

N-CHANNEL, J-FET DEPLETION MODE **TRANSISTOR**

Screened in reference to MIL-PRF-19500

DESCRIPTION

The NJF6510 is ideal for functioning as a VHF and a small signal amplifier. This part number is also an equivalent to the MX2N3822.

TO-72 (TO-206AF) **Package**

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

Screened to MX level in reference to MIL-PRF-19500 JANTX level.

APPLICATIONS / BENEFITS

- Low-power transistor.
- Leaded metal TO-72 package.

MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-55 to +200	°C
Gate-Source Voltage	V_{GSR}	50	V
Drain-Source Voltage	V _{DS}	50	V
Grain-Drain -Gate Voltage	V_{DG}	50	V
Steady-State Power Dissipation @ T _A = +25 °C (1)	P_D	300	mW
Gate Current	I _{GF}	10	mA

Notes: 1. Derate linearly 1.7 mW/°C for $T_A > +25$ °C.

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Ni plated kovar, Ni cap.
- TERMINALS: Au over Ni plated kovar leads.
- MARKING: Manufacturer's ID, date code, part number.
- POLARITY: See case outline on last page.
- WEIGHT: 0.322 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS			
Symbol	Definition		
I _D	Drain current.		
I _G	Gate current.		
R_G	Gate resistor.		
T_A	Ambient or free air temperature.		
T _C	Case temperature.		

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted.

OFF CHARACTERTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Gate-Source Breakdown Voltage $V_{DS} = 0$, $I_{G} = 1.0 \mu A$	V _{(BR)GSSR}	50		V
Gate Reverse Current $V_{GS} = 0$, $V_{DS} = 30 \text{ V}$ $V_{GS} = 0$, $V_{DS} = 30 \text{ V}$ $V_{DS} = 0$, $V_{GS} = 20 \text{ V}$	I _{GSSR}		0.1	ηΑ
Drain Saturation Current (Pulsed) V _{GS} = 0, V _{DS} = 15 V	I _{DSS}	2.0	10	mA
Gate-Source Voltage $V_{DS} = 15 \text{ V}, I_D = 400 \mu\text{A}$	V _{GS}	1.0	4.0	V
Gate-Source Cutoff Voltage $V_{DS} = 15 \text{ V}, I_D = 0.5 \eta \text{A}$	V _{GS(off)}		6.0	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Common Source, Short-Circuit Forward Transfer Admittance $V_{GS} = 0$, $V_{DS} = 15$ V, $f = 1.0$ kHz	yfs	3000	6500	μS
Small-Signal, Common Source, Short-Circuit Output Admittance V _{GS} = 0, V _{DS} = 15 V, f = 1.0 kHz	y _{os}		20	μS
Small-Signal, Common-Source Short-Circuit Input Capacitance $V_{GS}=0~V,~V_{DS}=15~V,~100~kHz \le f \le 1.0~MHz$	C _{iss}		6.0	pF
Small-Signal, Common-Source Reverse Transfer Capacitance $V_{DS} = 15 \text{ V}, V_{GS} = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$	C _{rss}		3.0	pF
Common Source Spot Noise Figure $V_{GS}=0,V_{DS}=15V,R_G=1M\Omega$ $f=10Hz$ $f=1.0kHz$	NF ₁		5.0 2.5	dB

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
CD	.178	.195	4.52	4.95	
СН	.170	.210	4.32	5.33	
HD	.209	.230	5.31	5.84	
L1		.050		1.27	
L2	.250		6.35		
LC	.100 TP 2.54 TP				
LD	.016	.021	0.41	0.53	2, 6
LL	.500	.750	12.70	19.05	6
LU	.016	.019	0.41	0.48	3, 6
Q		.040		1.02	
r		.007		0.18	
TL	.028	.048	0.71	1.22	8
TW	.036	.046	0.91	1.17	
α	45° TP				
Pin					
1	Emitter				
2	Base			·	
3	Collector				
4	Case				

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Measured in the zone beyond .250 (6.35 mm) from the seating plane.
- 3. Measured in the zone .050 (1.27 mm) and .250 (6.35 mm) from the seating plane.
- 4. When measured in a gauging plane .054 +.001, -.000 (1.37 +.3, -.00 mm) before the seating plane of the transistor, maximum diameter leads shall be within .007 (.18 mm) of their true location relative to a maximum width tab. Smaller diameter leads shall fall within the outline of the maximum diameter lead tolerance.
- 5. The active elements are electrically insulated from the case.
- 6. All 4 leads.
- 7. Lead 1 is the source, lead 2 is the drain, lead 3 is the gate, and lead 4 is the case.
- 8. Symbol TL is measured from HD maximum.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.