fully Released Technical Data document is for a product/device that is in full production (i.e., fully released). It replaces the
Advance Information document and represents a part that is fully qualified. The Fully Released Technical Data document is virtually
the same document as the Product Preview and the Advance Information document with the exception that it provides information
that is unavailable for a product in the early phases of development, such as complete parametric characterization data. The Fully
Released Technical Data document is also a more comprehensive document than either of its earlier incarnations. This document
displays no disclaimer, and while it may be informally referred to as a “data sheet,” it is not labeled as such.
DATA BOOK
A Data Book is a publication that contains primarily a collection of Data Sheets, general family and/or parametric information,
Application Notes and any other information needed as reference or support material for the Data Sheets. It may also contain cross reference
or selector guide information, detailed quality and reliability information, packaging and case outline information, etc.
APPLICATION NOTE
An Application Note is a document that contains real–world application information about how a specific ON Semiconductor
device/product is used, or information that is pertinent to its use. It is designed to address a particular technical issue. Parts and/or software
must already exist and be available.
SELECTOR GUIDE
A Selector Guide is a document published, generally at set intervals, that contains key line–item, device–specific information for
particular products or families. The Selector Guide is designed to be a quick reference tool that will assist a customer in determining the
availability of a particular device, along with its key parameters and available packaging options. In essence, it allows a customer to quickly
“select” a device. For detailed design and parametric information, the customer would then refer to the device’s Data Sheet. The Master
Components Selector Guide (SG388/D) is a listing of ALL currently available ON Semiconductor devices.
REFERENCE MANUAL
A Reference Manual is a publication that contains a comprehensive system or device–specific descriptions of the structure and function
(operation) of a particular part/system; used overwhelmingly to describe the functionality or application of a device, series of devices or
device category. Procedural information in a Reference Manual is limited to less than 40 percent (usually much less).
HANDBOOK
A Handbook is a publication that contains a collection of information on almost any give subject which does not fall into the Reference
Manual definition. The subject matter can consist of information ranging from a device specific design information, to system design, to
quality and reliability information.
ADDENDUM
A documentation Addendum is a supplemental publication that contains missing information or replaces preliminary information in the
primary publication it supports. Individual addendum items are published cumulatively. The Addendum is destroyed upon the next revision
of the primary document.
DL151/D
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reser ves the right to make changes without further
notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any par ticular purpose, nor does
SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different
applications and actual performance may var y over time. All operating parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC
products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of
the part. SCILLC is an Equal Oppor tunity/Affirmative Action Employer.
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET)
Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781
*Available from Germany, France, Italy, UK, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)
Email: ONlit-spanish@hibbertco.com
Toll-Free from Mexico: Dial 01-800-288-2872 for Access -
then Dial 866-297-9322
ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (T-F 9:00am to 1:00pm Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001-800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
PUBLICATION ORDERING INFORMATION
For additional information, please contact your local Sales
Representative