

6－Pin DIP Random－Phase Optoisolators Triac Drivers （600 Volts Peak）

The MOC3051 Series consists of a GaAs infrared LED optically coupled to a non－Zero－crossing silicon bilateral AC switch（triac）．The MOC3051 Series isolates low voltage logic from 115 and 240 Vac lines to provide random phase control of high current triacs or thyristors．The MOC3051 Series features greatly enhanced static $\mathrm{dv} / \mathrm{dt}$ capability to ensure stable switching performance of inductive loads．
－To order devices that are tested and marked per VDE 0884 requirements，the suffix＂V＂must be included at end of part number．VDE 0884 is a test option．

Recommended for 115／240 Vac（rms）Applications：

－Solenoid／Valve Controls
－Lamp Ballasts
－Static AC Power Switch
－Interfacing Microprocessors to 115 and 240 Vac Peripherals

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted）

Rating	Symbol	Value	Unit

INFRARED EMITTING DIODE

Reverse Voltage	V_{R}	3	Volts
Forward Current－Continuous	I_{F}	60	mA
Total Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Negligible Power in Triac Driver Derate above $25^{\circ} \mathrm{C}$ P_{D}	100	mW	
	1.33	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	

OUTPUT DRIVER

Off－State Output Terminal Voltage	V $_{\text {DRM }}$	600	Volts
Peak Repetitive Surge Current $(\mathrm{PW}=100 \mu \mathrm{~s}, 120 \mathrm{pps})$	ITSM	1	A
Total Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	300 4	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$

TOTAL DEVICE

Isolation Surge Voltage（1） （Peak ac Voltage， $60 \mathrm{~Hz}, 1$ Second Duration）	$\mathrm{V}_{\mathrm{ISO}}$	7500	$\mathrm{Vac}(\mathrm{pk})$
Total Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	330 4.4	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	-40 to +100	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Soldering Temperature（10 s）	T_{L}	260	${ }^{\circ} \mathrm{C}$

MOC3051 MOC3052

STANDARD THRU HOLE

COUPLER SCHEMATIC

1．ANODE
2．CATHODE
3．NC
4．MAIN TERMINAL
5．SUBSTRATE DO NOT CONNECT
6．MAIN TERMINAL

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
INPUT LED					
Reverse Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}\right)$	IR	-	0.05	100	$\mu \mathrm{A}$
Forward Voltage $(\mathrm{I} F=10 \mathrm{~mA})$	V_{F}	-	1.15	1.5	Volts

OUTPUT DETECTOR ($\mathrm{I}_{\mathrm{F}}=0$ unless otherwise noted)

Peak Blocking Current, Either Direction (Rated VDRM, Note 1) @ IFT per device	IDRM	-	10	100	nA
Peak On-State Voltage, Either Direction (ITM = 100 mA Peak)	$\mathrm{V}_{\text {TM }}$	-	1.7	2.5	Volts
Critical Rate of Rise of Off-State Voltage @ 400 V (Refer to test circuit, Figure 10)	dv/dt static	1000	-	-	$\mathrm{V} / \mathrm{\mu s}$

COUPLED

LED Trigger Current, Either Direction, Current Required to Latch Output (Main Terminal Voltage = 3 V, Note 2) MOC3051 MOC3052	IFT	-	-	15	mA
Holding Current, Either Direction	IH	-	280	-	$\mu \mathrm{A}$

1. Test voltage must be applied within dv/dt rating.
2. All devices are guaranteed to trigger at an I_{F} value less than or equal to max $I_{F T}$. Therefore, recommended operating I_{F} lies between max 15 mA for MOC3051, 10 mA for 3052 and absolute $\max ^{\mathrm{I}} \mathrm{I}(60 \mathrm{~mA})$.

