FEATURES

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 7.4 ns at 3.3 V
- Typical $\mathrm{V}_{\text {olp }}$ (Output Ground Bounce)
<0.8 at $\mathrm{V}_{\mathrm{cC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (Output V_{OH} Undershoot)
$>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With $3.3-\mathrm{V} \mathrm{V}_{\mathrm{cc}}$)

SN54LVC646A...JT OR W PACKAGE SN74LVC646A... DB, DW, NS, OR PW PACKAGE (TOP VIEW)

CLKAB	$1 \cup_{24}$	V_{CC}
SAB	23	CLKBA
DIR 3	322	SBA
A1 4	421	OE
A2 5	520	B1
A3 6	619	B2
A4 7	718	B3
A5 8	$8 \quad 17$	B4
A6 9	$9 \quad 16$	B5
A7	$10 \quad 15$	B6
A8	$11 \quad 14$	B7
GND	$12 \quad 13$	B8

- $\mathrm{I}_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The SN54LVC646A octal bus transceiver and register is designed for $2.7-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation, and the SN74LVC646A octal bus transceiver and register is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - DW	Tube of 25	SN74LVC646ADW	LVC646A
		Reel of 2000	SN74LVC646ADWR	
	SOP - NS	Reel of 2000	SN74LVC646ANSR	LVC646A
	SSOP - DB	Reel of 2000	SN74LVC646ADBR	LC646A
	TSSOP - PW	Tube of 60	SN74LVC646APW	LC646A
		Reel of 2000	SN74LVC646APWR	
		Reel of 250	SN74LVC646APWT	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - JT	Tube of 15	SNJ54LVC646AJT	SNJ54LVC646AJT
	CFP - W	Tube of 85	SNJ54LVC646AW	SNJ54LVC646AW
	LCCC - FK	Tube of 42	SNJ54LVC646AFK	SNJ54LVC646AFK

(1) Package drawings, standard packing quantities, thermal data, symboliztion, and PCB design guidelines are available at www.ti.com/sc/package. WITH 3-STATE OUTPUTS

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

These devices consist of bus-transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that are performed with the 'LVC646A devices.

Output-enable ($\overline{\mathrm{OE}}$) and direction-control (DIR) inputs control the transceiver functions. In the transceiver mode, data present at the high-impedance port is stored in either register or in both.
The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. DIR determines which bus receives data when $\overline{\mathrm{OE}}$ is low. In the isolation mode ($\overline{\mathrm{OE}}$ high), A data is stored in one register and B data can be stored in the other register.

When an output function is disabled, the input function still is enabled and can be used to store and transmit data. Only one of the two buses, A or B, can be driven at a time.
Inputs can be driven from either $3.3-\mathrm{V}$ or $5-\mathrm{V}$ devices. This feature allows the use of these devices as translators in a mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ system environment.
These devices are fully specified for partial-power-down applications using $\mathrm{I}_{\text {off }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

INPUTS						DATA I/O		OPERATION OR FUNCTION
$\overline{O E}$	DIR	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	
X	X	\uparrow	X	X	X	Input	Unspecified ${ }^{(1)}$	Store A, B unspecified ${ }^{(1)}$
X	X	X	\uparrow	X	X	Unspecified ${ }^{(1)}$	Input	Store B, A unspecified ${ }^{(1)}$
H	X	\uparrow	\uparrow	X	X	Input	Input	Store and B data
H	X	H or L	H or L	X	X	Input disabled	Input disabled	Isolation, hold storage
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
L	H	X	X	L	X	Input	Output	Real-time A data to B bus
L	H	H or L	X	H	X	Input	Output	Stored A data to B bus

(1) The data-output functions can be enabled or disabled by various signals at $\overline{O E}$ and DIR. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

Figure 1. Bus-Management Functions

Pin numbers shown are for the DB, DW, JT, NS, PW, and W packages.

SN54LVC646A, SN74LVC646A
INSTRUMENTS
www.ti.com

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
V_{1}	Input voltage range ${ }^{(2)}$		-0.5	6.5	V
V_{0}	Voltage range applied to any outpur	wer-off state ${ }^{(2)}$	-0.5	6.5	V
V_{0}	Voltage range applied to any outpur		-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
$\mathrm{I}_{\text {OK }}$	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
l_{0}	Continuous output current			± 50	mA
	Continuous current through V_{CC}			± 100	mA
		DB package		63	
	Package thermal impedance ${ }^{(4)}$	DW package		46	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$ө^{\text {JA }}$	Package thermal impedance ${ }^{(4)}$	NS package		65	O,
		PW package		88	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The value of V_{Cc} is provided in the recommended operating conditions table.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) For I/O ports, the parameter IOz includes the input leakage current.
(3) This applies in the disabled state only.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

			SN4L	46A		
		V_{cc}		v_{cc}		UNIT
		MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		150		150	MHz
t_{w}	Pulse duration	3.3		3.3		ns
$\mathrm{t}_{\text {su }}$	Setup time, data before CLK \uparrow	1.6		1.5		ns
t_{h}	Hold time, data after CLK \uparrow	1.7		1.7		ns

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

(1) This information was not available at the time of publication.