TYPICAL ELECTRICAL CHARACTERISTICS

$$
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
$$

Figure 1. LED Forward Voltage versus Forward Current

Figure 2. On-State Characteristics

TYPICAL ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Figure 3．Trigger Current versus Temperature

Figure 4．LED Current Required to Trigger versus LED Pulse Width

Figure 5．Minimum Time for LED Turn－Off to Zero Cross of AC Trailing Edge

IFT versus Temperature（normalized）
This graph shows the increase of the trigger current when the device is expected to operate at an ambient temperature below $25^{\circ} \mathrm{C}$ ．Multiply the normalized IFT shown on this graph with the data sheet guaranteed IFT．

Example：
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}, \mathrm{I} \mathrm{IFT}=10 \mathrm{~mA}$
IFT＠$-40^{\circ} \mathrm{C}=10 \mathrm{~mA} \times 1.4=14 \mathrm{~mA}$

Phase Control Considerations

LED Trigger Current versus PW（normalized）

Random Phase Triac drivers are designed to be phase controllable．They may be triggered at any phase angle with－ in the AC sine wave．Phase control may be accomplished by an AC line zero cross detector and a variable pulse delay generator which is synchronized to the zero cross detector． The same task can be accomplished by a microprocessor which is synchronized to the AC zero crossing．The phase controlled trigger current may be a very short pulse which saves energy delivered to the input LED．LED trigger pulse currents shorter than 100μ s must have an increased ampli－ tude as shown on Figure 4．This graph shows the dependen－ cy of the trigger current IFT versus the pulse width $t(P W)$ ． The reason for the IFT dependency on the pulse width can be seen on the chart delay $\mathrm{t}(\mathrm{d})$ versus the LED trigger current．
$I_{F T}$ in the graph $I_{F T}$ versus（PW）is normalized in respect to the minimum specified $I_{F T}$ for static condition，which is speci－ fied in the device characteristic．The normalized IFT has to be multiplied with the devices guaranteed static trigger current．

Example：

Guaranteed $\mathrm{IFT}_{\mathrm{FT}}=10 \mathrm{~mA}$ ，Trigger pulse width $\mathrm{PW}=3 \mu \mathrm{~s}$ IFT（pulsed）$=10 \mathrm{~mA} \times 5=50 \mathrm{~mA}$

Minimum LED Off Time in Phase Control Applications

In Phase control applications one intends to be able to control each AC sine half wave from 0 to 180 degrees．Turn on at zero degrees means full power and turn on at 180 de－ gree means zero power．This is not quite possible in reality because triac driver and triac have a fixed turn on time when activated at zero degrees．At a phase control angle close to 180 degrees the driver＇s turn on pulse at the trailing edge of the AC sine wave must be limited to end 200μ s before AC zero cross as shown in Figure 5．This assures that the triac driver has time to switch off．Shorter times may cause loss of control at the following half cycle．

TYPICAL ELECTRICAL CHARACTERISTICS

$$
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
$$

Figure 6. Holding Current, $\mathbf{I H}_{\mathbf{H}}$ versus Temperature

Figure 8. ED Trigger Current, IFT, versus dv/dt

Figure 7. Leakage Current, IDRM versus Temperature

IFT versus dv/dt
Triac drivers with good noise immunity (dv/dt static) have internal noise rejection circuits which prevent false triggering of the device in the event of fast raising line voltage transients. Inductive loads generate a commutating dv/dt that may activate the triac drivers noise suppression circuits. This prevents the device from turning on at its specified trigger current. It will in this case go into the mode of "half waving" of the load. Half waving of the load may destroy the power triac and the load.
Figure 8 shows the dependency of the triac drivers IFT versus the reapplied voltage rise with a Vp of 400 V . This dv/dt condition simulates a worst case commutating dv/dt amplitude.
It can be seen that the IFT does not change until a commutating dv/dt reaches $1000 \mathrm{~V} / \mu \mathrm{s}$. Practical loads generate a commutating dv/dt of less than $50 \mathrm{~V} / \mu \mathrm{s}$. The data sheet specified $I_{F T}$ is therefore applicable for all practical inductive loads and load factors.

TYPICAL ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 9．Delay Time， $\mathbf{t}(\mathrm{d})$ ，and Fall Time， $\mathrm{t}(\mathrm{f})$ ， versus LED Trigger Current

Figure 10．Static dv／dt Test Circuit

APPLICATIONS GUIDE

Basic Triac Driver Circuit

The new random phase triac driver family MOC3052 and MOC3051 are very immune to static dv／dt which allows snubberless operations in all applications where external generated noise in the AC line is below its guaranteed dv／dt withstand capability．For these applications a snubber circuit is not necessary when a noise insensitive power triac is used．Figure 11 shows the circuit diagram．The triac driver is directly connected to the triac main terminal 2 and a series Resistor R which limits the current to the triac driver．Current limiting resistor R must have a minimum value which restricts the current into the driver to maximum 1 A ．
$R=\mathrm{Vp} A C / I T M$ max rep．$=\mathrm{Vp} \mathrm{AC} / 1 \mathrm{~A}$
The power dissipation of this current limiting resistor and the triac driver is very small because the power triac carries the load current as soon as the current through driver and current limiting resistor reaches the trigger current of the power triac．The switching transition times for the driver is only one micro second and for power triacs typical four micro seconds．