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVC646A			UNIT
			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			150	150		MHz
t_{pd}	A or B	B or A	7.9	1	7.4	ns
	CLK	A or B	8.8	1	8.4	
	SBA or SAB		9.9	1	8.6	
$\mathrm{t}_{\text {en }}$	OE	A	10.2	1	8.2	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	A	8.9	1	7.5	ns
$\mathrm{t}_{\text {en }}$	DIR	B	10.4	1	8.3	ns
$\mathrm{t}_{\text {dis }}$	DIR	B	8.7	1	7.9	ns

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN74LVC646A								UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$			(1)		(1)		150		150		MHz
t_{pd}	A or B	B or A	(1)	(1)	(1)	(1)		7.9	1	7.4	ns
	CLK	A or B	(1)	(1)	(1)	(1)		8.8	1	8.4	
	SBA or SAB		${ }^{(1)}$	(1)	(1)	(1)		9.9	1	8.6	
t_{en}	OE	A	(1)	(1)	(1)	(1)		10.2	1	8.2	ns
$\mathrm{t}_{\text {dis }}$	OE	A	(1)	(1)	(1)	(1)		8.9	1	7.5	ns
$\mathrm{t}_{\text {en }}$	DIR	B	(1)	(1)	(1)	(1)		10.4	1	8.3	ns
$\mathrm{t}_{\text {dis }}$	DIR	B	${ }^{(1)}$	(1)	(1)	(1)		8.7	1	7.9	ns

(1) This information was not available at the time of publication.

SN54LVC646A, SN74LVC646A
OCTAL BUS TRANSCEIVERS AND REGISTERS
WITH 3-STATE OUTPUTS
SCAS302J-JANUARY 1993-REVISED AUGUST 2005

Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP			
Cpd	Power dissipation capacitance per transceiver	Outputs enabled		$\mathrm{f}=10 \mathrm{MHz}$	(1)	(1)	75	pF
		Outputs disabled	(1)		(1)	9		

(1) This information was not available at the time of publication.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

[^0]NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. tpzL and tpze are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9762601Q3A	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N/ A for Pkg Type
5962-9762601QKA	ACTIVE	CFP	W	24	1	TBD	A42	N/ A for Pkg Type
5962-9762601QLA	ACTIVE	CDIP	JT	24	1	TBD	A42 SNPB	N/A for Pkg Type
SN74LVC646ADBLE	OBSOLETE	SSOP	DB	24		TBD	Call TI	Call TI
SN74LVC646ADBR	ACTIVE	SSOP	DB	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADBRE4	ACTIVE	SSOP	DB	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADBRG4	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADW	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADWE4	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADWG4	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADWR	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADWRE4	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ADWRG4	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ANSR	ACTIVE	SO	NS	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ANSRE4	ACTIVE	So	NS	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646ANSRG4	ACTIVE	SO	NS	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APW	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWE4	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWG4	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWLE	OBSOLETE	TSSOP	PW	24		TBD	Call TI	Call TI
SN74LVC646APWR	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWRE4	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWRG4	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWT	ACTIVE	TSSOP	PW	24	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWTE4	ACTIVE	TSSOP	PW	24	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC646APWTG4	ACTIVE	TSSOP	PW	24	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54LVC646AFK	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N/ A for Pkg Type

| Orderable Device | Status $^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNJ54LVC646AJT | ACTIVE | CDIP | JT | 24 | 1 | TBD | A42 SNPB | N/A for Pkg Type |
| SNJ54LVC646AW | ACTIVE | CFP | W | 24 | 1 | TBD | A42 | N / A for Pkg Type |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$): TI defines "Green" to mean Pb -Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL BOX INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package	Pins	Site	Reel Diameter $(\mathbf{m m})$	Reel Width $(\mathbf{m m})$	A0 (mm)	B0 (mm)	K0 (mm)	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
SN74LVC646ADBR	DB	24	SITE 41	330	16	8.2	8.8	2.5	12	16	Q1
SN74LVC646ADWR	DW	24	SITE 60	330	24	10.75	15.7	2.7	12	24	Q1
SN74LVC646ANSR	NS	24	SITE 41	330	24	8.2	15.4	2.5	12	24	Q1
SN74LVC646APWR	PW	24	SITE 41	330	16	6.95	8.3	1.6	8	16	Q1

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
SN74LVC646ADBR	DB	24	SITE 41	346.0	346.0	33.0
SN74LVC646ADWR	DW	24	SITE 60	346.0	346.0	41.0
SN74LVC646ANSR	NS	24	SITE 41	346.0	346.0	41.0
SN74LVC646APWR	PW	24	SITE 41	346.0	346.0	33.0

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
E. Index point is provided on cap for terminal identification only.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

[^0]: VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