Triac Driver Circuit for Noisy Environments

When the transient rate of rise and amplitude are expected to exceed the power triacs and triac drivers maximum ratings a snubber circuit as shown in Figure 12 is recommended． Fast transients are slowed by the R－C snubber and exces－ sive amplitudes are clipped by the Metal Oxide Varistor MOV．

Figure 11．Basic Driver Circuit

Typical Snubber values $\mathrm{R}_{\mathrm{S}}=33 \Omega, \mathrm{C}_{\mathrm{S}}=0.01 \mu \mathrm{~F}$ MOV（Metal Oxide Varistor）protects triac and driver from transient overvoltages $>\mathrm{V}_{\text {DRM }}$ max．

Figure 12．Triac Driver Circuit for Noisy Environments

Recommended snubber to pass IEEE472 and IEC255－4 noise tests $\mathrm{R}_{\mathrm{S}}=47 \mathrm{~W}, \mathrm{C}_{\mathrm{S}}=0.01 \mathrm{mF}$

Figure 13．Triac Driver Circuit for Extremely Noisy Environments

PACKAGE DIMENSIONS

NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：INCH

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.320	0.350	8.13	8.89
B	0.240	0.260	6.10	6.60
C	0.115	0.200	2.93	5.08
D	0.016	0.020	0.41	0.50
E	0.040	0.070	1.02	1.77
F	0.010	0.014	0.25	0.36
G	0.100 BSC	2.54 BSC		
H	0.020	0.025	0.51	0.63
J	0.008	0.012	0.20	0.30
K	0.006	0.035	0.16	0.88
L	0.320 BSC	8.13		BSC
S	0.332	0.390	8.43	

SEMICロNDபСTロR*
MOC3051, MOC3052

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.320	0.350	8.13	8.89
B	0.240	0.260	6.10	6.60
C	0.115	0.200	2.93	5.08
D	0.016	0.020	0.41	0.50
E	0.040	0.070	1.02	1.77
F	0.010	0.014	0.25	
G	0.100 BSC		2.54	
BSC				
K	0.008	0.012	0.21	
	0.100	0.150	2.54	0.30
L	0.400	0.425	10.16	10.80
N	0.015	0.040	0.38	1.02

0.4" LEAD SPACING

SEMICロNロபСTロR＂

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY，FUNCTION OR DESIGN．FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN； NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS，NOR THE RIGHTS OF OTHERS．

LIFE SUPPORT POLICY

FAIRCHILD＇S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION．As used herein：

1．Life support devices or systems are devices or systems which，（a）are intended for surgical implant into the body， or（b）support or sustain life，and（c）whose failure to perform when properly used in accordance with instructions for use provided in the labeling，can be reasonably expected to result in a significant injury of the user．

2．A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system，or to affect its safety or effectiveness．

Recommended for 115/240 Vac rms)

- Solenoid/Valve Controls
- Lamp ballasts
- Static AC power switch
- Interfacing microprocessors to 115 and 240 Vac peripherals
- Solid state relays
- Incandescent lamp dimmers
- Temperature controls
- Motor controls
back to top

Ordering information

- To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option.

The following options can be ordered with this part:

Option	Order Entry Identifier	Description
F	F	Low profile, surface mount
S	S	Surface mount
T	T	0.4 " Lead bend
V	V	VDE 0884
FV	FV	Low profile, surface mount; VDE 0884
SV	SV	Surface mount; VDE 0884
TV	TV	0.4" Lead bend; VDE 0884
FR2	FR2	Low profile, surface mount; T\&R
FR2V	FR2V	Low profile, surface mount; T\&R; VDE 0884
SR2	SR2	Surface mount; T\&R
SR2V	SR2V	Surface mount; T\&R; VDE 0884

back to top

Product status/pricing/packaging

| Product | Product status | Pricing* | Package type | Leads | Packing method |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| MOC3051F-M | Full Production | $\$ 0.387$ | N/A | N/A | RAIL |
| MOC3051FR2-M | Full Production | $\$ 0.395$ | DIP | 6 | TAPE REEL |
| MOC3051FR2V-M | Full Production | $\$ 0.395$ | DIP | 6 | TAPE REEL |
| MOC3051FV-M | Full Production | $\$ 0.387$ | N/A | N/A | RAIL |
| MOC3051-M | Full Production | $\$ 0.369$ | N/A | N/A | RAIL |
| MOC3051S-M | Full Production | $\$ 0.369$ | N/A | N/A | RAIL |
| MOC3051SR2-M | Full Production | $\$ 0.378$ | DIP | 6 | TAPE REEL |
| MOC3051SR2V-M | Full Production | $\$ 0.378$ | DIP | 6 | TAPE REEL |
| MOC3051SV-M | Full Production | $\$ 0.369$ | DIP | 6 | RAIL |
| MOC3051T-M | Full Production | $\$ 0.369$ | N/A | N/A | RAIL |
| MOC3051TV-M | Full Production | $\$ 0.369$ | N/A | N/A | RAIL |
| MOC3051V-M | Full Production | $\$ 0.369$ | N/A | N/A | RAIL |

* 1,000 piece Budgetary Pricing

back to top

Safety agency certificates

Cetificate	Agency	
$310983-01(95 \mathrm{~K})$	DEMKO	DEMKO Testing \& Certification
P01101866 $(383 \mathrm{~K})$	NEMKO	NEMKO
$\underline{\text { CR/0117 }(424 ~ K)}$	BABT	British Approvals Board of Telecommunications
$\underline{102497}(1629 \mathrm{~K})$	VDE	VDE Pruf-und Zertifizierungsinstitut
$\underline{1113639}(111 \mathrm{~K})$	CSA	Canadian Standards Association
$\underline{0134082}(136 \mathrm{~K})$	SEMKO	SEMKO
FI $17434(47 \mathrm{~K})$	FIMKO	FIMKO
E90700, Vol. $2(254 \mathrm{~K})$	UL	Underwriters Laboratories Inc.

back to top

Home \mid Find products \mid Technical information | Buy products \mid
Support \mid Company \mid Contact us \mid Site index \mid Privacy policy
© Copyright 2002 Fairchild Semiconductor
Last updated: April 7, 2002

Recommended for 115/240 Vac rms)

- Solenoid/Valve Controls
- Lamp ballasts
- Static AC power switch
- Interfacing microprocessors to 115 and 240 Vac peripherals
- Solid state relays
- Incandescent lamp dimmers
- Temperature controls
- Motor controls
back to top

Ordering information

- To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option.

The following options can be ordered with this part:

Option	Order Entry Identifier	Description
F	F	Low profile, surface mount
S	S	Surface mount
T	T	0.4 " Lead bend
V	V	VDE 0884
FV	FV	Low profile, surface mount; VDE 0884
SV	SV	Surface mount; VDE 0884
TV	TV	0.4" Lead bend; VDE 0884
FR2	FR2	Low profile, surface mount; T\&R
FR2V	FR2V	Low profile, surface mount; T\&R; VDE 0884
SR2	SR2	Surface mount; T\&R
SR2V	SR2V	Surface mount; T\&R; VDE 0884

back to top

Product status/pricing/packaging

| Product | Product status | Pricing* | Package type | Leads | Packing method |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| MOC3052F-M | Full Production | $\$ 0.405$ | N/A | N/A | RAIL |
| MOC3052FR2-M | Full Production | $\$ 0.413$ | DIP | 6 | TAPE REEL |
| MOC3052FR2V-M | Full Production | $\$ 0.413$ | DIP | 6 | TAPE REEL |
| MOC3052FV-M | Full Production | $\$ 0.405$ | N/A | N/A | RAIL |
| MOC3052-M | Full Production | $\$ 0.387$ | N/A | N/A | RAIL |
| MOC3052S-M | Full Production | $\$ 0.387$ | N/A | N/A | RAIL |
| MOC3052SR2-M | Full Production | $\$ 0.395$ | DIP | 6 | TAPE REEL |
| MOC3052SR2V-M | Full Production | $\$ 0.395$ | DIP | 6 | TAPE REEL |
| MOC3052SV-M | Full Production | $\$ 0.387$ | DIP | 6 | RAIL |
| MOC3052T-M | Full Production | $\$ 0.387$ | N/A | N/A | RAIL |
| MOC3052TV-M | Full Production | $\$ 0.387$ | N/A | N/A | RAIL |
| MOC3052V-M | Full Production | $\$ 0.387$ | N/A | N/A | RAIL |

* 1,000 piece Budgetary Pricing

back to top

Safety agency certificates

Cetificate	Agency	
$\mathbf{3 1 0 9 8 3 - 0 1}(95 \mathrm{~K})$	DEMKO	DEMKO Testing \& Certification
$\underline{\text { P01101866 }(383 ~ K)}$	NEMKO	NEMKO
$\underline{\text { CR/0117 }(424 ~ K)}$	BABT	British Approvals Board of Telecommunications
$\underline{102497}(1629 \mathrm{~K})$	VDE	VDE Pruf-und Zertifizierungsinstitut
$\underline{1113639}(111 \mathrm{~K})$	CSA	Canadian Standards Association
$\underline{0134082}(136 \mathrm{~K})$	SEMKO	SEMKO
FI 17434 $(47 \mathrm{~K})$	FIMKO	FIMKO
E90700, Vol. $2(254 \mathrm{~K})$	UL	Underwriters Laboratories Inc.

back to top

Home \mid Find products \mid Technical information | Buy products \mid
Support \mid Company \mid Contact us \mid Site index \mid Privacy policy

© Copyright 2002 Fairchild Semiconductor

Last updated: April 7, 2002

Datasheets for products beginning with CNY

CNY17-1-M	CNY17-2-M

back to top

Datasheets for products beginning with H11

| H11A1-M | H11AA1-M replaced
 by H11AA1 | H11AA2-M replaced
 by H11AA2 |
| :--- | :--- | :--- | :--- |

H11AA3-M replaced by H11AA3	H11AA4-M replaced by $\underline{\text { H11AA4 }}$	H11AV1-M
H11AV1A-M	$\underline{\text { H11AV2-M }}$	$\underline{\text { H11AV2A-M }}$
H11B1-M replaced by $\underline{\text { H11B1 }}$	H11B3-M replaced by $\underline{\text { H11B3 }}$	H11D1-M replaced by H11D1
H11D2-M replaced by $\underline{\text { H11D2 }}$	H11G1-M replaced by $\underline{\text { H11G1 }}$	H11G2-M replaced by H11G2
H11G3-M replaced by $\underline{\text { H11G3 }}$	$\underline{\text { H11L1-M }}$	$\underline{\text { H11L2-M }}$
H11L3-M		

back to top

Datasheets for products beginning with MCT

MCT2-M	MCT2E-M	

back to top

Datasheets for products beginning with MOC

MOC205-M	MOC206-M	MOC207-M
MOC208-M	MOC211-M	MOC212-M
MOC213-M	MOC215-M	MOC216-M
MOC217-M	MOC223-M	MOC256-M
MOC3010-M	MOC3011-M	MOC3012-M
MOC3020-M	MOC3021-M	MOC3022-M
MOC3023-M	MOC3031-M	MOC3032-M
MOC3033-M	MOC3041-M	MOC3042-M
MOC3043-M	MOC3051-M	MOC3052-M
MOC3061-M	MOC3062-M	MOC3063-M
MOC3081-M	MOC3081-M	MOC3083-M
MOC3162-M	MOC3163-M	MOC5007-M
MOC5008-M	MOC5009-M	MOC8030-M replaced by MOC8030

MOC8050-M replaced by $\underline{\text { MOC } 8050 ~}$	MOC8080-M replaced by $\underline{\text { MOC8080 }}$	MOC8100-M
MOC8204-M replaced by $\underline{\text { MOC8204 }}$	$\underline{\text { MOCD207-M }}$	MOCD208-M
MOCD211-M	MOCD213-M	MOCD217-M
MOCD223-M		

back to top

Home \mid Find products \mid Technical information \mid Buy products \mid Support \mid Company \mid Contact us \mid Site index \mid Privacy policy

© Copyright 2002 Fairchild Semiconductor

Last updated: March 19, 2002

